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Abstract  
  
In this paper, the compact solution for post-buckling of beam made of functionally graded material under axial loading 
is introduced. The FGM beam ends are restrained from axial movement. The governing equations and the boundary 
conditions are derived using the principle of stationary potential energy and the governing equations are solved by 
closed-form method. The effects of material compositions, slenderness ratios and boundary conditions that lead to the 
considerable changes in buckling and post-buckling behaviors are investigated. The shear deformation effects on the 
critical buckling load is introduced using Euler-Bernoulli, Timoshenko, and some higher-order beam theories. Results of 
this analysis illustrate that classical and first-order theories underestimate the amplitude of buckling, while some higher-
order theories yield very close results for the static post-buckling response. 
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1. Introduction 
 
The concept of functionally graded materials (FGMs) was 
first introduced in 1984 by a group of material scientists 
in Japan [1]. FGMs are novel, microscopically 
inhomogeneous in which the mechanical properties vary 
smoothly and continuously from one surface to another. 
It has many good performances in engineering 
applications, such as high resistance to large temperature 
gradients, reduction of stress concentration and so on. 
Therefore, FGMs have found extensive applications in 
spacecrafts, space vehicles, nuclear reactors and other 
situations where large temperature gradients are 
encountered. 
 There are many two dimensional theories that have 
been proposed to account for the shear deformation of 
moderately deep structures and highly anisotropic 
composite. Reddy [2] imposed the boundary conditions of 
transverse shear stresses on top and bottom surfaces of 
plate and proposed a higher order theory with parabolic 
distribution of transverse shear stresses across the 
thickness involving five unknown variables. Touratier [3] 
proposed a trigonometric shear deformation plate theory 
where the transverse strain distribution is given as a sine 
function. Soldatos [4] proposed a hyperbolic shear 
deformation plate theory. Further, Soldatos and Timarci 
[5] formulated a general theory that unifies most of the 
variationally consistent classical and shear deformable 

cylindrical shell theories. Karama et al. [6] proposed an 
exponential variation for the transverse strain in their 
study of the bending of composite beams. 
 Bending analysis of FG beams based on higher order 
shear deformation under ambient temperature was 
investigated by Kadoli et al. [7]. Xiang and Yang [8] used 
Timoshenko beam theory to study the free and forced 
vibration of laminated FG beams under heat conduction 
using the differential quadrature method (DQM). An 
analytical solution for free vibration analysis based on the 
first order shear deformation theory of FG beams was 
presented by Sina et al. [9]. Free vibration and buckling 
analysis of FG beams, which have an open crack at their 
edge, were considered by using Euler–Bernoulli beam 
theory and the rotational spring model by Yang and Chen 
[10]. The Timoshenko beam theory was employed to 
study post-buckling and nonlinear vibration of edge 
cracked FG beams without thermal effects by Ke et al. 
[11] and Kitipornchai et al. [12]. An improved third order 
shear deformation theory has recently been developed by 
Shi [13] for the problems in which the transverse shear 
plays an important role. Shi presented static analysis of 
orthotropic plates based on the improved theory, which 
provides more accuracy in results than other theories, 
especially for shear stress prediction. 
 Samir A.Emam [14] evaluated shear deformable 
composite beams in post-buckling that presents an exact 
solution for the static post-buckling response of a 
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symmetrically laminated simply supported shear-
deformable composite beam. Li and Batra [15] proposed 
Analytical relations between the critical buckling load of a 
functionally graded material (FGM) Timoshenko beam 
and that of the corresponding homogeneous Euler–
Bernoulli beam subjected to axial compressive load. Most 
recently, Grover et al. [16] proposed a new inverse 
hyperbolic shear deformation theory for static and 
buckling analysis of laminated composite and sandwich 
plates. Meiche et al. [17] proposed a new hyperbolic 
shear deformation theory for buckling and vibration 
analysis of functionally graded sandwich plates. Mantari 
et al. [18,19] proposed new shear strain functions and 
presented the analytical solution for laminated and 
sandwich plates. 
 The objective of present study is to investigate the 
significance of the shear deformation of FGM beams 
under static post-buckling response. The classical, first-
order, and some higher-order shear deformation beam 
theories is employed, and the closed-form solutions are 
presented for simply supported (H-H) and clamped-
clamped (C-C) boundary conditions. The effects of 
material compositions, slenderness ratios and boundary 
conditions that lead to the considerable changes in 
buckling and post-buckling behaviors are investigated. 
Finally, the critical load of buckling is obtained for higher-
order beam theories and is compared with acquired 
results of the classical and first-order beam theories. 
 
2. Functionally Graded Materials 
 
A FG beam made by ceramic–metal is considered in this 
investigation. The geometrical properties of beam are 
shown in Fig. 1. It is assumed that the material properties 
of the form, P (such as the Young’s modulus, (E), the 
thermal expansion coefficient (α), and density (ρ)), which 
are used to calculate the material stiffness and the 
moment of inertia for FGMs, can be presented as:  
 

                                            (1) 
 
Where the subscripts ‘m’ and ‘c’ denote the metallic and 
ceramic constituents, respectively, and z is the coordinate 
in the thickness direction (− h/2 ≤ z ≤ h/2). 
 

 
Fig. 1. Geometry of FG beam 
 

It is noted that the positive real number k ( 0 k   ) 
is the power law index, and z is the distance from the 
mid-plane of the FG beam. The volume fractions of the 
constituent materials, which are assumed to be ceramic 

of volume cV
  and metal of volume, mV

 may be 
expressed using the power law distribution as [20]: 

 
                            (2)  
                                                                                                      

Where h is the thickness of the beam and z is the 
thickness coordinate measured from the middle surface 
of the beam. Note that for the upper surface, which is 

ceramic rich,
( ) 1
2

c

h
V 

  and for the lower surface, which 

is metal rich, 
( ) 0

2
c

h
V




 . Variation of cV
 with k and 

z/h is shown in Fig. 2. 

 
 
Fig. 2 Variation of ceramic volume fraction with power 
law index and thickness coordinate 
 
The value of k equal to zero represents a fully ceramic 

beam (
1cV 

) and k equal to infinity represents a fully 

metallic beam (
0cV 

). 
 
3. Formulation 
 
We consider a FG beam of length L and height h that is 

subjected to a compressive axial load N . The axial and 
lateral displacements u and w, respectively, of a point 
that is at a height z measured from the mid-plane and a 
distance x along the beam span in its deformed state are 
assumed as follows: 
 

                  (3) 
 

                                                     (4) 
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Where 0 0,u w
and 𝜑 are unknown displacement 

functions of the mid-plane, with this suppose that beam 
deformation occurs in x-z plane. Also,  f(z) is a shape 
function describing the shear deformation across the 
thickness and the dash designates a partial differentiation 
with respect to the spatial coordinate x. Table 1 presents 
the function  f(z) according to different beam theories 
[21]. 
 
Table 1.  f(z) describing for Euler-Bernoulli and 
Timoshenko and higher-order beam theories. 
 

Beam theory f(z) 

Classical theory: 
Euler-Bernoulli 

 
f(z)=0 

First-order theory: 
Timoshenko 

 
f(z)=z 

Higher-order theories: 
Reddy 

3

2

4
( )

3

z
f z z

h
 

 
Touratier 

( ) sin( )
h z

f z
h






 
Karama et al. 2

2

2

( )

z

hf z ze




 

Soldatos 1
( ) sinh( ) cosh( )

2

z
f z h z

h
 

 
Aydogdu 22( )

ln( ) , 3

z

h

f z z  



   
Mantari 

( ) sin( )
z

f z
h




 
N. Grover et al. 

1( ) sinh ( ), 3
rz

f z r
h

 
 

 
The small normal strain and the transverse shear strain 
are given as follows: 
 

2 21 1
( ) ( )

2 2
x

u w
u w zw f z

x x
 

 
        

                                           
                  (5) 

( )xz

w u
f z

x z
 

 
  

                                                            
                  (6) 
The relationships between stresses and strains in the 
form of elastic constitutive equations are: 
 

11( )x xQ z 
                                                                  (7) 

 

55( )xz xzQ z 
                                                                 (8) 

 
The elastic constants for FG beams varied continuously 
through the beam thickness can be expressed as: 

11 2

( )
( )

1

E z
Q z




                                                                   (9) 

  
55

( )
( ) ( )

2(1 )

E z
Q z G z


 

                                                       
                (10) 
The stress resultants are introduced as follow: 
 

, , ( ) , ( )s s

x x x x x x x xzN dydz M z dydz P f z dydz Q f z dydz                       
                (11) 

Where xN
 and xM

 are the force and moment stress 

resultants, 
s

xP
 and 

s

xQ
 are stress resultants due to shear 

deformation. To simplify the Eq. (11), the material 
stiffness components are used. 
 

11 11 11

2

11 11 11

11 11 11

1

2

T
T

s

x x x

A B E

N M P B D F u w w

E F H



 
                

                          
                    (12a) 
 

55

s

xQ A 
                                                                   (12b) 

The extensional stiffness 11A
, bending-coupling stiffness 

11B
, bending stiffness 11D

, warping extensional 

coupling stiffness 11E
, warping-bending coupling 

stiffness 11F
, and warping-higher order bending coupling 

stiffness 11H
are used into Eq. (12) and 55A

is associated 
with shear stiffness components [9]. All of the stiffness 
components can be expressed as: 
 

2 2

11 11 11 11 11 11 11, , , , , ( )(1, , ( ), , ( ), ( ))A B E D F H Q z z f z z zf z f z dydz                      
                    (13a) 

2

55 55( ) ( )A Q z f z dydz                                                    
                   (13b) 
The total potential energy can be expressed as follows: 
 

2

0

1 1
( )

2 2

L

x xz zx xU dydzdx Nw dx      ò
                                    

                (14) 

Where N  is the external load applied on the beam along 
the x axis. Substituting  Eqs. (5)-(6) and (11) into Eq. (12), 
the total potential energy is obtained. 

2 2

0

1 1
[ ( ) ]

2 2

L
s

x x xU N u w M w P Nw dx       
                               

                (15) 
4. Solution 
 
The governing equations are achieved by using the 
principle of stationary potential energy. 



Alireza Daneshmehra et al                                                              Post-Buckling Analysis of FGM Beams According to Different Shear Deformation Theories 

25 | Int. J. of Multidisciplinary and Current research, Sept/Oct 2013 

 

0U                                                                                (16) 

Where   is the first variation. 
The natural and essential boundary conditions are 
acquired by Eq. (14), that the essential boundary 
conditions are the same governing equations. These 
equations are introduced as follow: 

0xdN

dx


                                                                                
                    (17a)  

2 2

2 2
( ) 0x

x

d M d d w
N w N

dx dx dx
  

                                                  
                   (17b) 

0
s

sx
x

dP
Q

dx
 

                                                               (17c) 
Substituting Eq. (12) into Eq. (17), the governing 
equations can be expressed as follow: 

2

11 11 11

1
( ) 0

2
A u w B w E        

                                          
                    (18a) 

2
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1
[( ) ] ( ) 0
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A u w w B u E w F D w Nw                 

                  
                   (18b) 

2

11 11 11 55

1
( ) 0

2
E u w F w H A         

                                    
               (18c) 
By twice integrating of the Eq. (18a) with respect to the 
spatial coordinate x, the axial displacement versus other 
variations is obtained. 

2 11 11 1
2

0
11 11 11

1
( )

2

x B E c
u x w dx w x c

A A A
      

                                      
                (19) 

Where 1c
 and 2c

are constants of integral, which can be 
determined from the boundary conditions. The boundary 
conditions for clamped beam are as follows: 

(0) ( ) (0) ( ) 0u u L w w L    
                                                      

                (20) 
 As is known, placing the boundary conditions into the Eq. 

(19) constants 1c
and 2c

are determined. 

11
2

11

(0)
E

c
A



                                                                                 
                    (21a) 

211 11
1

0
[ ( ) (0)]

2

xA E
c w dx L

L L
   

                                                
(21b). Now, Eq. (19) comes in the following forms: 
 

2 211 11 11 11

0 0
11 11 11 11

1 1
( ) ( ( ) [ ( ) (0)]) (0)

2 2

x xB E E E
u x w dx w w dx L x

A A L A L A
             

           
                (22) 
For clamped-clamped boundary condition, the following 
displacement field is assumed [22]: 

2
( ) cos( ) 1

x
w x

L


 

                                                                    
                    (23a) 

2
( ) cos( ) 1

x
x s

L


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                                    (23b) 
Where s is unknown to be determined. By substituting 
Eqs. (22) and (23) into Eq. (18b), and solving the resultant 

equation for  ̅, the function of critical buckling load 
versus h is obtained for clamped-clamped beam boundary 
condition. 
   Now, for simply supported beam, the following 
displacement field is assumed for the first buckling mode 
[18]: 

( ) sin( )
x

w x
L

 
                                                       (24a) 

( ) cos( )
x

x
L

  
                                                       (24b) 

Where   and 


 are unknowns to be determined. Now, 
by substituting Eqs. (22) and (24) into governing 
equations, a system of two equation with two unknowns 
α and ρ is obtained. This system has a non-zero response 
when determinant of coefficients matrix is zero. By 
solving this determinant, an equation is formed that can 
be calculated critical buckling load by using this equation. 
 

32
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
                                     

                (26) 
Then, critical buckling load: 

2 2

11
112 2 2

55 11

( )cr

F
N D

L L A H




 

                                                
                           (27) 

The non-dimensional critical buckling load
*

crN
, is defined 

as follows: 
2

*

3cr cr

m

L
N N

Bh E


                                                           (28)  
Also, by solving the above system of two equation with 
two unknowns, the unknowns α and β can be obtained, 
where α (intensity of displacement in direction z) is 
expressed as the buckling amplitude. 
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                (29) 
Variations of the buckling amplitude versus buckling load, 
is known as static post-buckling response. 
 
5. Numerical results 
 
The post-buckling response of high-order shear 
deformable FG beams is not available in the open 
literature; hence, the validation study for the theoretical 
formulation in this paper is achieved by comparing the 
results with those presented in Ref [18]. So, we consider a 
FG beam that composed of ceramic (alumina) and metal 

(aluminum) with 
380cE GPa

 and 
70cE GPa

, 

respectively, and 0.23v  [18]. 
We use the model developed in the present study to 
determine the non-dimensional first critical buckling 
loads for FG beam with different length-to-thickness 
ratios and compare them with other results in literature. 
Table 2 presents the non-dimensional critical buckling 
loads in this study.  
 It is worth investigating the significance of shear 
deformation, not only on the critical buckling load but 
also on the resulting of post-buckling response. The post-
buckling response of simply supported FG beams using 
Euler-Bernoulli's beam theory, Timoshenko's theory and 
some higher-order shear deformation theories is 
presented. The variation of the non-dimensional buckling 

amplitude 
* with the applied non-dimensional critical 

axial load 
*

crN
is investigated while the length-to-

thickness ratio is varying. Fig. 3 presents the variation of 
the mid-span post-buckling amplitude with the applied 
axial load. These figures show that length-to-thickness  

 

 
ratio is an important parameter in the analysis of post-
buckling of FG beams. As the higher-order shear 
deformation theories show very close results in the 

course of the critical buckling load, they also yield similar 
post-buckling response. We also note that the first-order 
shear deformation theory always underestimates the 
amplitude of buckling compared with higher-order 
theories. For the high length-to-thickness ratios, the shear 
deformation effect can be neglected. 

 

 

 
Fig. 3 Variation of the maximum buckling with the applied 

axial load for 40,20,10,5
L

h
 . 

Table 2. Non-dimensional first critical buckling load using 
different beam theories 
 

        Beam theories  
L/h 

5 10 20 40 

Euler–Bernoulli 2.791 2.791 2.791 2.791 

Timoshenko 2.572 2.733 2.776 2.788 

Reddy 2.532 2.722 2.774 2.787 

Touratier 2.532 2.722 2.774 2.787 

Karama et al. 2.534 2.722 2.774 2.787 

Aydogdu 2.534 2.722 2.774 2.787 

Soldatos 2.532 2.722 2.774 2.787 

Mantari 2.532 2.722 2.774 2.787 

N. Grover et al. 2.546 2.726 2.775 2.787 

 

 
Fig. 4 Variation of critical buckling load with beam 
thickness 
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Fig. 4 presents the variation of critical buckling load with 
beam thickness for simply supported and clamped-
clamped boundary conditions. This figure shows that the 
beam with clamped-clamped boundary condition, bear 
higher axial load versus simply supported boundary 
condition. 
 Fig. 5 and Fig. 6 demonstrate the influence of the 
power law index k on the buckling load of simply 
supported and clamped-clamped FG beams, respectively. 
By increasing the power law index, the critical buckling 
load decreases. 
 

 
Fig. 5 Critical buckling load versus thickness h, for 
different power law index k (H-H boundary condition) 
 

 
 
Fig. 6 Critical buckling load versus thickness h, for 
different power law index k (C-C boundary condition) 
 
6. Conclusions 
 
The comparison of post-buckling behavior of a FGM beam 
based on some higher-order shear deformation theories, 
classical and first-order theories is investigated. The 
governing equations and the boundary conditions are 
derived using the principle of stationary potential energy 
and the governing equations are solved by closed-form 
method. The effects of material compositions, 
slenderness ratios and boundary conditions that lead to 
the considerable changes in buckling and post-buckling 
behaviors are investigated. From numerical results for 
simply supported FG beam, we note that the higher-order 
shear deformation theories show very close results in the 
course of the critical buckling load, they also yield similar 
post-buckling response. We also note that the classical 

and first-order shear deformation theories usually 
underestimates the amplitude of buckling compared with 
higher-order theories. For the high length-to-thickness 
ratios, the shear deformation effects can be neglected.  
 Additionally, the comparison of critical buckling load 
of simply supported and clamped-clamped beam is 
presented, that the clamped-clamped beam can bear 
more axial load. Also, variation of critical buckling load 
with different power law indexes is investigated, and we 
note that by increasing the power law index, the critical 
buckling load decreases. 
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