Effect of Plastering on Clay Brick Masonry Behavior Using Taguchi Method

Nasser, A.A

Department of Civil Engineering, Faculty of Engineering, Minoufiya University, Shebin-Elkom, El-Minoufiya, Egypt,

Abstract

Clay brick is used as infill buildings partitions. Plastering these infill walls may be postponed or eliminated. The effect and optimization of using interface overlays on masonry behavior was investigated by using Taguchi method as a new technique in experimental design. The experimental studies were conducted using different types of brick in order to study the masonry behavior. Two control factors were taken into consideration; number of mortar interface overlays (A) and clay brick type (B). Nine walls were constructed and tested under compressive loading. Longitudinal Strain of each wall was recorded under loading. The data was analyzed, two mortar overlays and brick type 1 wall has the best performance. Analysis of Variance of experimented walls showed high contribution of plastering compared with brick type. It was concluded that plastering the walls from both sides enhanced the behavior of the walls. One mortar overlay decreases the compressive loading of wall.

Keywords: Clay Brick, Masonry, Tagushi Method, Compressive strength, Plastering, Mortar Interface.

1. Introduction

Salts may be inherent to brick, mortar, absorbed groundwater, created by metabolic activity of microorganisms, or formed by reaction with atmospheric pollutants. Efflorescence is a fine, white, powdery deposit of water-soluble salts left on the surface of masonry as water evaporates. Alkali sulfates in walls are dissolved by water into a solution which moves through natural pores in masonry. The solution migrates to wall surface, where water evaporates. Depositing salts rest on walls. Deposits are white powdery known as efflorescence. Potential efflorescent problems can be greatly reduced by using low alkali cements, clean washed sands and potable free salt water (R. Boynton et al, 1990).

Masonry construction is a very old building technique. Potential damage of unreinforced masonry facing lateral loads is a human life threat particularly in the out-of-plane direction (X. Wei et al, 2010). Masonry is used as infill walls in reinforced concrete buildings (H.B. Kaushik et al, 2007). Masonry walls are used in all types of building construction all over the world. Clay-unit masonry is composed of two materials; mortar and fired-clay brick (W.S. Mcnary et al, 1985). Masonry is provided and expected to resist compressive forces only. Structural engineers often ignore infill walls presence. Walls tend to interact with the surrounding frame, when the structure is subjected to lateral forces; the resulting system is referred to as infilled frame. Brick masonry wall imparts
additional flexural strength due to beneficial interaction with its supporting reinforced concrete beam. Structural interaction results in a considerable increase in the stiffness of the overall structure. In conventional methods of design of concrete structures, the brick masonry is dead load on supporting beams. Modern structural analysis considers the entire structure as a single unit. The wall-beam composite is an example for the composite behavior of brick masonry and reinforced concrete structures (H.B. Kaushik et al., 2007).

2. Design of Experiment Based on Taguchi’s Technique

Statistical design of experiments refers to experimental planning process, so that data is analyzed by statistical method, resulting in valid and objective conclusions. Design of experimental methods such as factorial design, response surface methodology (RSM) and Taguchi methods are now widely used in place of one-factor-at-a-time in experimental approach (R. K. Roy, 2001).

The major steps required for the experimental design using Taguchi method are: (1) establishment of objective function, (2) identification of factors and their levels, (3) selection of an appropriate orthogonal array (OA), (4) experimentation, (5) analysis of data and determination of the near optimum level of each factor (optimum combination), and (6) the confirmation experimentation (R. K. Roy, 2001).

3. Work Objective

Reinforced concrete skeleton construction is the most popular in Egypt. Clay brick is widely used in the construction system as partitions. Plastering these infill walls may be postponed or eliminated, particularly the outer walls adjacent to other buildings. The effect and optimization of using interface overlays on masonry behavior was investigated in this study by using Taguchi method. It is a new technique in experimental design. The experimental studies were conducted using different number of overlays and types of brick to study the masonry behavior. Two control factors were taken into consideration; number of interface overlays (A), and clay brick type (B).

4. Taguchi’s Orthogonal Array Approach of Experimental Design

Taguchi proposes a holistic view of quality which relates quality to cost. Taguchi defines quality as, “The quality of a product is the (minimum) loss imparted by the product to the society from the time product is shipped”. When a critical quality characteristic deviates from the target value, it causes a loss. Quality simply means no variability or very little variation from target performance. Variability reduction or quality improvement drives cost down. Lowest cost can only be achieved at zero variability from target. Variability reduction from the target value is critical quality characteristics. High quality and cost reduction are achieved. Design engineers actually calculate the optimum design based on cost analysis and experimentation. Taguchi’s target is developing products that achieve target value on consistent basis. Quality is achieved by minimizing the deviation from the target. A number of parameters can influence the quality characteristic or response of the product. The scope is limited to optimize compressive strength for masonry (R. Unal et al., 1991).

The method of investigating all possible combinations and conditions in an experiment (involving multiple factors) is traditionally known as factorial design. The number of possible design N (number of trials) is \(N = L^m \), where \(L= \) number of levels for each factor, \(m= \) number of factors involved. Qualities for masonry depend on two factors. Variation of three levels conditions is limited to the number of design of experiments of \(3^2 = 9 \) trials.

4.1. Selection of Orthogonal Array (OA)

Minitab software version 16 is used to develop the experimental plan for Taguchi method. The same software is also used to analyze the measured data. Moreover, the analysis of variance (ANOVA) was used to discuss the relative importance of control factors and its contribution.

Taguchi (R. Unal et al., 1991) designed certain standard orthogonal arrays (OA). There are many standard orthogonal arrays available. Each array is meant for a specific number of independent design variables and levels.
Behavior of two control factors each of three levels is investigated. Use of a full factorial design gives a total of 9 (2^3) sets of experiments. Therefore, L9 OA is selected for the present investigation. The two independent variables (control factors) and their three levels are presented in Table (1).

Table (1) Orthogonal Array of Taguchi Design L9 & Control Factors

<table>
<thead>
<tr>
<th>Masonry</th>
<th>L9 Design</th>
<th>Experimental Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor A</td>
<td>Factor B</td>
</tr>
<tr>
<td>W1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>W2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>W3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>W4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>W5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>W6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>W7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>W8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>W9</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Interface layers</th>
<th>Type of brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>No plastering</td>
<td>B1</td>
</tr>
<tr>
<td>No plastering</td>
<td>B2</td>
</tr>
<tr>
<td>No plastering</td>
<td>B3</td>
</tr>
<tr>
<td>One layer interface</td>
<td>B1</td>
</tr>
<tr>
<td>One layer interface</td>
<td>B2</td>
</tr>
<tr>
<td>One layer interface</td>
<td>B3</td>
</tr>
<tr>
<td>Two layer interface</td>
<td>B1</td>
</tr>
<tr>
<td>Two layer interface</td>
<td>B2</td>
</tr>
<tr>
<td>Two layer interface</td>
<td>B3</td>
</tr>
</tbody>
</table>

5. Experimental Work

5.1. Materials

The constituent materials used in this study were locally available materials specified by the following:

1. Brick units: clay brick units (10 vertical holes) were obtained from three different factories in El-Menoufia Province, Egypt.
2. Cement: Ordinary Portland cement with grade 32.5N was used in this investigation. Cements are confirmed to the Egyptian Standard Specifications (ES) requirements (2421-1/2005).
3. Fine aggregates: Medium well-graded sand of fineness modulus 2.2 was used for mortar. Fine aggregates confirming to ES requirements (1109-2002).

5.2. Specimen Preparation and Testing

Clay brick specimens were tested according to ECP (204-2005). The mortar mixture was weighed and mixed manually in a batch of 250 L for a period of 10 min. Clay brick units were kept in water prior to construction as specified in (ECP 204-2005). Mortars proportions were in accordance to (ECP 204-2005) and testing manual. Ratio by volume was 1:3 for cement: sand, respectively, and the water-cement ratio of 1.3 (with water added until desired workability is achieved. Mortar cubes (70x70x70 mm) were cast during construction of test specimens. Mortar compressive strength was 180MPa after 28 days. Masonry prisms were made to measure compressive strength after 28 days. They were cured in the laboratory condition. All strengths of masonry prisms were calculated by using the gross area under loading (ESS 1756/1989). Hydraulic testing machine of 1550 kN total capacity was used for testing masonry prisms as shown in figure (1.a). Failure of prism under compressive loading is shown in figure (1.b). Nine wall specimens were constructed by using three different brick units and one type of mortar to achieve straight wall height of 750 mm and length of 750 mm and with thickness equal to the width of brick unit. Mortar used for bed and head joints has a thickness of about 20 mm. After seven days from construction, the walls were covered with 20 mm overlays thickness for each layer. Steel plate 50 mm thick corresponding to concrete beam was put on the top of walls to distribute uniform load. A hydraulic load cell with 500 kN total capacity was used to test walls after 28 days. Applied loads and mid height longitudinal strain (with 200 mm gauge length) were recorded for each specimen.
6. Test Results

The mechanical properties of brick units are given in Table (2) (in accordance to ES: 1524/1993) and ECP-testing manual. The area of holes is less than 25% of total surface area of brick units. Thus the loading area equal to the gross area. Table (2) illustrates the experimental test results of brick units.

Table (2) Physical Properties of Clay Brick

<table>
<thead>
<tr>
<th>Brick</th>
<th>Dimension (mm)</th>
<th>Absorption %</th>
<th>Voids</th>
<th>Efflorescence **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
<td>Breadth</td>
<td>Height</td>
<td><16%</td>
</tr>
<tr>
<td>Specification Limit</td>
<td>250±2</td>
<td>120±2</td>
<td>70±2</td>
<td>20.31</td>
</tr>
<tr>
<td>B1</td>
<td>229</td>
<td>106</td>
<td>72</td>
<td>11.92</td>
</tr>
<tr>
<td>B2</td>
<td>231</td>
<td>108</td>
<td>71</td>
<td>8.07</td>
</tr>
<tr>
<td>B3</td>
<td>229</td>
<td>104</td>
<td>71</td>
<td>9.95</td>
</tr>
</tbody>
</table>

* for bearing walls
** Efflorescence as percentage of white color area covering brick surface

Figure (2) shows comparison between compressive strength of brick unit, prism and walls. Walls have no plastering, one face overlay or two faces overlays. Figure (3) shows applied loads with corresponding longitudinal strain of masonry.
Figure (2) Compressive Strength of Brick Unit, Prism and Masonry Walls

Figure (3) Load versus Longitudinal Strain of Masonry Walls

Figure (4) shows crack pattern of W4 with one layer interface. Debonding of mortar interface area is clear. Figure (5) shows crack pattern of W7. Ultimate load is 350kN for W7. Walls W7, W8 and W9 are two layer interface of mortar. Figure (6, 7) shows crack pattern of W8 and W9.
7. Analysis of data

Taguchi method uses a statistical measure of performance called signal to noise (S/N) ratio. The S/N ratio developed by Taguchi is a performance measure to choose control levels that best cope with noise. The S/N ratio takes both the mean and the variability into account. In its simplest form, the S/N ratio is the ratio of the mean (signal) to the standard deviation (noise). The S/N equation depends on the criterion for the quality characteristic to be optimized (U. Eşme, 2009). A loss function is defined to calculate the deviations between the experimental value and the desired value. This function is further transferred into a signal-to-noise (S/N) ratio. There are three S/N ratios available, depending on the type of characteristic; the lower-the better (LB), the higher-the better (HB), and the nominal the better (NB). In the present investigation, the objective is to maximize the strength and ductility, therefore “larger is better” quality characteristics are selected, which is logarithmic function can be calculated as follows (S. M. Holt, 2011):

$$\eta = \left(\frac{\bar{y}}{N} \right) = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{y_i} \right) \right] \quad \text{eq. (1)}$$

where the quality score y_i with larger-the-better has been assumed. The overall mean value of η over nine experiments becomes

$$\bar{\eta} = \frac{1}{9} \sum_{i=1}^{9} \eta_i \quad \text{eq. (2)}$$
The effect of a control factor level is defined as the deviation of its related S/N ratio \(\eta \) from the mean value. For example, when the effect of level A1 is concerned, we note that the control factor A is at level 1 in experiments 1-3. Hence, the average \(\eta_{A1} \) and effect of A are given, respectively, as

\[
\eta_{A1} = \frac{1}{3} (\eta_1 + \eta_2 + \eta_3)
\]

\[
\text{Effect of } A^i = |\max \eta_A - \min \eta_A|
\]

eq. (3)

The response table for S/N ratio and means is given in table (3). S/N ratios at each level of control factor changed from level 1 to level 3. The control factor with the strongest influence was determined. Table (3) shows strongest influence exerted by factor A (rank 1). Factor B has (rank 2). Factor A (plastering) has bigger effect on ultimate load and compressive strength of masonry than that of factor B.

<table>
<thead>
<tr>
<th>Level</th>
<th>Response Signal to Noise Ratios</th>
<th>Response for Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plastering</td>
<td>Clay brick</td>
</tr>
<tr>
<td>1</td>
<td>10.1640</td>
<td>10.8611</td>
</tr>
<tr>
<td>2</td>
<td>9.7888</td>
<td>10.6056</td>
</tr>
<tr>
<td>3</td>
<td>11.6835</td>
<td>10.1696</td>
</tr>
<tr>
<td>Delta</td>
<td>1.8947</td>
<td>0.6915</td>
</tr>
<tr>
<td>Rank</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

7.1. Analysis of Variance

The analysis of variance (ANOVA) (S. Rama Rao et al, 2012) is used to discuss the relative importance of control factors on quality and to determine control factors highest effect. Parameters used in ANOVA are calculated by the following equations:

\[
S_m = \frac{1}{9} \left(\sum_{i=1}^{9} \eta_i \right)^2
\]

\[
S_A = \frac{1}{3} \sum_{i=1}^{3} \eta_{A1}^2 - S_m
\]

\[
S_T = \sum_{i=1}^{9} \eta_i^2 - S_m
\]

\[
S_e = S_T - \sum S_{\text{control-factors}}
\]

\[
V_A = \frac{S_A}{fA}, \quad \sigma_A = \frac{S_A}{S_T} \times 100%
\]

Where \(S_m \) is the average of squares of sums, \(S_A \) is the sum of squares related to control factor A, \(S_T \) is the sum of squares of the errors correlated to all control factors, \(VA \) is the variance related to factor A and \(fA \) is the degree of
freedom for factor A, FA is the F-ratio related to control factor A and σA is the percentage contribution related to control factor A. σB is calculated by similar way. The computer values for σA and σB gives relative importance of the control factors on compressive strength (B. Berginc et al, 2006).

The analysis of variance (ANOVA) is used to investigate effect of design parameters on quality characteristic. It is accomplished by separating variability of S/N ratios measured by sum of squared deviations from the total mean S/N ratio. Contributions of design parameters are calculated values of variance ratio (F). Variance of factor is divided by the error variance for all control factors (M. Ghazy, 2012).

ANOVA of ultimate loads is shown in table (4). Factor A (plastering) had a significant influence of walls behavior. The contribution percentage is 87.28% for compressive strength. Factor B (brick type) shows 4.59% contribution value. Number of mortar overlies factor showed the best efficiency of strengths (factor A). Figure (3) shows the recorded load - longitudinal strain curves for different walls. These curves show longitudinal strain values for all tested walls. Experiment No.7 (two faces of overlays and B1) has the best performance. That increase means higher ductility.

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
<th>% Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastering</td>
<td>2</td>
<td>34305.6</td>
<td>34305.6</td>
<td>17152.8</td>
<td>21.48</td>
<td>0.007</td>
<td>87.28</td>
</tr>
<tr>
<td>Brick</td>
<td>2</td>
<td>1805.6</td>
<td>1805.6</td>
<td>902.8</td>
<td>1.13</td>
<td>0.408</td>
<td>4.59</td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>3194.4</td>
<td>3194.4</td>
<td>798.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>39305.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Discussion

Length and breadth dimensions of brick units are not in accordance with Egyptian Specifications. Absorption ratio lay within specification limits. High efflorescence is a result of clay compounds of salt deposits. The factories use clay from different sources of Egypt. Brick achieves ECP compressive strength of bearing walls. There is no relation between absorption and compressive strength of brick units.

Prism strength depends on masonry unit strength under biaxial tensile-compressive stresses. Failure mode of the prism is shown in figure (1). Compressive strength of prisms is proportional to brick strength. Also, behavior of masonry took the same trend. Each group of masonry is compatible with its brick unit and prism compressive strength as shown in figure (2). Mechanics of clay-unit masonry in concentric compression incorporated nonlinear behavior of confined mortar and splitting strength of a masonry unit. Although failure of a prism occurred as a result of lateral tensile splitting of a masonry unit, mortar induced tensile stresses. These stresses increased disproportionately with compressive forces because of the nonlinear deformational properties of the mortar. One layer of mortar interface wall supported compressive loading less than no plastering walls as shown in figure (2). Two faces plastered masonry could attain a higher load capacity. Two overlies mitigate and confine the effects of damages in the bricks. Thus, sudden loss of rigidity in walls without overlays was avoided.

Clay masonry is composed of mortar and clay brick materials have quite different properties. When subjected to a uniaxial compressive force, mortar has a tendency to expand laterally more than that of brick. Mortar and brick are bonded together mechanically, so the mortar is confined laterally by the brick. Shear stresses at the brick-mortar interface result in an internal state of stress. Stresses are triaxial compression in the mortar and bilateral tension coupled with axial compression in the brick. Stress state initiates vertical splitting cracks that lead to failure. This is typical for one face overlay W4 as shown in figure (4).

Signal to Noise plots reveal that plastering has a larger effect on the quality characteristic than brick type. The masonry walls without overlays showed vertical and horizontal cracks appeared at the mid part of the wall, then crack propagation was diagonally to the bottom corners. The initial crack loads were about 50% of ultimate loads. While, in the walls with two overlays, there was no debonding of the overlays from the brick as shown in figures (5-7). The initial crack loads were about 60% of ultimate loads.

Figure (8) shows main effect for S/N ratio. This plot shows clay brick with its slope has small effect. Slope of plastering has obvious effect on S/N ratio. Optimal longitudinal strain of the control factors recorded at levels
(A3B1), as shown in figure (8), this means using brick B1 and two faces of overlays. Table (4) reveal that factor A (number of mortar overlies) reached 87.2%, made the major contribution to overall performance, this is due to the impact of the mortar overlies confinement for weak bond between brick and mortar intervals. The contribution percentage for factor B (brick type) is 4.59%. Error was 8.13%.

9. Confirmation Test
The confirmation experiment is the final step in any design of experiment process. Once the optimum (most desirable) level of the design parameters was selected, the next step was to predict and verify the improvement of quality characteristic using the optimal level of the design parameters. These confirmation tests establish the new performance at the new (optimum) condition and estimate results. The result expected is considered to be confirmed when the mean of a number of samples tested at the optimum condition falls close to it. Since the nine experiments covered all possible combinations. Confirmation test is the highest levels of the control factors, which is presented in W7 (A3B1). Since confirmation test is already experimented among the nine walls. It is shown in figure (3), that W7 as the best behavior among all walls.

10. Conclusions
Taguchi’s method of experimental design was used in this study to provide a simple, efficient, and systematic approach for the optimization of experimental designs. According to the experimental study in this work, concluding remarks are given below:

1. Application of Taguchi method for the design of experiments is easy and efficient.
2. The experimental result confirms the optimization of the process parameters using Taguchi method for enhancing the process performance.
3. The number of overlays was the most influential factor on the masonry compressive strength.
4. Application of mortar overlays increased the wall strength using two layers interface, while using one overlay was less or equal to no plastering effect.
5. Based on signal-to-noise results, the best performance in compressive strength of walls was exerted by factor A3 (number of overlay mortar) and B1 (Brick type 1). This means, brick No.1 and two faces mortar overlies. W7 presents A3B1.
6. Based on results of the analysis of variance ANOVA, plastering showed higher efficiency of wall strength. Contribution percentage was 87.28% for plastering and 4.59% for brick type.
7. Plastering must be applied from both sides. Using one layer decreases the compressive strength of the wall.

References