
 
 

 

176|Int. J. of Multidisciplinary and Current research, Jan/Feb 2014 

 

International Journal of Multidisciplinary and Current Research                                           
                                                      

Research Article                                   

 

 ISSN: 2321-3124 

   Available at: http://ijmcr.com 

 

Rational Frieze Sequences Associated to a 2x2 Generalized Kronecker Quiver  
 
Dimitris Karayannakis ª *, Joseph Serafimides* & Dionysios Kladis** 
 
Deparment of Informatics Engineering,TEI of Crete, Greece,( aSubsector of Mathematics and *Programming Algorithms’ Development Lab)  
Deparment of Informatics Engineering,TEI of Crete, Greece,(**Multimedia Content Lab) 
 
Research   partially funded by EU and the Helenic Gen.Secr.of Research, 
Framework: SYNERGASIA, Project: I-promotion-09SYN-72-956 
 
Accepted 10 February 2014, Available online 25 February 2014, Vol.2 (Jan/Feb 2014 issue) 

 
 
Abstract  
  
We obtain, in closed form, a family of frieze sequences that corresponds to a certain type vertex labeling of a 
generalized version of the classical 2x2 Kronecker quiver. We also calculate explicitly, for the obtained family of 
sequences, a rational “PC friendly” subfamily sample, via Mathematica . 
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1. Introduction 
 
A quiver is a directed acyclic (possibly multi-edged) graph. 
When a quiver is given, under a specific and suitable  
initial condition , a labeling of its vertices  can be  
recursively defined  thus leading  to a  so called frieze 
associated  to the  quiver which is a  unique (due to the  
acyclicity )  sequence of labels .For simplicity we will call it 
a frieze sequence (for a given  particular quiver).  
 A classical example is that   of the 2x2 Kronecker 
quiver (i.e.  two vertices and two edges from one to 
another): if V is the set of its vertices, starting with the  

labeling (v,0)=v(0)→(v,1)=v(1) e.t.c., for each vertex vV, 
we obtain as a frieze sequence the even rank Fibonacci 
numbers  (see e.g. [1]). A more general frieze can be 
produced when v(0) is taken to be a variable and then 
with the first two labels v(0) and v(1)   taken to be a and 
b, respectively,  this  2x2  Kronecker quiver is associated 
with the frieze sequence  defined through the recursive 

formula  un+2=z(a, b)un+1-un for u0=a and u1=b, ab0, which  
evidently generalizes the recursion of the even rank 
Fibonacci numbers. 
 It has been   proved   that for z (a, b) = (a²+ b²+1)/ab, 

ab0, (see e.g. [2]) 
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n-1 n-2
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2. Main description and closed form calculations 
 
Let M= (aij) be any 2x2 matrix. An elementary and direct  
use of the Cayley-Hamilton theorem gives us the formula  

M²- (trM) M+ M I=O                   (1.1) 

where trM and |M| indicate, respectively, the trace and 
the determinant of M and O the 2x2 zero matrix. In 

particular, for 11a = a²+1, 12a = 21a =b and 22a =b², with a, 
b real numbers, by repeated use of (1), we obtain with 
the evident abuse of notation 
 

nM = nω Μ- M n-1ω   for n1 with 0ω = 0, 
1ω =1    (1.2) 

where n+1ω = (a²+ b²+1) nω -(ab)² n-1ω  

  
The classical theory   for recursive sequences of the form 

n+1ω = 1c nω + 2c n-1ω  
(e.g. see [3]) leads to the 

expression  
 

nω =A n
1λ +B n

2λ ,            (1.3) 

 

where A, B are arbitrary constants and 1λ , 2λ   the roots 

of  the equation λ²-(a²+ b²+1)λ+(ab)² =0. Note that   (1.3) 
is the appropriate formula here since the discriminant Δ is 

nonzero (in fact Δ1). 

For 0ω = 0 and 1ω =1 we obtain also that A= 1/ ( 1λ - 2λ ) 

and B=-A. We conclude that  

nω = 
n-1

n

(ab)

2 γ
{ n(z+ γ) - n(z- γ) },            (1.4) 

where we have set  z=(a²+ b²+1)/ab  and  γ = z²-4.Note 
also that |Z|>2 and due to symmetry ,in the rest of our 
work we will focus only upon the case a>0 ,b>0, a domain  
where clearly z=z(a,b) lacks minimum but it has 
infimum=2. 
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It is now evident that when (1.2) is combined with (1.4) 

we have a closed form description of 
nM  in terms of M, 

for any given n and any real pair a, b, and thus using (0.1), 
we have a computer friendly formula to work with that 
can provide the frieze sequence un.  
 
3. Ramifications 
 
For reasons that will immediately become clear in the 
calculations that follow, we parameterize the initial terms 
u0=a and u1=b (and thus sequences un, ωn and  the matrix 

powers
nM ) via  a= 

2

2

p +1

p -1
 and  b=

2

2p

p -1
, with p>1. In 

paragraph 4  we limit ourselves to rational values of p and 
we provide the image of the surface mesh  z=z(a,b)  using 
mainly  a sample of rational points in 3D (Appendix A). For 

this parameterization z=
2p +1

p
, γ =

2p -1

p
 and now (1.4) 

can be put in to an even more “PC   friendly” form: 

nω =
2 n-1 2n

2 2n-1

(2p +2) (p -1)

(p -1)
          (2.1) 

We then conclude that, for n ≥ 3, 
 

nu = ( 2n-2p +1)/(p²-1) n-2p               (2.2) 

Remarks: 
1. Note that for n=2, as an immediate result of (0.1) 
combined with our parameterization that leads to 
a²=b²+1, we obtain u2=a. 
2. One could, evidently, combine the outcome of 
paragraph 2 and establish a rather cumbersome formula 
for the sum of the first N terms of {un}.In the frame of the  
above particular parametric formulation though the sum 
is simple and we can easily check that, for N≥3,  
 

2N-1 N N-1N

n N-2 2
n=0

p +2p -p -1
u

p (p -1)(p-1)
     (2.3) 

 
4. Numerical (rational) calculations via Mathematica 
(Tables 1, 2, Appendices A,B) 
 

p u0=a u1=b z(a, b) 

11/10 221/21 220/21 221/110 

6/5 61/11 60/11 61/30 

13/10 269/69 260/69 269/130 

7/5 37/12 35/12 74/35 

3/2 13/5 12/5 13/6 

8/5 89/39 80/39 89/40 

17/10 389/189 340/189 389/170 

9/5 53/28 45/28 106/45 

19/10 461/261 380/261 461/190 

2 5/3 4/3 5/2 

21/10 541/341 420/341 541/210 

11/5 73/48 55/48 146/55 

23/10 629/429 460/429 629/230 

12/5 169/119 120/119 169/60 

5/2 29/21 20/21 29/10 

13/5 97/72 65/72 194/65 

27/10 829/629 540/629 829/270 

14/5 221/171 140/171 221/70 

29/10 941/741 580/741 941/290 

3 5/4 3/4 10/3 

31/10 1061/861 620/861 1061/310 

16/5 281/231 160/231 281/80 

33/10 1189/989 660/989 1189/330 

17/5 157/132 85/132 314/85 

7/2 53/45 28/45 53/14 

18/5 349/299 180/299 349/90 

37/10 1469/1269 740/1269 1469/370 

19/5 193/168 95/168 386/95 

39/10 1621/1421 780/1421 1621/390 

4 17/15 8/15 17/4 

                                                                    
Table 2: indicative un for p=11/10 (rounding up for n>15) 
 

n   







 

 b

1
Mb1

ba

1
u 2n

2n1nn
 =(p2n-2+1)/(p²-1)pn-2 

2 522422872400
4084101

 

3 30707204213842

224625555
 

5 202124980347430361
1358984607750

 

10 4464201682802640772535710961
21886583006274525000000

 

15  0.306412Χ106 

20  0.479768Χ106 

25 0.764157Χ106 

30 1.2254Χ106 

40 3.17104Χ106 

50 8.22203Χ106 
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Appendix A: Plot of 

2 2x +y +1

xy
z  , x=a, y=b 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B: Calculations via Mathematica 8 
 

For[n=2,n<15,n++, 
 p=11/10; 
 m=n-1; 
 a=((p^2+1)/(p^2-1)); 
 b=(2*p/(p^2-1)); 
 wnk=2-1+n (-1+p^2)1-2 *n (1+p^2)-1+n (-1+ p2*n); 
 wnpk=2-1+m (-1+p^2)1-2 *m (1+p^2)-1+m (-1+ p2*m); 
 mat={{a^2+1,b},{b,b^2}}; 
 mati={{1,0},{0,1}}; 
 mn=wnk*mat-(a*b)^2*wnpk*mati; 
 Print[n ," ",wnk," ",mn //N]; 
 Print[(1/(a^(n-1)*b^(n-2)))*({1,b}.mn.{{1},{b}})]; 
 Print[(1/(a^(n-1)*b^(n-
2)))*({1,b}.MatrixPower[mat,n].{{1},{b}})];] 
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