Rational Frieze Sequences Associated to a 2x2 Generalized Kronecker Quiver

Dimitris Karayannakis \mathbf{a} *, Joseph Serafimides* \& Dionysios Kladis**
Deparment of Informatics Engineering, TEI of Crete, Greece,(${ }^{\text {a }}$ Subsector of Mathematics and *Programming Algorithms' Development Lab) Deparment of Informatics Engineering,TEI of Crete, Greece,(**Multimedia Content Lab)

Research partially funded by EU and the Helenic Gen.Secr.of Research,
Framework: SYNERGASIA, Project: I-promotion-09SYN-72-956
Accepted 10 February 2014, Available online 25 February 2014, Vol. 2 (Jan/Feb 2014 issue)

Abstract

We obtain, in closed form, a family of frieze sequences that corresponds to a certain type vertex labeling of a generalized version of the classical 2×2 Kronecker quiver. We also calculate explicitly, for the obtained family of sequences, a rational "PC friendly" subfamily sample, via Mathematica .

Keywords: Frieze, Quiver, Generalized Fibonacci, Linear Recursive Sequence

1. Introduction

A quiver is a directed acyclic (possibly multi-edged) graph. When a quiver is given, under a specific and suitable initial condition, a labeling of its vertices can be recursively defined thus leading to a so called frieze associated to the quiver which is a unique (due to the acyclicity) sequence of labels.For simplicity we will call it a frieze sequence (for a given particular quiver).

A classical example is that of the 2×2 Kronecker quiver (i.e. two vertices and two edges from one to another): if V is the set of its vertices, starting with the labeling $(v, 0)=v(0) \rightarrow(v, 1)=v(1)$ e.t.c., for each vertex $v \in V$, we obtain as a frieze sequence the even rank Fibonacci numbers (see e.g. [1]). A more general frieze can be produced when $v(0)$ is taken to be a variable and then with the first two labels $v(0)$ and $v(1)$ taken to be a and b, respectively, this 2×2 Kronecker quiver is associated with the frieze sequence defined through the recursive formula $u_{n+2}=z(a, b) u_{n+1}-u_{n}$ for $u_{0}=a$ and $u_{1}=b, a b \neq 0$, which evidently generalizes the recursion of the even rank Fibonacci numbers.

It has been proved that for $z(a, b)=\left(a^{2}+b^{2}+1\right) / a b$, $a b \neq 0$, (see e.g. [2])

$$
\mathrm{u}_{\mathrm{n}}=\frac{1}{\mathrm{a}^{\mathrm{n}-1} b^{\mathrm{n}-2}}(1, b) \mathrm{M}^{\mathrm{n}-2}\binom{1}{b}, \mathrm{n} \geq 2 \text { with } \mathrm{M}=\left(\begin{array}{cc}
\mathrm{a}^{2}+1 & \mathrm{~b} \tag{0.1}\\
\mathrm{~b} & b^{2}
\end{array}\right)
$$

2. Main description and closed form calculations

Let $\mathrm{M}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be any 2×2 matrix. An elementary and direct use of the Cayley-Hamilton theorem gives us the formula
$\mathrm{M}^{2}-(\operatorname{trM}) \mathrm{M}+|\mathrm{M}| \mathrm{I}=\mathrm{O}$
where $\operatorname{tr} M$ and $|M|$ indicate, respectively, the trace and the determinant of M and O the 2×2 zero matrix. In particular, for ${ }^{a_{11}}=a^{2}+1, a_{12}=a_{21}=b$ and ${ }^{a_{22}}=b^{2}$, with a, b real numbers, by repeated use of (1), we obtain with the evident abuse of notation
$\mathrm{M}^{\mathrm{n}}=\omega_{\mathrm{n}} \mathrm{M}-|\mathrm{M}| \omega_{\mathrm{n}-1}$ for $\mathrm{n} \geq 1$ with $\omega_{0}=0, \omega_{1}=1$
where $\omega_{\mathrm{n}+1}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}+1\right) \omega_{\mathrm{n}}-(\mathrm{ab})^{2} \omega_{\mathrm{n}-1}$
The classical theory for recursive sequences of the form $\omega_{\mathrm{n}+1}=\mathrm{c}_{1} \omega_{\mathrm{n}}+\mathrm{c}_{2} \omega_{\mathrm{n}-1}$ (e.g. see [3]) leads to the expression
$\omega_{\mathrm{n}}=\mathrm{A} \lambda_{1}^{\mathrm{n}}+\mathrm{B} \lambda_{2}^{\mathrm{n}}$,
where A, B are arbitrary constants and λ_{1}, λ_{2} the roots of the equation $\lambda^{2}-\left(a^{2}+b^{2}+1\right) \lambda+(a b)^{2}=0$. Note that (1.3) is the appropriate formula here since the discriminant Δ is nonzero (in fact $\Delta \geq 1$).
For $\omega_{0}=0$ and $\omega_{1}=1$ we obtain also that $\mathrm{A}=1 /\left(\lambda_{1}-\lambda_{2}\right)$ and $B=-A$. We conclude that
$\omega_{\mathrm{n}}=\frac{(\mathrm{ab})^{\mathrm{n}-1}}{2^{\mathrm{n}} \sqrt{\gamma}}\left\{(\mathrm{z}+\sqrt{\gamma})^{\mathrm{n}}-(\mathrm{z}-\sqrt{\gamma})^{\mathrm{n}}\right\}$,
where we have set $z=\left(a^{2}+b^{2}+1\right) / a b$ and $\gamma=z^{2}-4$. Note also that $|z|>2$ and due to symmetry, in the rest of our work we will focus only upon the case $a>0, b>0$, a domain where clearly $z=z(a, b)$ lacks minimum but it has infimum=2.

It is now evident that when (1.2) is combined with (1.4) we have a closed form description of M^{n} in terms of M, for any given n and any real pair a, b, and thus using (0.1), we have a computer friendly formula to work with that can provide the frieze sequence u_{n}.

3. Ramifications

For reasons that will immediately become clear in the calculations that follow, we parameterize the initial terms $u_{0}=a$ and $u_{1}=b$ (and thus sequences u_{n}, ω_{n} and the matrix powers M^{n}) via $\mathrm{a}=\frac{\mathrm{p}^{2}+1}{\mathrm{p}^{2}-1}$ and $\mathrm{b}=\frac{2 \mathrm{p}}{\mathrm{p}^{2}-1}$, with $\mathrm{p}>1$. In paragraph 4 we limit ourselves to rational values of p and we provide the image of the surface mesh $z=z(a, b)$ using mainly a sample of rational points in 3D (Appendix A). For this parameterization $\mathrm{z}=\frac{\mathrm{p}^{2}+1}{\mathrm{p}}, \sqrt{\gamma}=\frac{\mathrm{p}^{2}-1}{\mathrm{p}}$ and now (1.4) can be put in to an even more "PC friendly" form:
$\omega_{\mathrm{n}}=\frac{\left(2 \mathrm{p}^{2}+2\right)^{\mathrm{n}-1}\left(\mathrm{p}^{2 \mathrm{n}}-1\right)}{\left(\mathrm{p}^{2}-1\right)^{2 \mathrm{n}-1}}$
We then conclude that, for $n \geq 3$,
$\mathrm{u}_{\mathrm{n}}=\left(\mathrm{p}^{2 \mathrm{n}-2}+1\right) /\left(\mathrm{p}^{2}-1\right) \mathrm{p}^{\mathrm{n}-2}$
Remarks:

1. Note that for $n=2$, as an immediate result of (0.1) combined with our parameterization that leads to $a^{2}=b^{2}+1$, we obtain $u_{2}=a$.
2. One could, evidently, combine the outcome of paragraph 2 and establish a rather cumbersome formula for the sum of the first N terms of $\left\{u_{n}\right\}$. In the frame of the above particular parametric formulation though the sum is simple and we can easily check that, for $N \geq 3$,

$$
\begin{equation*}
\sum_{\mathrm{n}=0}^{\mathrm{N}} \mathrm{u}_{\mathrm{n}}=\frac{\mathrm{p}^{2 \mathrm{~N}-1}+2 \mathrm{p}^{\mathrm{N}}-\mathrm{p}^{\mathrm{N}-1}-1}{\mathrm{p}^{\mathrm{N}-2}\left(\mathrm{p}^{2}-1\right)(\mathrm{p}-1)} \tag{2.3}
\end{equation*}
$$

4. Numerical (rational) calculations via Mathematica (Tables 1, 2, Appendices A,B)

p	$u_{0}=a$	$u_{1}=b$	$z(a, b)$
$11 / 10$	$221 / 21$	$220 / 21$	$221 / 110$
$6 / 5$	$61 / 11$	$60 / 11$	$61 / 30$
$13 / 10$	$269 / 69$	$260 / 69$	$269 / 130$
$7 / 5$	$37 / 12$	$35 / 12$	$74 / 35$
$3 / 2$	$13 / 5$	$12 / 5$	$13 / 6$
$8 / 5$	$89 / 39$	$80 / 39$	$89 / 40$
$17 / 10$	$389 / 189$	$340 / 189$	$389 / 170$
$9 / 5$	$53 / 28$	$45 / 28$	$106 / 45$
$19 / 10$	$461 / 261$	$380 / 261$	$461 / 190$

Rational Frieze Sequences Associated to a 2×2 Generalized Kronecker Quiver

2	5/3	4/3	5/2
21/10	541/341	420/341	541/210
11/5	73/48	55/48	146/55
23/10	629/429	460/429	629/230
12/5	169/119	120/119	169/60
5/2	29/21	20/21	29/10
13/5	97/72	65/72	194/65
27/10	829/629	540/629	829/270
14/5	221/171	140/171	221/70
29/10	941/741	580/741	941/290
3	5/4	3/4	10/3
31/10	1061/861	620/861	1061/310
16/5	281/231	160/231	281/80
33/10	1189/989	660/989	1189/330
17/5	157/132	85/132	314/85
7/2	53/45	28/45	53/14
18/5	349/299	180/299	349/90
37/10	1469/1269	740/1269	1469/370
19/5	193/168	95/168	386/95
39/10	1621/1421	780/1421	1621/390
4	17/15	8/15	17/4

Table 2: indicative u_{n} for $p=11 / 10$ (rounding up for $n>15$)

n	$u_{n}=\frac{1}{a^{n-1} b^{n-2}}(1 \mathrm{~b}) \mathrm{M}^{n-2}\binom{1}{b}=\left(p^{2 n-2}+1\right) /\left(p^{2}-1\right) p^{n-2}$
2	$\frac{522422872400}{4084101}$
3	$\frac{30707204213842}{224625555}$
5	$\frac{202124980347430361}{1358984607750}$
10	$\frac{4464201682802640772535710961}{21886583006274525000000}$
15	0.306412×106
20	0.479768×106
25	0.764157×106
30	1.2254×106
40	3.17104×106
50	8.22203×106

Appendix A: Plot of $z=\frac{x^{2}+y^{2}+1}{x y}, x=a, y=b$

Rational Frieze Sequences Associated to a 2x2 Generalized Kronecker Quiver

Appendix B: Calculations via Mathematica 8

```
For[n=2,n<15,n++,
p=11/10;
m=n-1;
a=((p^2+1)/(p^2-1));
b=(2*p/(p^2-1));
wnk=2-1+n (-1+p^2)1-2 *n (1+p^2)-1+n (-1+p2*n);
wnpk=2-1+m (-1+p^2)1-2 *m (1+p^2)-1+m (-1+p2*m);
mat={{a^2+1,b},{b,b^2}};
mati={{1,0},{0,1}};
mn=wnk*mat-(a*b)^2*wnpk*mati;
Print[n ," ",wnk," ",mn //N];
Print[(1/(a^(n-1)* b^(n-2)))*({1,b}.mn.{{1},{b}})];
Print[(1/(a^(n-1)* }\mp@subsup{b}{}{\wedge}(n
2)))*({1,b}.MatrixPower[mat,n].{{1},{b}})];]
```


References

[1]. Assem I., C.Reutenauer \& D.Smith, Friezes, Advances in Mathematics,V.225, (2010)
[2]. Di Francesco P. and R. Kedem.,Q-systems, heaps, paths and cluster positivity. Commun. Math. Phys., 293, 727-802, (2010) [3].PoonenB., Linear Recursive Sequences, http://mathcircle.berkeley.edu/BMC6/ps/linear.pdf, (1998)

