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Abstract  
  
We obtain, in closed form, a family of frieze sequences that corresponds to a certain type vertex labeling of a 
generalized version of the classical 2x2 Kronecker quiver. We also calculate explicitly, for the obtained family of 
sequences, a rational “PC friendly” subfamily sample, via Mathematica . 
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1. Introduction 
 
A quiver is a directed acyclic (possibly multi-edged) graph. 
When a quiver is given, under a specific and suitable  
initial condition , a labeling of its vertices  can be  
recursively defined  thus leading  to a  so called frieze 
associated  to the  quiver which is a  unique (due to the  
acyclicity )  sequence of labels .For simplicity we will call it 
a frieze sequence (for a given  particular quiver).  
 A classical example is that   of the 2x2 Kronecker 
quiver (i.e.  two vertices and two edges from one to 
another): if V is the set of its vertices, starting with the  

labeling (v,0)=v(0)→(v,1)=v(1) e.t.c., for each vertex vV, 
we obtain as a frieze sequence the even rank Fibonacci 
numbers  (see e.g. [1]). A more general frieze can be 
produced when v(0) is taken to be a variable and then 
with the first two labels v(0) and v(1)   taken to be a and 
b, respectively,  this  2x2  Kronecker quiver is associated 
with the frieze sequence  defined through the recursive 

formula  un+2=z(a, b)un+1-un for u0=a and u1=b, ab0, which  
evidently generalizes the recursion of the even rank 
Fibonacci numbers. 
 It has been   proved   that for z (a, b) = (a²+ b²+1)/ab, 

ab0, (see e.g. [2]) 
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2. Main description and closed form calculations 
 
Let M= (aij) be any 2x2 matrix. An elementary and direct  
use of the Cayley-Hamilton theorem gives us the formula  

M²- (trM) M+ M I=O                   (1.1) 

where trM and |M| indicate, respectively, the trace and 
the determinant of M and O the 2x2 zero matrix. In 

particular, for 11a = a²+1, 12a = 21a =b and 22a =b², with a, 
b real numbers, by repeated use of (1), we obtain with 
the evident abuse of notation 
 

nM = nω Μ- M n-1ω   for n1 with 0ω = 0, 
1ω =1    (1.2) 

where n+1ω = (a²+ b²+1) nω -(ab)² n-1ω  

  
The classical theory   for recursive sequences of the form 

n+1ω = 1c nω + 2c n-1ω  
(e.g. see [3]) leads to the 

expression  
 

nω =A n
1λ +B n

2λ ,            (1.3) 

 

where A, B are arbitrary constants and 1λ , 2λ   the roots 

of  the equation λ²-(a²+ b²+1)λ+(ab)² =0. Note that   (1.3) 
is the appropriate formula here since the discriminant Δ is 

nonzero (in fact Δ1). 

For 0ω = 0 and 1ω =1 we obtain also that A= 1/ ( 1λ - 2λ ) 

and B=-A. We conclude that  

nω = 
n-1

n

(ab)

2 γ
{ n(z+ γ) - n(z- γ) },            (1.4) 

where we have set  z=(a²+ b²+1)/ab  and  γ = z²-4.Note 
also that |Z|>2 and due to symmetry ,in the rest of our 
work we will focus only upon the case a>0 ,b>0, a domain  
where clearly z=z(a,b) lacks minimum but it has 
infimum=2. 
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It is now evident that when (1.2) is combined with (1.4) 

we have a closed form description of 
nM  in terms of M, 

for any given n and any real pair a, b, and thus using (0.1), 
we have a computer friendly formula to work with that 
can provide the frieze sequence un. ⁪ 
 
3. Ramifications 
 
For reasons that will immediately become clear in the 
calculations that follow, we parameterize the initial terms 
u0=a and u1=b (and thus sequences un, ωn and  the matrix 

powers
nM ) via  a= 

2

2

p +1

p -1
 and  b=

2

2p

p -1
, with p>1. In 

paragraph 4  we limit ourselves to rational values of p and 
we provide the image of the surface mesh  z=z(a,b)  using 
mainly  a sample of rational points in 3D (Appendix A). For 

this parameterization z=
2p +1

p
, γ =

2p -1

p
 and now (1.4) 

can be put in to an even more “PC   friendly” form: 

nω =
2 n-1 2n

2 2n-1

(2p +2) (p -1)

(p -1)
          (2.1) 

We then conclude that, for n ≥ 3, 
 

nu = ( 2n-2p +1)/(p²-1) n-2p               (2.2)⁪ 

Remarks: 
1. Note that for n=2, as an immediate result of (0.1) 
combined with our parameterization that leads to 
a²=b²+1, we obtain u2=a. 
2. One could, evidently, combine the outcome of 
paragraph 2 and establish a rather cumbersome formula 
for the sum of the first N terms of {un}.In the frame of the  
above particular parametric formulation though the sum 
is simple and we can easily check that, for N≥3,  
 

2N-1 N N-1N

n N-2 2
n=0

p +2p -p -1
u

p (p -1)(p-1)
     (2.3) 

 
4. Numerical (rational) calculations via Mathematica 
(Tables 1, 2, Appendices A,B) 
 

p u0=a u1=b z(a, b) 

11/10 221/21 220/21 221/110 

6/5 61/11 60/11 61/30 

13/10 269/69 260/69 269/130 

7/5 37/12 35/12 74/35 

3/2 13/5 12/5 13/6 

8/5 89/39 80/39 89/40 

17/10 389/189 340/189 389/170 

9/5 53/28 45/28 106/45 

19/10 461/261 380/261 461/190 

2 5/3 4/3 5/2 

21/10 541/341 420/341 541/210 

11/5 73/48 55/48 146/55 

23/10 629/429 460/429 629/230 

12/5 169/119 120/119 169/60 

5/2 29/21 20/21 29/10 

13/5 97/72 65/72 194/65 

27/10 829/629 540/629 829/270 

14/5 221/171 140/171 221/70 

29/10 941/741 580/741 941/290 

3 5/4 3/4 10/3 

31/10 1061/861 620/861 1061/310 

16/5 281/231 160/231 281/80 

33/10 1189/989 660/989 1189/330 

17/5 157/132 85/132 314/85 

7/2 53/45 28/45 53/14 

18/5 349/299 180/299 349/90 

37/10 1469/1269 740/1269 1469/370 

19/5 193/168 95/168 386/95 

39/10 1621/1421 780/1421 1621/390 

4 17/15 8/15 17/4 

                                                                    
Table 2: indicative un for p=11/10 (rounding up for n>15) 
 

n   







 

 b

1
Mb1

ba

1
u 2n

2n1nn
 =(p2n-2+1)/(p²-1)pn-2 

2 522422872400
4084101

 

3 30707204213842

224625555
 

5 202124980347430361
1358984607750

 

10 4464201682802640772535710961
21886583006274525000000

 

15  0.306412Χ106 

20  0.479768Χ106 

25 0.764157Χ106 

30 1.2254Χ106 

40 3.17104Χ106 

50 8.22203Χ106 
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Appendix A: Plot of 

2 2x +y +1

xy
z  , x=a, y=b 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B: Calculations via Mathematica 8 
 

For[n=2,n<15,n++, 
 p=11/10; 
 m=n-1; 
 a=((p^2+1)/(p^2-1)); 
 b=(2*p/(p^2-1)); 
 wnk=2-1+n (-1+p^2)1-2 *n (1+p^2)-1+n (-1+ p2*n); 
 wnpk=2-1+m (-1+p^2)1-2 *m (1+p^2)-1+m (-1+ p2*m); 
 mat={{a^2+1,b},{b,b^2}}; 
 mati={{1,0},{0,1}}; 
 mn=wnk*mat-(a*b)^2*wnpk*mati; 
 Print[n ," ",wnk," ",mn //N]; 
 Print[(1/(a^(n-1)*b^(n-2)))*({1,b}.mn.{{1},{b}})]; 
 Print[(1/(a^(n-1)*b^(n-
2)))*({1,b}.MatrixPower[mat,n].{{1},{b}})];] 
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