International Journal of Multidisciplinary and Current Research

ISSN: 2321-3124 Available at: http://ijmcr.com

Research Article

Rational Frieze Sequences Associated to a 2x2 Generalized Kronecker Quiver

Dimitris Karayannakis ^a *, Joseph Serafimides* & Dionysios Kladis**

Deparment of Informatics Engineering, TEI of Crete, Greece, (^aSubsector of Mathematics and *Programming Algorithms' Development Lab) Deparment of Informatics Engineering, TEI of Crete, Greece, (**Multimedia Content Lab)

Research partially funded by EU and the Helenic Gen.Secr.of Research, Framework: SYNERGASIA, Project: I-promotion-09SYN-72-956

Accepted 10 February 2014, Available online 25 February 2014, Vol.2 (Jan/Feb 2014 issue)

Abstract

We obtain, in closed form, a family of frieze sequences that corresponds to a certain type vertex labeling of a generalized version of the classical 2x2 Kronecker quiver. We also calculate explicitly, for the obtained family of sequences, a rational "PC friendly" subfamily sample, via Mathematica.

Keywords: Frieze, Quiver, Generalized Fibonacci, Linear Recursive Sequence

1. Introduction

A quiver is a directed acyclic (possibly multi-edged) graph. When a quiver is given, under a specific and suitable initial condition, a labeling of its vertices can be recursively defined thus leading to a so called frieze associated to the quiver which is a unique (due to the acyclicity) sequence of labels. For simplicity we will call it a frieze sequence (for a given particular quiver).

A classical example is that of the 2x2 Kronecker quiver (i.e. two vertices and two edges from one to another): if V is the set of its vertices, starting with the labeling $(v,0)=v(0)\rightarrow(v,1)=v(1)$ e.t.c., for each vertex $v \in V$, we obtain as a frieze sequence the even rank Fibonacci numbers (see e.g. [1]). A more general frieze can be produced when v(0) is taken to be a variable and then with the first two labels v(0) and v(1) taken to be a and b, respectively, this 2x2 Kronecker quiver is associated with the frieze sequence defined through the recursive formula $u_{n+2}=z(a, b)u_{n+1}-u_n$ for $u_0=a$ and $u_1=b$, $ab\neq 0$, which evidently generalizes the recursion of the even rank Fibonacci numbers.

It has been proved that for z (a, b) = $(a^2+b^2+1)/ab$, $ab\neq 0$, (see e.g. [2])

$$u_{n} = \frac{1}{a^{n-1}b^{n-2}} (1,b) M^{n-2} \begin{pmatrix} 1 \\ b \end{pmatrix}, n \ge 2 \text{ with } M = \begin{pmatrix} a^{2}+1 & b \\ b & b^{2} \end{pmatrix}$$

(0.1)

2. Main description and closed form calculations

Let $M = (a_{ij})$ be any 2x2 matrix. An elementary and direct use of the Cayley-Hamilton theorem gives us the formula

 M^{2} - (trM) M+ |M| I=O (1.1)

where trM and |M| indicate, respectively, the trace and the determinant of M and O the 2x2 zero matrix. In particular, for $a_{11} = a^2+1$, $a_{12} = a_{21} = b$ and $a_{22} = b^2$, with a, b real numbers, by repeated use of (1), we obtain with the evident abuse of notation

$$\begin{split} M^{n} &= \omega_{n} \text{ M-} \left| M \right| \, \omega_{n-1} \ \text{ for n} \geq 1 \text{ with } \omega_{0} = 0, \ \omega_{1} = 1 \quad \textbf{(1.2)} \\ \text{where } \omega_{n+1} &= (a^{2} + b^{2} + 1) \ \omega_{n} - (ab)^{2} \ \omega_{n-1} \end{split}$$

The classical theory for recursive sequences of the form $\omega_{n+1} = c_1 \omega_n + c_2 \omega_{n-1}$ (e.g. see [3]) leads to the expression

$$ω_n = A λ_1^n + B λ_2^n$$
, (1.3)

where A, B are arbitrary constants and λ_1 , λ_2 the roots of the equation λ^2 -(a²+ b²+1) λ +(ab)² =0. Note that (1.3) is the appropriate formula here since the discriminant Δ is nonzero (in fact $\Delta \ge 1$).

For $\omega_0 = 0$ and $\omega_1 = 1$ we obtain also that A= 1/ $(\lambda_1 - \lambda_2)$ and B=-A. We conclude that

$$\omega_{n} = \frac{(ab)^{n-1}}{2^{n}\sqrt{\gamma}} \{ (z + \sqrt{\gamma})^{n} - (z - \sqrt{\gamma})^{n} \},$$
(1.4)

where we have set $z=(a^2+b^2+1)/ab$ and $\gamma = z^2-4$.Note also that |Z|>2 and due to symmetry ,in the rest of our work we will focus only upon the case a>0 ,b>0, a domain where clearly z=z(a,b) lacks minimum but it has infimum=2.

Dimitris Karayannakis et al

It is now evident that when (1.2) is combined with (1.4)

we have a closed form description of M^n in terms of M. for any given n and any real pair a, b, and thus using (0.1), we have a computer friendly formula to work with that can provide the frieze sequence un.[†]

3. Ramifications

For reasons that will immediately become clear in the calculations that follow, we parameterize the initial terms $u_0=a$ and $u_1=b$ (and thus sequences u_n , ω_n and the matrix

powers
$$M^n$$
) via a= $\frac{p^2+1}{p^2-1}$ and b= $\frac{2p}{p^2-1}$, with p>1. In

paragraph 4 we limit ourselves to rational values of p and we provide the image of the surface mesh z=z(a,b) using mainly a sample of rational points in 3D (Appendix A). For

this parameterization
$$z = \frac{p^2 + 1}{p}$$
, $\sqrt{\gamma} = \frac{p^2 - 1}{p}$ and now (1.4)

can be put in to an even more "PC friendly" form:

$$\omega_{n} = \frac{(2p^{2}+2)^{n-1}(p^{2n}-1)}{(p^{2}-1)^{2n-1}}$$
(2.1)

We then conclude that, for $n \ge 3$,

$$u_n = (p^{2n-2}+1)/(p^2-1) p^{n-2}$$
 (2.2)
Remarks:

Remarks:

1. Note that for n=2, as an immediate result of (0.1)combined with our parameterization that leads to $a^2=b^2+1$, we obtain $u_2=a$.

2. One could, evidently, combine the outcome of paragraph 2 and establish a rather cumbersome formula for the sum of the first N terms of $\{u_n\}$. In the frame of the above particular parametric formulation though the sum is simple and we can easily check that, for $N \ge 3$,

$$\sum_{n=0}^{N} u_n = \frac{p^{2N\text{-}1} + 2p^N\text{-}p^{N\text{-}1}\text{-}1}{p^{N\text{-}2}(p^2\text{-}1)(p\text{-}1)} \quad \textbf{(2.3)}$$

4. Numerical (rational) calculations via Mathematica (Tables 1, 2, Appendices A,B)

р	u ₀ =a	u1=b	z(a, b)
11/10	221/21	220/21	221/110
6/5	61/11	60/11	61/30
13/10	269/69	260/69	269/130
7/5	37/12	35/12	74/35
3/2	13/5	12/5	13/6
8/5	89/39	80/39	89/40
17/10	389/189	340/189	389/170
9/5	53/28	45/28	106/45
19/10	461/261	380/261	461/190

Rational	Friaza	Secure	Accoriated t	2v2	Generalized	Kronecker Qui	ivor
National	111626	JEquences	Associated i	.u a 272	UEIIEI alizeu	KIUHELKEI QUI	VEI

2	5/3	4/3	5/2
21/10	541/341	420/341	541/210
11/5	73/48	55/48	146/55
23/10	629/429	460/429	629/230
12/5	169/119	120/119	169/60
5/2	29/21	20/21	29/10
13/5	97/72	65/72	194/65
27/10	829/629	540/629	829/270
14/5	221/171	140/171	221/70
29/10	941/741	580/741	941/290
3	5/4	3/4	10/3
31/10	1061/861	620/861	1061/310
16/5	281/231	160/231	281/80
33/10	1189/989	660/989	1189/330
17/5	157/132	85/132	314/85
7/2	53/45	28/45	53/14
18/5	349/299	180/299	349/90
37/10	1469/1269	740/1269	1469/370
19/5	193/168	95/168	386/95
39/10	1621/1421	780/1421	1621/390
4	17/15	8/15	17/4

Table 2: indicative u_n for p=11/10 (rounding up for n>15)

n	$u_{n} = \frac{1}{a^{n-1}b^{n-2}} (1 b) M^{n-2} {\binom{1}{b}} = (p^{2n-2}+1)/(p^{2}-1)p^{n-2}$
2	$\frac{522422872400}{4084101}$
3	<u>30707204213842</u> 224625555
5	<u>202124980347430361</u> 1358984607750
10	<u>4464201682802640772535710961</u> 21886583006274525000000
15	0.306412X106
20	0.479768X106
25	0.764157X106
30	1.2254X106
40	3.17104X106
50	8.22203X106

Dimitris Karayannakis et al

Rational Frieze Sequences Associated to a 2x2 Generalized Kronecker Quiver

Appendix B: Calculations via Mathematica 8

For[n=2,n<15,n++,
p=11/10; m=n-1;
a=((p^2+1)/(p^2-1));
b=(2*p/(p^2-1));
wnk=2-1+n (-1+p^2)1-2 *n (1+p^2)-1+n (-1+ p2*n); wnpk=2-1+m (-1+p^2)1-2 *m (1+p^2)-1+m (-1+ p2*m);
$mat=\{\{a^{2}+1,b\},\{b,b^{2}\}\};$
mati={{1,0},{0,1}};
mn=wnk*mat-(a*b)^2*wnpk*mati;
Print[n ," ",wnk," ",mn //N]; Print[(1/(a^(n-1)*b^(n-2)))*({1,b}.mn.{{1},{b}})];
Print[(1/(a^(n-1)*b^(n-
2)))*({1,b}.MatrixPower[mat,n].{{1},{b}})];]

References

[1]. Assem I., C.Reutenauer & D.Smith, Friezes, Advances in Mathematics, V.225, (2010)

[2]. Di Francesco P. and R. Kedem., Q-systems, heaps, paths and cluster positivity. *Commun. Math. Phys.*, 293, 727–802, (2010) [3]. PoonenB., Linear Recursive Sequences,

http://mathcircle.berkeley.edu/BMC6/ps/linear.pdf, (1998)