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Abstract  
  
Baseline wandering can mask some important features of the Electrocardiogram (ECG) signal hence it is desirable to 
remove this noise for proper analysis and display of the ECG signal. This paper presents the implementation and 
evaluation of different methods to remove this noise. The parameters i.e. PRD & Mean are calculated of signals to 
compare the performance of different filtering methods. Wavelet Transform Method has been proved efficient method 
for the removal of Baseline wander from ECG signal. The results have been concluded using Matlab software and MIT-
BIH arrhythmia database. 
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1. Introduction 
 
Cardiac failure and cardiac diseases are among the main 
causes of death in the world. Therefore, it is necessary to 
have proper methods to determine the cardiac condition 
of the patient. Electrocardiography (ECG) is a tool that is 
widely used to understand the condition of the heart [1]. 
The electrocardiographic signal is the electrical 
representation of the heart’s activity. Computerized ECG 
analysis is widely used as a reliable technique for the 
diagnosis of cardiovascular diseases. However, 
ambulatory ECG recordings obtained by placing 
electrodes on the subject’s chest are inevitably 
contaminated by several different types of artifacts [3]. 
Commonly encountered artifacts include: Power line 
interference, Electrode contact noise, Motion artifacts, 
Baseline Drift, Instrumentation noise generated by 
electronic devices, Electrosurgical Noise. Baseline wander 
elimination is considered as a classical problem. It is 
considered as an artifact which produces atrifactual data 
when measuring the ECG parameters, especially the ST 
segment measures are strongly affected by this 
wandering. In most of the ECG recordings the respiration, 
electrode impedance change due to perspiration and 
increased body movements are the main causes of the 
baseline wandering [4]. The baseline wander noise makes 
the analysis of ECG data difficult. Therefore it is necessary 
to suppress this noise for correct evaluation of ECG. Many 
researchers have worked on development of methods for 
reduction of baseline wander noise. Zahoor-uddin 
presented Baseline Wandering Removal from Human 

Electrocardiogram Signal using Projection Pursuit 
Gradient Ascent Algorithm & shows the comparative 
study of the results of different algorithms like Kalman 
filter, cubic spline and moving average algorithms [5]. 
Mahesh S. Chavanet al has presented the Comparative 
Study of Chebyshev me and Chebyshev II Filter for noise 
reduction in ECG Signal [6]. Mahesh S. Chavanet al also 
compared the results of Butterwoth filter and Elliptic filter 
for the suppression of Baseline and Power line 
interferences [7]. Fayyaz A. Afsar et al. compared 
different approaches which include linear Digital filters, 
Adaptive filters, and Multiresolution analysis and Curve 
fitting for the removal of baseline drift [8].  
 

 
 

Fig-1: Normal ECG [2] 
 
V.S. Chouhan and S.P. Mehta developed an algorithm for 
total removal of Baseline drift from ECG signal & deploy 
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least square error correction & median based correction 
[9]. 
 
2. Implementation Techniques 
 
2.1 Wavelet Transform 
 
The WT is designed to address the problem of non-
stationary signals. It involves representing a time function 
in terms of simple, fixed building blocks, termed wavelets. 
These building blocks are actually a family of functions 
which are derived from a single generating function called 
the mother wavelet by translation and dilation 
operations. Dilation, also known as scaling, compresses or 
stretches the mother wavelet and translation shifts it 
along the time axis [5, 6, 7, 8, 11, 12]. The WT can be 
categorized into continuous and discrete. Continuous 
wavelet transform (CWT) is defined by 
 

   (   ) ∫   

 

  

 (   )( )   

Where x (t) represents the analyzed signal a and b 
represent the scaling factor (dilatation/compression 
coefficient) and translation along the time axis (shifting 
coefficient), respectively, and the superscript asterisk 
denotes the complex conjugation. 
Ψa, b (·) is obtained by scaling the wavelet at time b and 
scale a. 
Where ψ (t) represents the wavelet [5, 6, 15]. Continuous, 
in the context of the WT, implies that the scaling and 
translation parameters a and b change continuously. 
 However, calculating wavelet coefficients for every 
possible scale can represent a considerable effort and 
result in a vast amount of data. Therefore discrete 
wavelet transform (DWT) is often used. The WT can be 
thought of as an extension of the classic Fourier 
transform, except that, instead of working on a single 
scale (time or frequency), it works on a multi-scale basis. 
This multi-scale feature of the WT allows the 
decomposition of a signal into a number of scales, each 
scale representing a particular coarseness of the signal 
under study. The procedure of multiresolution 
decomposition of a signal x[n] is schematically shown in 
Fig. 1.  
 

 
Fig-2: Sub Band Decomposition of Discrete Wavelet Sub 
Band Decomposition of Discrete Wavelet Transform 
Implementation; G [N] is the High-Pass Filter; h [N] is the 
Low-Pass Filter. 

Each stage of this scheme consists of two digital filters 
and two down samplers by 2. The first filter, g [·] is the 
discrete mother wavelet, high-pass in nature, and the 
second, h [·] is its mirror version, low-pass in nature.  
 The down sampled outputs of first high-pass and low-
pass filters provide the detail, D1 and the approximation, 
A1, respectively. The first approximation, A1 is further 
decomposed and this process is continued as shown in 
 Fig. 2. All wavelet transforms can be specified in terms 
of a low-pass filter h, which satisfies the standard 
quadrature mirror filter condition: 
 
2.2 The Kalman filter 
 
The Kalman filter, also known as linear quadratic 
estimation (LQE), is an algorithm that uses a series of  
Measurements observed over time, containing noise 
(random variations) and other inaccuracies, and produces 
estimates of unknown Variables that tend to be more 
precise than those based on a single measurement alone. 
More formally, The Kalman filter operates recursively on 
streams of noisy input data to produce a statistically 
optimal estimate of the underlying system state. The filter 
is named for Rudolf (Rudy) E. Kalman, one of the primary 
developers of its theory. The Kalman filter has numerous 
applications in technology. A common application is for 
guidance, navigation and control of vehicles, particularly 
aircraft and spacecraft. Furthermore, the Kalman filter is a 
widely applied concept in time series analysis used in 
fields such as signal processing and econometrics. The 
algorithm works in a two-step process. In the prediction 
step, the Kalman filter produces estimates of the current 
state variables, along with their uncertainties. Once the 
outcome of the next measurement (necessarily corrupted 
with some amount of error, including random noise) is 
observed, these estimates are updated using a weighted 
average, with more weight being given to estimates with 
higher certainty. Because of the algorithm's recursive 
nature, it can run in real time using only the present input 
measurements and the previously calculated state and its 
uncertainty matrix; no additional past information is 
required. It is a common misconception that the Kalman 
filter assumes that all error terms and measurements are 
Gaussian distributed. Kalman's original paper derived the 
filter using orthogonal projection theory to show that the 
covariance is minimized, and this result does not require 
any assumption, e.g., that the errors are Gaussian.[1] He 
then showed that the filter yields the exact conditional 
probability estimate in the special case that all errors are 
Gaussian-distributed. 
 
2.3 Smooth function 
 
Extracting the baseline by moving average directly may 
attenuate the QRS complexes, since the output of moving 
average around R-wave peaks is usually high. In order to 
preserve QRS complexes precisely, we design a weighting 
function based on the gradient in the neighborhood area 
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of the current position. The weighting function is named 
the gradient varying weighting function and is defined as 
follows: 
 The Kalman filter, also known as linear quadratic 
estimation (LQE), is an algorithm that uses a series of   
 

 
Where n is the current position of the ECG signal, x[n] is 
the current value of the ECG signal, k the window size we 
specified for computing the gradient in the neighborhood, 
and d is a constant to balance the influence of the 
gradient. All of the parameters can be designed for 
specific requirements. In (1), we can distinguish QRS 
complexes from other parts of the ECG signal by choosing 
the proper window size k. The suggested value for k 
would depend on number of samples for QRS complexes 
in this way; we can obtain a smaller weighting value in the 
location with a larger gradient, such as the QRS complex, 
and obtain a larger weight in the location with a smaller 
gradient. In Fig. 2, the behavior of the gradient varying 
weighting function in (1) is presented. It can be observed 
that the values of w[n] are smaller when encountering 
QRS complexes. 
 
2.4 FFT Filtering 
 
fftfilt filters data using the efficient FFT-based method 
of overlap-add, a frequency domain filtering technique 
that works only for FIR filters. 
 
y = fftfilt (b, x) filters the data in vector x with the filter 
described by coefficient vector b. It returns the data 
vector y. The operation performed by fftfilt is described in 
the time domain by the difference equation: 
 

 
 
An equivalent representation is the z-transform or 
frequency domain description: 
 

 
 
By default, fftfilt chooses an FFT length and data block 
length that guarantee efficient execution time. 
If x is a matrix, fftfilt filters its columns. If b is a 
matrix, fftfilt applies the filter in each column of b to the 
signal vector x. If   b and x are both matrices with the 
same number of columns, the i-th column of   b is used to 
filter the i-th column of x. 
y= fftfilt (b, x, n) uses n to determine the length of the 
FFT. See Algorithm for Information. 
y = fftfilt (GPUArrayb, GPUArrayX, n) filters the data in 
the GPU Array object, GPU Array X, with the FIR 
Filter coefficients in the GPU Array, GPU Array b. 
See Establish Arrays on a GPU for details on GPU Array 
objects. 

3. Measure of Performance 
 
3.1 Percent Root Mean Square Difference 
 
 PRD One of the most difficult problems in ECG 
compression applications and reconstruction is defining 
the error criterion. The purpose of the compression 
system is to remove redundancy and irrelevant 
information. Consequently the error criterion has to be 
defined so that it will measure the ability of the 
reconstructed signal to preserve the relevant information. 
Since ECG signals generally are compressed with lossy 
compression algorithms. 
 A way of quantifying the difference between the 
original and the reconstructed signal, often called 
distortion. The most prominently used distortion measure 
is the Percent Root mean square Difference (PRD) that is 
given by 

 
 
Where x[n] and [n] are the original and reconstructed 
signals of length N, respectively. The PRD indicates 
reconstruction fidelity by point wise comparison with the 
original data. 
 
3.2 Mean 
 
The Root Mean Square error (RMSE)of original signal and 
de-noised signal is given by the following Equation 
 

 
 
4. Results 

 
 
Fig-3:Denoising output using smooth function 
 

 
 
Fig-4:Denoising output using wavelet function 
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http://www.mathworks.in/help/distcomp/gpuarray.html
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Fig-5:Denoising output using Kalman function 

 
Fig-6: Denoising output using low pass filter 
 

 
Fig-7:Denoising output using FFT 

 
 
Fig-8: Wavelet Packet Kalman Filter (PRD) 
 

 
Fig-9: Wavelet Packet Kalman Filter (Mean) 

5. Result and Discussion 
 
ECG is the prime human physiological signal which can be 
used for various clinical applications to detect the 
healthiness of the human being. Therefore the proper 
processing and detection of ECG is very much important. 
Since many decades various methods have been used for 
processing and accurate detection of human cardiac 
signal. In the last two decades many researchers and 
scientists have been using the methods based on Wavelet 
transforms and found that this Wavelet transform is more 
suitable for analyzing the non stationary, pseudo periodic 
ECG signal. Still there is lot of scope of Wavelet transform 
to be used for analyzing ECG signal. The suitability of 
Wavelet transform depends upon the proper selection of 
moth wavelet along with properties. In this paper we 
made an attempt to give an overview of various wavelet 
techniques used by the researchers for processing ECG 
signal. We hope that this material will be helpful 
particularly for beginners who are interested to work in 
this field. 
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