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Abstract  
  
In this work the dynamic stability of a magnetorheological elastomer (MRE) embedded viscoelastic cored sandwich 
beam to time varying axial load has been studied. The finite element method (FEM) is used to derive the governing 
equation of motion which is similar to that of Mathieu’s equation. The instability regions of the sandwich beam for the 
principal parametric resonance case are investigated by using the harmonic balance method. The modal frequencies 
obtained from the analytical model have been compared with the previously published results. Effects of various 
parameters such as applied magnetic field, static load and the location of the MRE patch on the stability of the sandwich 
beam are investigated. The results suggest that the stability of the MRE embedded sandwich beams are influenced by 
the various system parameters. 
 
Keywords: Sandwich beam, Magnetorheological elastomer, conductive skin, dynamic instability, harmonic balance 
method. 

 
 
1. Introduction 
 
Layered materials and sandwich structures are often used 
in structural systems to utilise the advantages of the 
different materials. The inclusion of different materials 
offers the possibility to combine specific material 
properties, and to improve mechanical properties while 
reducing the component weight. These have been 
received a great deal of attention because of their 
technologically interesting applications in many areas of 
engineering. Sandwich construction offers the structural 
designer many attractive features such as high specific 
stiffness, good buckling resistance, easy reparability, high 
corrosion resistance, good energy absorption capability, 
high fatigue life, buoyancy and lower maintenance cost, 
when compared to traditional complete metallic 
structures. Thus, the analysis of such structural systems 
has been investigated for long time due to these 
advantages. The most important applications are found in 
the transport industry such as in aerospaces, aircraft, 
automobiles, railroad, robot and marine industries where 
a high stiffness/weight and strength/weight ratio 
provides increased payload capacity, improved 
preference and lower energy consumption.  

Sandwich structures are often subjected to various 
kinds of static and dynamic loading which give rise to 
severe vibration problems that not only affect the 
operation but also cause damage to components. The 

vibration can be controlled passively by structural 
modification or by actively by modifying the structural 
property with an external agency without changing the 
structure itself. However, it is difficult to use the passive 
control scheme when the frequency of vibration of the 
structures varies in a wide range. Therefore, it is essential 
to adopt smart materials to attenuate vibration by means 
of bonding or embedding them and creating composite or 
sandwich structures.  

One of such material to improve the design of high 
stiffness and high strength sandwich structures is the use 
of magnetorheological elastomer (MRE) as core. 
Magnetorheological elastomers comprise of a class of 
smart materials whose rheological properties can be 
controlled rapidly and reversibly by the application of an 
external magnetic field. Sandwich beams with MRE cores 
possess field-controllable flexural rigidities due to the 
field-dependant shear modulus of the MRE core [1-3].  

Sometimes these sandwich structures are subjected 
to axial periodic load and vibrate in transverse direction 
for some amplitude and frequency of external excitation. 
Such systems are generally called as parametrically 
excited systems as their governing equation of motion 
contains the periodic excitation as coefficient of the 
response of the system.  The general description about 
parametrically excited system is given by Nayfeh and 
Mook, [4], Cartmell, [5]. In parametrically excited systems 
one may obtain the regions in the systems states space 
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for which the systems become unstable. These regions 
are known as instability regions and there are many 
studies to find out these regions by using different 
techniques. 

Magnetorheological elastomers (MRE) have great 
potential in developing stiffness variable devices which 
can find applications in many intelligent structures. These 
materials are increasingly being used as semi-
active/active vibration devices in various applications [6-
8]. The rheological properties of MREs such as damping 
and stiffness can be changed and controlled by varying 
magnetic field [9-11]. Chen et al [12] developed high 
modulus natural rubber based MREs by considering 
different percentage of iron particles and reported that 
the increase in weight fraction of iron particles increases 
the shear modulus of MRE.  

When a beam is subjected to a time varying axial load 
the system behaves as that of a parametrically excited 
system [4]. In these systems one should study the 
parametric instability regions to obtain the critical system 
parameters to avoid excessive vibration of the system. 
Bolotin [13] studied the dynamic stability of the beams 
subjected to time varying axial compressive forces. The 
dynamic instability of sandwich structures induced by 
parametric excitation has been investigated by many 
researchers [14-16]. Zhou and Wang [17-19] studied the 
dynamic properties of sandwich beams with MRE 
embedded soft cores with nonconductive and conductive 
skins. Dwivedy et al [20] investigated the instability 
regions of a MRE embedded soft cored sandwich beam 
subjected to periodic axial load using higher order theory. 
The dynamic stability of a sandwich beam with MRE 
embedded viscoelastic core which is incompressible in 
transverse direction has been studied by Nayak et al [21].  
In this present work an attempt has been made to 
develop a finite element based method to study 
complicated MRE embedded viscoelastic cored sandwich 
beam. The natural frequencies obtained using this 
method, have been compared with the published results. 
The instability regions are determined by solving the 
obtained Mathieu-Hill’s equation using Harmonic balance 
method. The effects of static and dynamic loads, 
magnetic field strength and location and length of MRE 
segment on the instability regions are determined. 
 
2. MRE Adaptive Sandwich Beam  Model Using Finite 
Element Method Layout 
 

Figure 1 shows the schematic diagram of a three layered 
MRE embedded viscoelastic cored sandwich beam of 
length L, top, bottom and core layers thickness ht, hb and 
hc, respectively. The core layer contains both the 
viscoelastic patches of lengths L1 and L3 and a MRE layer 
segment of length L2. This system is subjected to a time 

varying axial force, tPPtP ds  cos)( . Here Ps and Pd 

are the static and dynamic loads respectively.  t is the 
time and   is the excitation frequency.The following 

assumptions are considered for the modeling of the 
sandwich beam using FEM. It is assumed that the 
deformation of top and bottom skins obeys Euler 
Bernoulli beam theory. The three layers have the same 
transverse displacement w. The core of the sandwich 
beam deforms due to shear only. The non-MRE parts of 
the core are not affected by magnetic field but only the 
MRE part of the core is affected by the magnetic field. 
The zero field Young’s modulus and shear modulus are 
same for both MRE and non-MRE parts in the core. There 
is perfect bonding between the layers. 

The strain in top and bottom skins can be expressed in 
terms of axial displacement and the transverse 
displacement as follows. 
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where, subscript j= t and b for top and bottom faces, 

respectively, ju0 is the axial displacement of the mid-

plane of  skin j, and zj is the distance of the mid-height of 
skin j from the neutral axis. 

 

 
 
Fig.1 MRE embedded viscoelastic cored sandwich beam 
subjected to time varying axial load.  
 
As discussed in Mead and Markus [16] the expression for 

shear strain c  can be given by 
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The total kinetic energy of the sandwich beam can be 
obtained by adding the kinetic energy due to the 
transverse displacement of all the layers, axial 
displacements of top and bottom skins and the rotation 
due to shear strain of the MRE embedded viscoelastic 
core.  
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where, 
t c bm m m m   . ,t cm m  and 

bm  are the mass 

per unit length of the top, middle and bottom layers 

respectively, c  and cI are the density and the moment 

of inertia about centroid of the core, respectively.         
The expression for potential energy of the system U 

can be obtained by adding the potential energy due to 
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extension and bending of the skins, shear deformation of 
the core and work done due to the magnetoelastic loads 
in the skins which is given as follows. 
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Here, the complex shear modulus  
ccc iGG  1* , where

cG is the storage shear modulus, Ac is the cross sectional 

area of core, 1i and 
c is the core loss factor. 

The non-conservative work done due to periodic axial 
load is: 
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A standard beam element with two end nodes (Fig.2) with 
four degrees of freedom (DOF) at each node is considered 
for modeling of the sandwich beam using FEM. The DOF 
include the transverse displacement w, axial 
displacement of top skin ut, axial displacement of bottom 

skin ub and the rotational displacement  of the beam. 

The elemental displacement vector is: 

   
T

, , , , , , ,e i i i i j j j j

t b t bq w u u w u u                    (6) 

The elemental displacements can be determined in 
terms of displacements of two nodes as: 
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The shape functions are [34], 
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Upon substituting the expressions for kinetic energy T and 
potential energy U into Hamilton’s principle, described as 

                              
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where, ebsUTL   

The governing equations of motion for the un-
damped partially or fully treated MRE sandwich beam 
element in the finite element form can be obtained as

         cos 0s d fM q K q P P t K q      
     (10)    

For the MRE embedded sandwich beam, the matrices 

   , and fM K K  
are formulated by imposing 

compatibility conditions at the interfaces of the 
viscoelastic material and MRE patches within the core of 
the sandwich beam. 

Considering the damping effect of MRE on the 
sandwich beam the equation of motion can be rewritten 
as. 

            cos 0s d fM q K q C q P P t K q       
  

                                                                                                 (11) 

where,    cC i K , here c  is the loss factor of the 

MRE. 
 
3. Dynamic Stability Analysis 

For the analysis of stability of sandwich beams the 
method developed by Bolotin [13] is applied to obtain the 
relation for the dynamic instability of the system. 
Considering the damping effect of MRE on the sandwich 
beam the equation of motion can be rewritten as. 

The derived equation is a Mathieu-Hill equation with a 
periodic coefficient. The periodic motion of the system is 
usually the boundary case of vibrations with unboundedly 
increasing amplitudes. Therefore it is important to study 
the dynamic instability of the system and determination 
of the boundaries of the dynamic instability regions. The 
equation of boundary frequencie have been derived and 
given below. 
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This above equation is used to find the boundaries of 
principal instability regions of the system. 
 
4. Results and Discussions 

A MATLAB code has been developed to obtain the natural 
frequency, loss factor and parametric instability regions 
of a simply supported MRE embedded sandwich beams 
for different configurations. The beam is divided into 32 
elements for analysis. The developed code is validated by 
comparing the natural frequencies with the published 
results available in literature.  

 
Table 1 Comparison of modal frequencies (Hz) for 
cantilever beam 

 Modal frequencies (Hz) 

 1 2 3 4 5 

Present 
Analysis 

33.75
4 

199.126 513.174 909.954 1355.30 

Howson 
and Zare   

33.75
4 

198.992 512.307 907.299 1349.65 

 
Table 2 Comparison of modal frequencies (Hz) for 
cantilever beam 

 

 Modal frequencies (Hz) 

 1 2 3 4 

Present 
Analysis 

291.15 1692.1 4675.2 9125.5 

Banerjee   291.50 1684.48 4623.98 8945.18 
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The natural frequencies obtained from the present 
analysis are compared with those obtained by Howson 
and Zare [22] and Banerjee et al [23] for cantilever beam 
as given in Table 1 and Table 2 respectively. The 
frequencies are found to be in good agreement with the 
published results. 
 

4.1 Natural frequencies and loss factors 

In the present numerical analysis a symmetric sandwich 
beam with MRE embedded core has been considered for 
simply supported end conditions. The geometric and 
material properties of the sandwich beam are as follows. 
The span of the beam, L = 415 mm; width, 27 mm; the top 
and bottom skins thickness, ht=hb=0.9 mm, the core 
thickness, hc=2.9 mm. The top and bottom aluminum 
skins have Young’s modulus 72 GPa and density 2700 
kg/m3. Following expressions for the shear storage 
modulus and loss factor of natural rubber based MRE 
(containing 80% of iron particles) have been used which 
are obtained by curve fitting the experimentally obtained 
data of Chen et al [12] up to the saturated magnetic field 
strength of 0.6 T.  
 

 6 5 4 3 2

0 0 0 0 0 06.9395 9.1077 71.797 93.422 38.778 2.43 2.7006 MPacG B B B B B B       

 
6 5 4 3 2

0 0 0 0 0 05.3485 17.787 22.148 12.185 2.3522 0.1526 0.228c B B B B B B       

 
In this work along with the full length MRE core sandwich 
beam five other different types of MRE embedded 
sandwich beam configurations shown in figure 2 have 
been considered for numerical analysis. The five different 
sandwich beam configurations CI, LI, LII, LIII and LIV have 
the same MRE patch length but with different MRE patch 
locations.  

 

 
 

Fig. 2 Different locations of MRE patches in the core 

Fig. 3 shows the effect of variation of magnetic field 
strength on the fundamental frequency and loss factor for 
the different configurations of the sandwich beam shown 
in Fig. 3. Also the results have been compared with those 
of the configuration CI and the fully treated MRE core of 
sandwich beam. One may observe that due to symmetry, 

the fundamental frequencies and loss factors for location 
LI and LIV and also for LII and LIII are same as shown in 
Fig. 3 (a) and (b) respectively. Also it can be observed that 
at higher magnetic field the fundamental frequencies and 
loss factors of LI and LIV in which the MRE patches are 
located at the support ends are more than those of LII 
and LIII.  

4.2 Parametric instability regions 

In this subsection, the stability of a MRE embedded 
viscoelastic cored sandwich beam subjected to periodic 
axial load has been investigated considering various 
system parameters and different configurations based on 
the length and location of the MRE patch in the core for 
the simply supported end condition.  

 

 

 
Fig. 3 Variation of  (a) fundamental frequency and (b) loss 
factor with magnetic field for different configurations CI, 
LI, LII, LIII, LIV and fully treated MRE core sandwich beam 
(P(t)=0)). 

 
Figure 4 shows the influence of location of the MRE patch 
on the stability of the sandwich beam which has been 
obtained for four different configurations, LI, LII, LIII and 
LIV (Fig.4). Also these results are compared with those 
obtained for the configuration CI and fully MRE cored 
sandwich beam. Comparing the Fig. 4 (a) and (b), the 
instability regions decreases with increase in magnetic 
field for all the locations of the sandwich beam. From 
Fig.4 (c) and (d) one may observe that with increase in 
static load factor α, while the width of the instability 
regions increases  the value of βcr decreases making the 
system more unstable. One may observe that due to 
symmetry the instability regions of simply supported end 
condition are same for location LI and LIV and also for LII 
and LIII. For the same system parameters the instability 
regions of locations LI and LIV are less than that of the 

(a) 

(b) 
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locations LII and LIII. This is because that stiffness and 
damping capacity of the locations LI and LIV increase due 
to the location of MRE patches at the boundary edges of 
the simply supported sandwich beam as presented in Fig. 
2. 

 

               (a) 

 

               (b) 

 

          (c) 

 

                (d) 
Fig. 4 Dynamic principal instability regions of a sandwich 
beam with different locations of MRE patch (a)

00, 0.2TB   , (b)
00, 0.6TB   , (c) 

00.4, 0.2TB    

and (d)
00.6, 0.6TB   . 

 

5. Conclusions 

In this paper, the instability regions of a sandwich beam 
have been investigated for the principal parametric 
resonance condition. The finite element method has been 
used for mathematical modeling of the MRE embedded 
sandwich beam. The comparison of the results obtained 
herein with those in the previous literatures indicated 
that the natural frequencies and loss factors can be 
predicted with considerable accuracy using the method 
presented.  

Analysis has been made for five different 
configurations of the sandwich beam by varying the 
location. It has been observed that the instability regions 
of the sandwich beam can be changed by varying position 
of the MRE patches in a viscoelastic core. So the system 
stability can be achieved passively by changing the 
location of the MRE patches in the core and actively 
achieved by applying magnetic field of suitable amplitude. 
This formulation can be used for developing stiffness 
variable devices for vibration reduction and for the 
sandwich structures with complicated geometry. 
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