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Abstract  
  
A number of works are dedicated to the investigation of the effects of the excluded volume interactions on the dynamics 
of cyclic polymers in good solvents using the Yu-Fujita model. Unfortunately, this latter does not satisfy the circularity 
condition. To overcome this problem, use is made of the Bensafi-Benmouna model which describes quite well their 
thermodynamic and structural properties in good solvents. This paper deals with the dynamic scattering properties of 
both cyclic homopolymers and copolymers in good solvents. These properties, such as the relaxation frequencies and the 
diffusion coefficient, are briefly discussed and the implications of the excluded volume interactions on such properties 
are emphasized more. Finally, cyclic chains dynamic properties are compared to those of their linear counterparts, in 
order to comprehend the effects of the cyclization of linear polymers under good solvent conditions. 
 
Keywords: cyclic polymer, dynamic diffusion, Rouse model, Zimm model, relaxation frequency, diffusion coefficient. 
 
 
1. Introduction 
 
The study of polymers with non-linear structures and, 
particularly, of those with cyclic architecture, is not much 
developed as that of linear chains. Indeed, that of cyclic 
polymers plays a crucial role in the field of theoretical 
developments related to the macromolecular behaviour. 
Translational symmetry and the lack of end groups in ring 
chains yield important simplifications in some treatments, 
making problem easier to treat than in linear chains. 
Nevertheless, the deficiencies present in the old 
experimental techniques (synthesis and characterization) 
for these rings suppressed in part the practical interest of 
the theoretical approaches, which could even be 
considered just as mathematical exercises and scarce 
applications. Recently, this situation has considerably 
changed. The improvement of experimental techniques 
allows nowadays both synthesis and accurate 
characterization of different classes of ring polymers [1]. 
This fact makes necessary a further theoretical 
development to try to explain the reactions that lead to 
the creation of cyclic structures and the equilibrium and 
dynamic behaviour of ring polymers, both with well-
differentiated characteristics when compared to those 
corresponding to linear chains with the same molecular 
weight.  

The most analytical expressions derived for the 
calculation of dynamic properties of flexible cyclic chains 
are based on the Rouse-Zimm bead-spring model, which 
included an equilibrium pre-averaging of hydrodynamic 
interactions [2]. 

Even later, developments suitable for more general 
models [3] and refinements over the Gaussian chain 
mode have maintained this approximation. 

The dynamics of a flexible polymer chain in solution 
constitutes a non completely solved theoretical problem. 
The most popular description of the low frequency 
dynamics is provided by the Rouse-Zimm Theory [4]. In 
fact, the latter is based on a series of approximations, and 
the validity of the pre-averaging of hydrodynamic 
interactions is still an open question. In the same context, 
more rigorous treatments, based on the generalized 
Kirkwood Theory, can only be approached by means of 
perturbation techniques [4] or Renormalization-Group 
theory [5]. 

The static and dynamic properties of cyclic polymers 
in solution present some differences, in comparison with 
the case of linear chains [4,6-12]. These discrepancies 
originate, in particular, from their thermodynamic 
behaviour, conformational characteristics and evolution 
in time. Examples of these facts are the shift in theta 
temperature observed in dilute solutions of ring polymers 
in various solvents, such as cyclohexane, deuteriated 
cyclohexane and trans-decalin. The diffusion coefficient is 
larger for a cyclic polymer; this indicates that rings diffuse 
faster than their linear counterparts [12]. These 
properties were investigated recently for ring 
homopolymers and copolymers in solvent conditions 
close to the theta temperature, where the system is no 
perturbed by the excluded volume interactions. 

Contrary to Benmouna et al. [13] who studied some 
dynamic properties of cyclic polymers in good solvents 



Boudjellal et al.                                                                                                                                                                                                     Cyclic Polymer Dynamics 

 

608 | Int. J. of Multidisciplinary and Current research, May/June2014 

 

using the Yu-Fujita Model, this paper is intended to 
extend such an investigation to the case of similar 
polymeric systems placed in similar solvent conditions. To 
this end, use is made of some model recently proposed 
by Bensafi and coworkers [14] in order to investigate the 
dynamical scattering relaxation properties. 

It is worthwhile to recall that, among the quantities 
that allow the understanding of this dynamical behaviour 
and are accessible by quasi-elastic scattering techniques, 
the first cumulant,   ( ), of the intermediate scattering 
function,   ( ), plays a crucial role. Here, Q denotes the 
wave-vector amplitude. The interesting feature lies in the 
fact that one does not need the entire form of the latter 
function to get useful information on the dynamics of 
these systems, and the initial decay rate  ,   

  ( ), is 
quite sufficient for our purpose. 

Over the last three decades, the structural properties 
of polymeric systems have been the subject of a great 
deal attention from theoretical and experimental points 
of view. In particular, considerable effort has been made 
in order to understand better such properties, especially 
static and dynamic behaviours both in solution and in the 
bulk state [13]. However, the investigations carried out on 
various polymeric systems of different architectures, 
reveal that the properties of ring polymers in solution 
present some discrepancies as compared with the case of 
their linear counterparts [4,6,10,14]. These deviations 
originate, particularly, from their thermodynamic 
behaviour, conformational characteristics, connectivity of 
cyclic chains, and time evolution of their correlation 
functions [15]. The present work aims to compare the 
effects of the excluded volume on dynamic properties of 
linear and ring homopolymers and copolymers. 

This paper is organized as follows. In Sec. 2, we review 
the theoretical formalism enabling us to comprehend the 
dynamic scattering properties of systems under 
investigation, such as the relaxation frequencies and the 
diffusion coefficient, and discuss our main results, by 
emphasizing the impact of the solvent quality, 
hydrodynamic interactions and architecture effects on 
the dynamic properties. Some concluding remarks are 
drawn in the last section. 
 
2. General formalism 
 
2.1 Relaxation frequency 
 
Among the dynamic properties that play a capital role in 
the study of the dynamics of polymeric systems, the first 
cumulant,   ( ), is the most important. This quantity, 
easily accessible by quasi-elastic light scattering 
techniques, represents the relaxation frequency of the 
intermediate dynamic scattering function,   (   ), whose 
temporal evolution obeys the exponential decay  
 

  (   )    ( )    ( )             (1) 

Where       (the subscripts l and r are for linear 
polymers and their cyclic counterparts). While the static 
structure factor,   ( ), expresses as 
 
  ( )        ( ),                   (2) 
 
The form factor,   ( ), describing the internal 
configuration of the polymer, is generally given by  
 

  ( )  
 

  
 ∫ (    )

  

 
  

  

 
〈  

 〉             (3) 

where the amplitude of the scattering wave-vector Q is 
defined by 
 

  
   

 
   .

 

 
/               (4) 

where n,  and  denote the refraction index of the 
medium, the wavelength of the incident beam and the 
scattering angle, respectively. There, the quantity 〈  

 〉   
representing the mean quadratic distance between two 
points separated by z monomers, along the polymer chain 
i, is given, in the case of swollen cyclic chain portion, by 
[14] 
 

〈  
 〉      .  

 

 
/
   

              (5) 

 
with a the monomer size. In what follows, we shall 
assume that, regardless of their architecture, ring and 
linear polymers are characterized by the same length, 
molecular weight and volume fraction, that is       
  and        . Recently, the properties, evoked 
above, were the subject of active studies, for cyclic 
homopolymers as well as for copolymers in theta solvent, 
where such systems are not perturbed by the excluded 
volume interactions [4,10,11,15,16]. 
 The aim of this paper is to examine separately 
dynamic scattering properties of cyclic homopolymers 
and diblock copolymers in good solvent, using the model 
expressed by Eq. (5). 
 The computation of the form factor, based on the 
substitution of Eq. (5) into Eq. (2), leads to the expression 
 
  ( )  
 

   
∫      (   )⁄ 

 
(    (   )⁄ )     (    (   )⁄ )

   
          (6) 

 
with the notations 
 
            ⁄             (6a) 
 

  
 

 
               (6b) 

In the case where the swelling parameter   is zero (i.e. 
in theta solvent), we recover the well-known Casassa 
function [9]  
 

  ( )  
 

√ 
    ⁄ ∫    √  ⁄

 
  ,           ⁄       (7) 
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It is worthwhile to note, furthermore, that this function 
has been confirmed experimentally by small-angle 
neutrons scattering measurements carried out by 
Hadziioannou et al. [11] on dilute solutions of cyclic 
polystyrene in cyclohexane. 
 In the case of linear chains in the presence of excluded 
volume, the form factor is given by the relation 
 

  ( )  
 

   
∫      (   )⁄ (    (   )⁄ )     

 

 
       (8) 

 
In theta solvent, this equation reduces to the Debye 
function [17]   
 

  ( )  
 

  
(       ),        ⁄         (9) 

 
We note that, when       (in good solvent), the 
integrals (6) and (8) can be solved numerically. 
On the other hand, in terms of the static structure factor, 
  ( ), and the generalized mobility,   ( ), the 
relaxation frequency,   ( ), is defined by the classical 
relation 
 

 ( )       
 ( ) 

  ( ) 
           (10) 

 
Where T is the absolute temperature and    is the 
Boltzmann’s constant. 
 In order to express the generalized mobility within the 
framework of the Zimm model [12] that takes into 
account the hydrodynamic interactions, it is possible to 
use the hydrodynamic model [18]. Nevertheless, these 
interactions can be modelled by the Oseen classic tensor 
[4],  ( ), that writes, as a function of real space 
coordinates, as follows 
 

 ( )  
 

     
.  

   

  /          (11) 

 
Where   , I and R stand for the solvent viscosity, the unit 
tensor and the distance between two monomers present 
in the solution, respectively, while the symbol   means 
the tensorial product. 
In reciprocal space, the Oseen tensor writes 
 

 ( )  
 

    .  
   

  /          (12) 

 
with k the three-dimensional wave-vector. 
 In particular, the component of the Oseen tensor, 
along the direction of the wave-vector, is given by  
 

〈 (   )〉  
 

   √  〈|   |〉
          (13) 

 

where |   | is the distance that separates two monomers i 

and j along the chain. 

When the polymer concentration increases, the solvent 
viscosity    should be replaced by a generalized one, 
 ( ), which writes, in reciprocal space, as 
 

 ( )    (  
 

  
   )          (14) 

 
where    is the hydrodynamic screening length. 
 It is easy to show that, in the presence of strong 
hydrodynamic interactions, i.e. for quite large values of 
the product    ,  ( ) coincides with    and the viscosity 
 ( ) is more important as along as this product remains 
small. For finite values of the product    , however, the 
hydrodynamic interactions are partially screened. 
 The computation of the generalized mobility   ( ) 
based on the pre-averaged version of the Oseen tensor 
(see Eq. (10)) and the model expressed by Eq. (5), leads to 
the following result 
 

  ( )  
 

 
 √

 

  
∫ (   )

    〈  
 〉  ⁄

√〈  
 〉 

 

 
       (15) 

where the quantity  represents the friction coefficient of 
one monomer, assumed to be the same for the two 
polymeric species. In this equality, the first term in the 
right-hand side corresponds to the Rouse contribution, 
whereas the second one refers to that of Zimm model of 
hydrodynamic interactions. 
 In the case of cyclic polymers in good solvent, the 
combination of Eqs. (2), (5), (10), (15) and those 
expressing the form factors, leads to the renormalized 
relaxation frequency 
 
  ( )

    
   

    ( )
 

     

(   )    √       ( )
∫       (   )(  

 

 

   (   ))
 
    .     (   )/

   

√ (     (   ))
   

          (16) 

 
In the case of its linear homologous placed in similar 
solvent conditions, we obtain 
 
  ( )

    
   

    ( )
 

     

(   )    √       ( )
∫       (   )(  

 

 

   (   ))
     

√ 
             (17) 

 
To illustrate the angular dependence of the normalized 
relaxation frequency, we depict in Fig.1 the variations of 
the quantity   ( )            ⁄ , upon the wave-
vector amplitude Q, in the Rouse limit, for linear and 
cyclic homopolymers placed under theta and good 
solvents conditions.  
 This figure clearly shows the effects of the excluded 
volume on the dynamics of linear homopolymers and 
their cyclic counterparts, in the absence of hydrodynamic 
interactions. In the case of cyclic homopolymers in good 
solvent, in addition to the Yu-Fujita model [13] that 
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describes successfully the dynamics of a cyclic copolymer 
single chain, we have applied some recent model [14]. 
 

 
 
Fig.1 Variations of the quantity,     ( )      ⁄ , as a 
function of Q, in the Rouse limit, for linear and cyclic 
homopolymers under theta (   ) and good (     ) 
solvents conditions. 
 
In this limit and under the two solvent conditions, we 
remark, on the other hand, that the dynamics of cyclic 
polymers is slower than that of their linear homologous. 
Fig.1 indicates that, in the Rouse limit and for values of 
the wave-vector such that        (expressed in     
unit, a being the monomer size), the results obtained 
using the Yu-Fujita model, are slightly different from 
those reported in the case of linear chains in good 
solvent, whereas, for       , they superpose. Contrary 
to this model that overstimates the relaxation of cyclic 
chains, results from Ref. [14] seem to be more 
reasonable. 
 In addition to the excluded volume, we have taken 
into account the effects of hydrodynamic interactions on 
linear and cyclic homopolymers dynamics. In Fig.2, we 
represent the variations of the renormalized relaxation 
frequency,   ( )            ⁄ , upon the wave-vector 
amplitude Q, in the Zimm limit, for the polymeric systems 
evoked above in theta and good solvents conditions.  

 
 
Fig.2 Variations of the quantity,     ( )      ⁄ , as a 
function of Q, in the Zimm limit, for linear and cyclic 
homopolymers under theta (   ) and good (     ) 
solvents conditions. 

This figure reveals that, in the small Q-range, the diffusion 
from cyclic homopolymers is faster as compared to that 
of their linear homologous. For        (theta solvent) 
and        (good solvent), this tendency is reversed. 
Therefore, whatever is the quality of the solvent, this 
diffusion behaviour for any specie is reversed.  
 In the small Q-limit, one can access directly to the 
diffusion coefficient of a single chain that expresses 
according to 
 

          
  ( )

    
   

  
 

   

       
      (18) 

 
where the hydrodynamic radius     is given by  
 

 

   
  √

 

 

 

     
   ,  (     )        (19) 

 
In the case of cyclic chains, the integral    reads 
 

   ∫
   

√    (   )   
  

 

 
              (19a) 

 
While for their linear counterparts, we obtain 
 

   ∫
   

      
 

 
               (19b) 

 
The calculation of the gyration radius of a cyclic polymer 
in a good solvent, based on the model expressed by Eq. 
(5), yields the following result 
 

   
        ∫     (   )     

 

 
      (20) 

 
In theta solvent (   ), we get 
 
   

                           (20a) 

 
Whereas for (     ), the numerical solving of this 
integral provides the corresponding expression in the 
good solvent conditions 
 
   

                           (20b) 

 
Furthermore, combinating Eqs. (19), (19a) and (20) yields 
the following relation between the gyration and 
hydrodynamic radii  
 

   
  

    
 

  0∫     (   )     
 

 
1    

       (21) 

 
For the corresponding linear chains [20], the gyration 
radius is given by  
 

   
  

      

(   )(   )
            (22) 

 
When (   ) (theta solvent), we obtain 
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                           (22a) 

 
While for (     ) (good solvent), the result is 
 
   

                            (22b) 

 
It is interesting to point out that, whatever is the quality 
of the solvent with respect to linear chains or their cyclic 
homologous, the gyration radius naturally increases with 
increasing polymerization degree Z. However, the 
dimensions of linear chains remain always larger than 
those of the corresponding cyclic chains. 
 Concerning the mean quadratic radius of gyration of a 
cyclic polymer in good solvent,    

 , it is related to that of 

its linear counterpart (of the same polymerization degree) 
by 
 

   
  0(   )(   ) .∫     (   )     

 

 
/1    

   (23) 

 
from which, we extract the following result 
 
   

          
                 (23a) 

 
for theta solvents (   ), and  
 
   

          
                (23b) 

 
for good solvents (     ). These results clearly show 
that the cyclic chains are less compact than their linear 
homologous in both good and theta solvents. 
 Putting     (theta solvent) and       (good 
solvent) into Eq. (21) yields the respective values 0.797 
and 0.570 of the ratio       ⁄ . For linear chains, this 

ratio has the respective values 0.665 and 0.537. 
Concerning the intrinsic viscosity, it can be expressed, in 
terms of hydrodynamic and gyration radii, as 
 

, -  
      

 

 
             (24) 

 
Substituting Eqs. (19) and (21) into the above equality 
gives, for     and      , the results 
 
, -                           (24a) 
and 
 
, -                          (24b) 
 
For comparison, the numerical prefactors in the above 
scaling laws, corresponding to the case of linear chains, 
increase to 0.04 and 0.03, respectively. These values 
show that the intrinsic viscosity is essentially two times 
more important than that of cyclic counterparts, 
whatever is the solvent quality.  
 Starting from these results, we can deduce the effects 
of the chain swelling, due to excluded volume 

interactions and to the circularity condition imposed to 
chain ends, on the size and viscosity of cyclic polymers in 
good solvent. 
 It is convenient to remind that, in the intermediate 
values of the wave-vector amplitude Q, the form factor is 
approximately equal to 
 

  ( )  
 ( )

    
              (25) 

with 
 

  
   

 
                  (25a) 

where   denotes the Euler Gamma function. 
 
In this Q-range, the asymptotic limit of the first cumulant, 
  ( ), is very useful and can be readily deduced from Eq. 
(11) as follows 
 

  ( )       
   

   
(  )        

   

  
          (26a) 

 
for     (theta solvent), and  
 

  ( )       
   

   
(  )           

   

  
         (26b) 

 
for       (good solvent). 
 
These results are similar to those obtained for linear 
chains, and then, the internal dynamics of cyclic chains 
are not affected by the circularity condition. However, by 
neglecting the pre-averaged approximation of the Oseen 
tensor, the first cumulant is given by 
 
  ( )

   
   

    ( )
  

    

    √   ( )
∫ (   ) , ( )-

 

 
    (27) 

 
where the function F is defined by 
 

 , -     [     (    )    
 
∫    

  
 

 
]        (28a) 

With 
 
 ( )     

   (   )               (28b) 
 
We note that, only the contribution of Zimm is found to 
be modified. Indeed, in this Q-range, the values of 
hydrodynamic radius and intrinsic viscosity, reported 
above, are not affected. On the other hand, the numerical 
coefficients, appearing in hydrodynamic terms of Eq. (28), 
become 0.071 and 0.079 [21], respectively. 
 
2.2. Concentration effects on dynamics of cyclic polymers 
in solution 
 
These effects can be introduced through the molecular 
interactions appearing in the static structure factor 
 

  ( )  
    ( )

       ( )
           (29) 
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where   represents the monomer volume fraction, and v 
refers to the excluded volume parameter. The latter can 
be expressed, in terms of the polymer-solvent interaction 
parameter       , according to the relation [22] 
 

    .
 

  
    /           (30) 

 
where    and    are the volume of the solvent molecules 
(volume occupied by one site in Flory lattice) and their 
volume fraction, respectively. 
 For a mixture of two polymers, the difference in their 
chemical nature can be described through the Flory 
interaction parameter  . In this case, the structure factor 
of such a polymeric system is well expressed in numerous 
works [10,21,23].  
 On the other hand, within the framework of the 
hydrodynamic model, the pre-averaged approximation 
seems to be reliable, and the viscosity    that appears in 
the Fourier transform of the Oseen tensor (see Eq. 12), 
should be replaced by the effective viscosity,  ( ), 
defined in Eq. (14). 
 Taking into account these arguments, expression (16) 
of the first cumulant   ( ) then becomes 
 
  ( )

   
   

   ( )
  

    

(  )   
∫  .

 

 
    /

 

 

  ( )

  ( )
     (31) 

 
With 
 

 (   )    0
       

  
   

(   )    

(   )      1         (31a) 

 
where    is the hydrodynamic screening length that can 
be experimentally adjusted, and it naturally depends on 
concentration. 
 There are different expressions of the first cumulant. 
The simplest one, that is familiar in theories of coupled 
modes [24-26], writes  
 
  ( )

   
   

  
0
   

 

   
 1 ,       

 -  
   

       
 (    )   (32) 

 
where the Kawasaki function [25],  ( ), is defined by  
 

 ( )    .
    

  
   |

   

   
|   /           (32a) 

 
In Eq. (32), the quantity     represents another 
correlation length, which can be related to the gyration 
radius by 
 

   
  

   
 

     
             (33) 

 
2.3. Application to cyclic diblock copolymer in good 
solvents 
 
We note that the properties of linear copolymers systems 
are still the subject of investigations from a theoretical 

and experimental point of view [27]. In what follows, we 
will present some results, related to dynamic properties 
of cyclic diblock copolymers chains, which are the subject 
of discussion. In the case of their linear homologous, if 
the monomers species have different cohesion energy 
densities, the system undergoes a phase separation. The 
end-to-end closure of both extremities of blocks A and B 
leads to the formation of a cyclic structure noted (A-B)r. 
Thereby, by contrast to the case of linear chains, 
spectacular changes appear in dynamic scattering 
properties of such systems [6]. 
 For the sake of simplicity, we consider a symmetrical 
cyclic diblock copolymer. In other terms, both blocks have 
the same polymerization degree (        ⁄ ), the 

same gyration radius (          ), the same 

volume excluded parameter (         ), and 
present a slight compatibility introduced via the 
interaction parameter            . 
 Taking into account these simplifying hypothesis and 
limiting the integration to Z/2 monomers, we obtain the 
following expression for the form factor of a single 
diblock chain 
 
    ⁄ ( )  
 

   
∫      (   )⁄ (  

 

 

  (   )⁄ )      (    (   )⁄  ⁄ )
   

      ⁄      (34) 

 
We have used Eqs. (5) and (6a). In theta solvent (   ), 
analytic solving of this integral leads to the result 
 

    ⁄ ( )  
      ⁄

  ⁄
           (35) 

 
where the quantity u is given  
 

       
       

 
               (35a) 

 
For      , however, the integral can be solved 
numerically. 
 
For a linear diblock copolymer, the form factor expresses 
as  
 
    ⁄ ( )  
 

   
∫      (   )⁄ (    (   )⁄ )         ⁄   

 

 
    (36) 

 
In the case of ternary mixtures of two homopolymers or a 
diblock copolymer in solution, the first cumulant,  ( ), 
corresponds to a diagonal square matrix whose 
components are defined by the relationship [28] 
 

 ( )        ( )   ( )

 ( )   ( )
             (37a) 

 

  ( )        ( )   ( )

 ( )   ( )
            (37b) 
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where the respective quantities  ( ) and   ( ) denote 
the components of the generalized mobility matrix 
  ( ), whereas  ( ) and   ( ) are those of the static 

structure matrix  ( ). In this case, we obtain 

 

 ( )  
(   ⁄ ){    ⁄ ( )      ( )[    ⁄ ( )   ( )]}

*  (    ⁄ )    ( )+{     [    ⁄ ( )   ( )]  ⁄ }
       (38a) 

 

  ( )  
(   ⁄ ){   ( )     ⁄ ( ) (   )    ( )[    ⁄ ( )   ( )]}

*  (    ⁄ )    ( )+{     [    ⁄ ( )   ( )]  ⁄ }
 (38b) 

 
where the form factors of the total chain and of its half 
are defined in Eqs. (4a) and (28a), respectively. The 
mobility matrix components are defined by [4,12,24] 
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/

 

 
 ( )            (39a) 
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(  )   
∫  .

 

 
/

 

 
  ( )            (39b) 

 
where the function  ( ) is that defined in Eq. (32a). 
 The two frequencies   and    characterize the 
dynamic behaviour of the system under consideration. 
The physical meaning of the former has been previously 
discussed in various studies [29-33]. In the case of a 
symmetrical diblock copolymer in solution, these both 
frequencies, denoted     and   , identify to the 
cooperative (total polymer concentration fluctuations) 
and interdiffusive (composition fluctuations) modes, 
respectively, and read 
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/

    ⁄ ( )   ( )

     [    ⁄ ( )   ( )]  ⁄
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Fig.3 Variations Variations of the normalized relaxation 
frequency     ( )      ⁄ , upon the wavenumber Q, in 
the Rouse limit, for linear and cyclic symmetrical diblock 
copolymers under theta solvent conditions (   ) and 
for two values of the concentration       and 10. 

In the Rouse limit, the angular variations of the latter 

quantity, in theta (   ) and good (     ) solvents, 

are depicted in Figs.3 and 4, for linear and cyclic diblock 

copolymers. Due to the fact that        , the 

observation, evoked above, is fully justified. 

 

 
 
Fig.4 Variations Variations of the normalized relaxation 
frequency     ( )      ⁄ , upon the wavenumber Q, in 
the Rouse limit, for linear and cyclic symmetrical diblock 
copolymers under good solvent conditions (     ) and 
for two values of the concentration       and 10.  
 
Fig.3 shows that, in theta solvent, the cyclic copolymers 

scatter more rapidly than their linear counterparts placed 

in the same conditions. On the other hand, as shown in 

Fig.4, the scattering behaviour of cyclic copolymers is 

reversed, for large values of Q. Regardless of the 

architecture of the two copolymers, the scattering 

behaviour is more slow as the concentration is increased. 

Finally, Figs.5 and 6 also confirm the predictions of the 

cyclic diblock copolymers model [14]. 
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Fig.6 Variations of the normalized relaxation frequency 
    ( )      ⁄ , against the wavenumber Q, in the 
Zimm limit, for linear and cyclic symmetrical diblock 
copolymers under good solvent conditions (     ) and 
for the concentration      . 
 
3. Concluding remarks 
 
We recall that this paper has been devoted to a 
comparative analysis of dynamical scattering from linear 
and cyclic homopolymers and copolymers in solution 
(with theta or good solvents). To this end, use was made, 
first, of the Oseen tensor that gives a description of the 
long-range coupling between monomers in the solution, 
and second, of some recent model [14]. Within the 
framework of the latter, we gave a detailed description of 
the effects of the excluded volume on dynamic scattering 
properties. The choice of such a model can be justified by 
the fact that a comparison between theory and 
experiment is favourable. In addition, this same model is 
found to be relatively more appropriate to describe the 
effects of excluded volume on thermodynamic and 
structural properties of cyclic polymers in good solvents. 
In the light of the obtained results, it appears numerical 
discrepancies between linear and cyclic chains, especially, 
in the small Q-range. This tendency is natural, since the 
two systems are not of the same topology.  
 Furthermore, we recall that, in the small Q-limit, Yu-
Fujita model overestimates the swelling effect of cyclic 
homopolymer (or copolymer) chains. 
 The present analysis revealed that, above the overlap 
concentration, hydrodynamic interactions are essentially 
screened out, and then, the Rouse model is sufficient for 
the description of the dynamic behaviour of the two kinds 
of systems. Also, we note that, in the Rouse limit, the 
angular evolution of the cooperative mode, for linear 
copolymers as well as for their cyclic homologous, does 
not present any specific characteristics of the dynamics 
that should allow to distinguish the cyclic chains from 
their linear homologous, excepted probably in the large 
Q-range, where the dynamics reflects the intramolecular 
form factors   ( ) and   ( ). On the other hand, the 
interdiffusive mode, which plays a capital role in the 
dynamics of polymeric systems under investigation, is 

illustrated in Figs.3 and 4, which represent the respective 
angular dependence of the corresponding normalized 
frequencies, for       and       , in both Rouse 
and Zimm limits. 
 Analysis of these two figures reveals that, in linear 
copolymers case, the characteristic frequency is 
practically zero at minimum     , in the two limits, for 
      , whereas it remains positive and quite raised 
for their cyclic homologous. In fact, for these latter, the 
normalized frequency corresponding to the interdiffusive 
mode, tends to 0 at        (i.e., for an interaction 
parameter whose value is approximately two times more 
important than that observed in the case of linear chains 
at the same concentration). 

 In addition, a meticulous examination of these two 
figures show that, in the case of a cyclic copolymer, the 
position of the minimum   , in the Rouse and Zimm 
limits, is shifted towards the raised values of Q. These 
observations confirm the reliability of the predictions of a 
certain recent model [14]. On the other hand, they show 
that there are substantial differences between the 
dynamic behaviours of the two types of copolymers, 
which would be put in evidence or by elastic light 
scattering or by quasi-elastic light scattering. 
 Below overlap concentration, i.e. in diluted regime, 
the effects of hydrodynamic interactions become 
important and, hence, the cooperative and interdiffusive 
modes present important discrepancies between the 
linear copolymer and its cyclic homologous. For instance, 
it should be interesting to graphically illustrate, in another 
figure, the variations of     ( )      ⁄ , as a function 
of Q for       and 10, for both systems. This figure 
should show that, in the small Q-range, the diffusion 
coefficients inequality         agrees with 
experimental observations [30]. On the other hand, near 
     , the scattering behaviour is reversed, and above 

the corresponding value of  , dynamics of internal 
modes, which found to be more slow for cyclic 
copolymers, has not, up to now, still been observed 
experimentally. 

 It has been previously mentioned that, in the 
framework of the Rouse model, kinetics of the 
microphase separation takes place for an interaction 
parameter which is approximately twice in the case of a 
cyclic copolymer. In the presence of hydrodynamic 
interactions, the form of the representative curves of the 
function   ( )     ( )⁄  is drastically modified. We 
note that, when the hydrodynamic interactions are taken 
into account, one observes a deep minimum whose 
position     is substantially shifted. These results clearly 
show that the validity range of the used formalism is 
larger than that of cyclic copolymers. For this reason, we 
have focussed our attention on this latter mode. 
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