A Bioinformatics toolkit for rice (Oryza sativa Japonica) YUCCA genes (OS1-7) sequence comparative analysis

Rabia Tabassum

Department of Bioinformatics, Sir Syed University of Engineering & Technology, (SSUET) Karachi, Pakistan.

Abstract

It has been estimated that almost half of the world’s population rely wholly or partially on rice, Oryza sativa. The molecular mechanisms of IAA synthesis in rice (Oryza sativa), identified seven YUCCA-like genes (named OsYUCCA1-7) in the rice genome. Plants over expressing OsYUCCA genes exhibited increased auxin overproduction phenotypes. In this Project Visual basic is a computer language which is used to develop software (YUCCA IN) Visual Basic is a complete form of package for building user interface. The application program that was considered suitable for the program is Visual Basic version 6. Bioinformatics of biological data, using networks of computers and databases, involves the collection, organization and analysis of large amounts of data and on the basis of these tools can develop a software (YUCCA IN) that can check the mutant sequence like in this research the software will match the sequence of the entered gene with OSYUCCA (1-7). Software (YUCCA IN) is designed in Visual Basic. It will show the match and mismatch in the comparisons with the mutant genes and also it’s phenotypic abnormality. YUCCA IN compares different genes with over expressed genes and shows amino acid identity match and mismatch and also phenotypic abnormality of respective gene in Visual basic that greatly simplifies window application development. It saves time and reduces errors to its minimum level as compare with analytical approach. by using dynamic programming algorithm.

Keywords: Oryza sativa Japonica, OsYUCCA1-7, Visual Basic, sequence comparative analysis, phenotypic abnormality

Introduction

There is a predominant hormone in rice known as a indole acetic acid (IAA). Indole-3-acetic acid (IAA), the predominant auxin in plants, its biosynthesis and regulation have not been clearly elucidated. Indole-3-acetic acid (IAA), the predominant auxin in plants, plays a critical role in many plant growth and developmental processes, including cell division, differentiation, and elongation; flower and vascular development; and tropism [1]. Two major pathways for IAA biosynthesis have been proposed: the Trp (Tryptophan)-dependent and Trp-independent pathways [2]. The molecular mechanisms of IAA synthesis in rice (Oryza sativa), identified seven YUCCA-like genes (named OsYUCCA1-7) in the rice genome [3].

In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix. Gaps are inserted between the residues so that identical or similar characters are aligned in successive columns [4].

There are two methods of pair wise sequence alignment, as in the YUCCA IN Software user enter its sequence to compares its homology with YUCCA group of genes so it can be done by Global as well as by local pair wise sequence alignment methods. Both sequence alignment methods based on dynamic programming.

The Smith-Waterman algorithm is a general local alignment method also based on dynamic programming. With sufficiently similar sequences, there is no difference between local and global alignments [5].

To develop any software a programming language is used to run a program. Visual Basic is a programming language and environment developed by Microsoft. Based on the BASIC language, Visual Basic was one of the first products to provide a graphical programming environment and a paint metaphor for developing user interfaces [6].

Existing System

The overexpression of Yucca genes (Os-Yucca1-7) lead to phenotypic abnormality in Rice. There has been already a lot of work done on these genes by different technologies as plants grown on MS media, to compare the efficiency of the PCR primer sets for each OsYUCCA genes and
Fig 1: Data Flow Diagram
Phenotypes of transgenic rice plants expressing OsYUCCA under the control of a steroid hormone-inducible system. This project was aimed to check the over-expression of Yucca genes (Os-Yucca1-7) lead to phenotypic abnormality in Rice by developing software using dynamic programming. No work is yet done related to gene comparison, Mutation detection and showing gene Phenotypic Abnormality of Rice. Thus in future, it may be used to compare normal and mutant genes show there amino acid identity and phenotypic abnormality.

Objectives of project

Goal of the project is to develop software that should be efficient, authentic, simple to use, having following objectives.
• To compare rice DNA sequences of two rice cultivars at YUCCA genomic loci.
• To check the possible mutation in rice gene sequences.
To predict the phenotypic abnormality in rice by using the gene expression data

Materials and methods

Availability and requirements

Lists the following:
• Project name: YUCCA IN
• Project home page: Desktop Based
• Operating system(s): Platform independent
• Programming language: Visual Basic

Collection of Data

All the Sequences of the Os-YUCCA genes and Transposon were gathered from European Molecular Biology laboratory (EMBL), Gene Bank and Rice Tos17 Insertion Mutant Database. Following sequences were collected:
1. Os-YUCCA1
2. Os-YUCCA2
3. Os-YUCCA3
4. Os-YUCCA4
5. Os-YUCCA5
6. Os-YUCCA6
7. Os-YUCCA7

Collection of Literature

All the relevant information stated in introduction and literature review of the thesis was gathered from authentic research papers, scientific journals and Rice databases.

Detailed Design:
Algorithm of check sequence

Event Name: click on cmdNo
Arguments: None
Variables: None
Begin:
IF Condition: cmdNo Is Pressed
Load advMain
Show advMain
Hide Current
End IF
End

Figure 2: Check form

Coding frm check:
Private Sub cmdNo_Click()
If cmdNo.Value = True Then Load advmain
advmain.Show
Me.Hide
End Sub

Private Sub cmdyes_Click()
If cmdyes.Value = True Then Load sequence
sequence.Show
Me.Hide
End Sub

Algorithm on Sequence form

Coding frm Sequence

Private Sub LoadFile()
Dim strText As String
txt.Text = ""
strText = Space(FileLen(txtFile.Text))
Open txtFile.Text For Binary As #1
Get #1, , strText
Close #1
Rabia Tabassum
A Bioinformatics toolkit for rice (Oryza sativa Japonica) YUCCA genes (OS1-7) sequence comparative analysis

Private Sub cmdBacktomain_Click()
If cmdBacktomain.Value = True Then Load advmain
Unload Me
End Sub

Private Sub cmdBrowse_Click()
Dim strFileName As String
With dlg
.Filter = "Data File|*.TXT|All Files|*.*"
.ShowOpen
strFileName = .FileName
If strFileName <> "" Then
txtFile.Text = strFileName
LoadFile
End If
End With
End Sub

Public Function GetFileText(strFileName As String) As String
Dim strText As String
strText = Space(FileLen(App.Path & "\Files\" & strFileName))
Open App.Path & "\Files\" & strFileName For Binary As #1
Get #1, strText
Close #1
GetFileText = strText
End Function

Private Sub cmdOK_Click()
Dim i As Integer
Dim mCount As Integer
For i = 1 To Len(txt.Text)
If UCase(Mid(txt.Text, i, 1)) = "W" Then
mCount = mCount + 1
End If
Next
If mCount > 5 And mCount < 11 Then
status.Show
Me.Hide
End If
End Sub

Figure 3: Sequence form

Figure 4: Browse

Algorithm of compare Sequence

Event Name: Click on CmdBrowse
Arguments: None
Variables:
strFileName Type String
Begin:
IF Condition:
strFileName is Not Empty
Set: txtFile.Text:=strFileName
LoadFile
End IF
End

Func Name:GetFileText
Arguments:
strFileName
Variables:
strText Type String
Begin:
Set:= strText:= Application Path
Get: File Text in strText
Close: File
Private Sub LoadFile()
Dim strText As String
txt.Text = ""
strText = Space(FileLen(txtFile.Text))
Open txtFile.Text For Binary As #1
Get #1, , strText
End If
End Else
End Select
End Sub
Rabia Tabassum
A Bioinformatics toolkit for rice (Oryza sativa Japonica) YUCCA genes (OS1-7) sequence comparative analysis

Close #1
txt.Text = strText
End Sub

--
Private Sub cmdBrowse_Click()
Dim strFileName As String
With dlg
 .Filter = "Data File|*.TXT|All Files|*.*"
 .ShowOpen
 strFileName = .FileName
If strFileName <> "" Then
 txtFile.Text = strFileName
 LoadFile
End If
End With
End Sub

--
Figure 5: Compare form

Figure 6: Compare browse
Public Function GetFileText(strFileName As String) As String
Dim strText As String
strText = Space(FileLen(App.Path & \"Files\" & strFileName))
Open App.Path & \"Files\" & strFileName For Binary As
#1
Get #1, , strText
Close #1
GetFileText = strText
End Function

--
Figure 7: Compare with Os-Yucca (1-7)

Private Sub cmdCompare_Click()
Dim mMatchNumber As Integer
Dim mTotalCharacterCount As Long
Dim mMatchCount(7) As Long, mMisMatchedCount(7) As Long, mCCount(7) As Long
Dim strText As String
Dim strFileName As String
Dim i As Integer, j As Long
Dim intIndex As Integer
intIndex = cboCompare.ListIndex
Dim strFile As String
If intIndex = 7 Then
 GoTo CompareALL
End If
strFileName = "yucca" & intIndex + 1 & ".txt"
strText = GetFileText(strFileName)
mTotalCharacterCount = Len(strText)
If txt.Text = strText Then
 Select Case intIndex
 Case 0
 frmYUCCA1.Show
 Case 1
 frmYUCCA2.Show
 Case 2

804 | Int. J. of Multidisciplinary and Current research, July/Aug 2014
Rabia Tabassum A Bioinformatics toolkit for rice (Oryza sativa Japonica) YUCCA genes (OS1-7) sequence comparative analysis

Figure 8: Not match Form

CompareALL:

For i = 1 To 7
strFileName = "yucca" & i & ".txt"
strText = GetFileText(strFileName)
mTotalCharacterCount = Len(strText)
If txt.Text = strText Then
'MsgBox "Matched with " & strFileName
mMatchNumber = i
Exit For
End If
Next
For j = 1 To Len(strText)
If Mid(strText, j, 1) = Mid(txt.Text, j, 1) Then
mMatchCount(i) = mMatchCount(i) + 1
Else
mMisMatchCount(i) = mMisMatchCount(i) + 1
End If
Next
Dim strMessage As String
For i = 1 To 7
strMessage = strMessage & "Os-Yucca " & i & " Matched = " & Format(mMatchCount(i) / mCCount(i) * 100, "0.00") & " % Mismatched = " & Format(100 - (mMatchCount(i) / mCCount(i) * 100), "0.00") & " %"
If i < 7 Then strMessage = strMessage & vbCrLf
Next
Load frmResult
frmResult.lbl.Caption = strMessage
frmResult.Show, Me
End Sub
Private Sub cmdgobacktomain_Click()
If cmdgobacktomain.Value = True Then Load advmain
advmain.Show
Me.Hide
End Sub

Algorithm of amino acid identity

EVENT NAME: Change of Dir1
Argument:NOne
Variable:NOne
Begin
SET: Label1.Visible = True
SET: Label1.Caption = Dir1.Path
End
EVENT NAME: Change of Dir1
Argument:NOne
Variable:NOne
Begin
SET: Label2.Visible = True
SET: Label2.Caption = Dir2.Path
End
EVENT NAME: Change of Dir1
Argument:NOne
Variable: None
Begin
 SET: Label3.Visible = True
 SET: Label3.Caption = Dir3.Path
End

Event Name: Change of Combo
Argument: None
Variable:
 mMatchNumber Type Integer
 mTotalCharacterCount Type Long
 strText Type String
 strFileName Type String
 i Type Integer
 j Type Long
Begin:
 CALL: CheckFile()
 SET: strText := GetFileText(mMisMatchFile)
 SET: mTotalCharacterCount := Len(strText)
 SET: lblCharacterLength.Caption := "Total " & mTotalCharacterCount
 LOOP FOR j:=1 To Len(strText)
 IF Condition:
 SET: Mid(strText, j, 1) = Mid(mstrUserText, j, 1)
 ELSE
 SET: txtMisMatch.Text = txtMisMatch.Text & Mid(strText, j, 1)
 EndIF
 LOOP BACK
End

Func Name: GetFileText
Argument: strFileName
Variables:
 strText Type String
Begin:
 SET: strText = Application Path & GetFileText(strFileName)
 CLOSE: FILE
 SET: GetFileText = strText
END

Coding frm amino acid identity

Public mMisMatchFile As String
Public mstrUserText As String
Private Sub Check1_Click()
 Dir1.Visible = True
 End Sub

Private Sub Check2_Click()
 Dir2.Visible = True
 End Sub

Private Sub Check3_Click()
 Dir3.Visible = True
 End Sub

Private Sub Dir1_Change()
 Label1.Visible = True
 Label1.Caption = Dir1.Path
 End Sub

Private Sub Dir2_Change()
 Label2.Visible = True
 Label2.Caption = Dir2.Path
 End Sub

Private Sub Dir3_Change()
 Label3.Visible = True
 Label3.Caption = Dir3.Path
 End Sub

Private Sub Check1_Click()
 Dir1.Visible = True
 End Sub

Private Sub Check2_Click()
 Dir2.Visible = True
 End Sub

Private Sub Check3_Click()
 Dir3.Visible = True
 End Sub

Private Sub Command1_Click()
 Unload Me
 Form3.Show
 Form3.Show
 End Sub

Private Sub Dir1_Change()
 Label1.Visible = True
 Label1.Caption = Dir1.Path
 End Sub

Private Sub Dir2_Change()
 Label2.Visible = True
 Label2.Caption = Dir2.Path
 End Sub

Private Sub Dir3_Change()
 Label3.Visible = True
 Label3.Caption = Dir3.Path
 End Sub

Private Sub ImageCombo1_Change()
 End Sub

Public Sub CheckFile()
 Dim mMatchNumber As Integer
 Dim mTotalCharacterCount As Long
 Dim strText As String
 Dim strFileName As String
 Dim i As Integer, j As Long
 strText = GetFileText(mMisMatchFile)
 mTotalCharacterCount = Len(strText)
 lblCharacterLength.Caption = "Total Characters : " & mTotalCharacterCount
 FOR j = 1 To Len(strText)
 IF Mid(strText, j, 1) = Mid(mstrUserText, j, 1)
 txtMatch.Text = txtMatch.Text & Mid(strText, j, 1)
 ELSE
 txtMisMatch.Text = txtMisMatch.Text & Mid(strText, j, 1)
 EndIf
 NEXT
 lblPercent.Caption = "Match " & Round(Len(txtMatch.Text) / (Len(txtMisMatch.Text) + Len(txtMatch.Text)) * 100, 2) & " %"
 lblMisMatchPercent.Caption = "Mis-match Percent " & Round(100 - (Len(txtMatch.Text) / (Len(txtMisMatch.Text) + Len(txtMatch.Text)) * 100), 2) & " %"
 End Sub
A Bioinformatics toolkit for rice (Oryza sativa Japonica) YUCCA genes (OS1-7) sequence comparative analysis

Public Function GetFileText(strFileName As String) As String
 Dim strText As String
 strText = Space(FileLen(App.Path & "\Files" & strFileName))
 Open App.Path & "\Files" & strFileName For Binary As #1
 Get #1, , strText
 Close #1
 GetFileText = strText
End Function

Private Sub cmdback_Click()
If cmdback.Value = True Then Load frmCompare
frmCompare.Show
End Sub

Figure 9: Amino acid identity

Results
Results are taken from the YUCCA-IN by comparing YUCCA genes with the others present in database. YUCCA IN compares different genes with over expressed genes and shows amino acid identity match and mismatch.

Conclusions
YUCCA IN compares different genes with over expressed genes and shows amino acid identity match and mismatch and also phenotypic abnormality of respective gene in Visual basic that greatly simplifies window application development. It saves time and reduces errors to its minimum level as compare with analytical approach by using dynamic programming algorithm.

References