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Abstract  
  
An accurate heave modeling is required for several applications, including hydrographic surveying. This paper proposes 
an adaptive heave signal modeling, which uses a neural network-based modelling. A recurrent neural network and 
three-layer feed forward neural network trained using the Levenberg-Marquardt learning algorithm is used for this 
purpose.  Computational results with five different datasets of real time heave are provided to validate the effectiveness 
of the artificial neural network-based model. It is shown that the new neural network-based model give a reliable heave 
model with excellent performance. Also, a comparison is made between the developed artificial neural network models 
and the autoregressive models. It is shown that the new artificial neural network-based model give the best 
performance results (i.e., the mean square error MSE). 
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1. Introduction 
 

Accurate heave modeling is required for several 
applications, including hydrographic surveying. The 
physical models and Kalman Filter estimation of the 
heave process can be found in [1]. Frequency response 
methods have been used in the past to identify have 
models. The model is based on the frequency content of 
the heave record. The frequency content is used as the 
basis to formulate a state space representation of the 
heave model [1]. A lot of studies have been reported to 
solve this problem, with the Kalman filter being the most 
common [1]. The design of the Kalman filter is based on 
the assumption of the complete structural knowledge of 
the model which describes the heave dynamics and it is 
based the Gaussian assumption of the state space noise 
statistics [2]. It is well known that there is a degradation 
of the KF-based estimation quality when the actual noise 
statistics is not Gaussian [3]. In order to overcome these 
limitations, another approach was followed based on 
autoregressive moving average model [4]. This paper 
proposes an adaptive heave signal modeling, which uses a 
neural network-based modelling. A recurrent neural 
network (RNN) and three-layer feed forward neural 
network (FFNN) trained using the Levenberg-Marquardt 
algorithm is used for this purpose.  Computational results 
with five different datasets of real time heave are 
provided to validate the effectiveness of the ANN-based 
model. It is shown that the new artificial neural network-
based model give a reliable heave model with excellent 
performance. Also, a comparison is made between the 

developed artificial neural network models and the 
autoregressive models. It is shown that the new artificial 
neural network-based model give the best performance 
results (i.e., the mean square error MSE). 
 
2. Autoregressive Models (AR) 
 
Autoregressive process is linear model. The brief 
literature of autoregressive process can be found in [4] 
and [5]. Autoregressive (AR) process is time series 
consisting linear combination of immediate past values of 
the time series. Figure 1 shows an example of a fully 
connected AR strucure, which is referred to as p-1 (p_AR, 
1_out).  AR(p) process of order p can be summarized in 
the following linear equation (see Figure 1): 
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Where, ˆ( )y n  is the estimated output, ( )y n i  is the 

immediate observed heave value and ( )a i  is 

autoregressive (AR) model parameter. AR(p) model 
parameters are estimated using least squares method [5]. 
To consider the non-stationary part (i.e., residuals) in the 
time series, the linear autregressive moving average 
(ARMA) model. ARMA process is time series consisting of 
random error component and linear combination of 
immediate heave values and immediate past residuals. 
Figure 1 shows an example of a fully connected AR 
strucure, which is referred to as (p+q)-1 (p_AR + q_MA, 
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1_out). The ARMA(p, q) process can be summarized in the 
linear equation (see Figure2): 
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Where, ˆ( )y n  is the estimated output, ( )y n i  is the 

immediate past value of the records, ( )a i  is 

autoregressive (AR) model parameter,  
ˆ( ) ( ) ( )e n j y n j y n j      is immediate past 

residual, and ( )c j  is moving average (MA) model 

parameter. ARMA(p, q) model parameters are estimated 
using least squares method [6]. 

 

Fig. 1: Autoregressive (AR) structure [(p_AR)-(1_out)] 

 

Fig. 2: Autoregressive Average Moving (ARMA) structure 
[(p_AR+q_MA)-(1_out)] 

 
3. Artificial Neural Networks (ANN) Models 
 
3.1 Basics of Artificial Neural Networks 
 
In this section we briefly describe the fundamentals of 
artificial neural networks (for more details see [5]).  
Artificial neural network can be simply interpreted as a 
highly nonlinear autoregressive model which is 
constructed by combining nonlinear activation function 
through a multilayer structure. Neural network have been 
successfully applied in many different fields as a 

prediction model (See [6]; [7]).  Artificial neural networks 
can be developed in many different forms, depending on 
network structure and the learning algorithms. Figure 3 
represents a block diagram of a simple model of a neuron 
showing the weights of the various links.  

 

Fig. 3: Simple neural network structure 
 
The above structure contains input layer and output layer 
and can be represented in the compact form as: 
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Where,  
jx  represents one variable in the input layer, f   

is the activation function, ˆ
ky represents the output 

variable, kb  is the bias variable, and kiw  represents one 

of the neural network parameter. Artificial neural 
networks are a flexible nonlinear form in which the 

activation functions f  can be chosen arbitrary. Figure 4 

show example of two common activation functions (i.e. 
Sigmoid and hyperbolic tangent function). 

 
 

Fig. 4: Activation functions - sigmoid and hyperbolic 
tangent function. 

 

In this paper we investigated the use of the feedforward 
neural networks and recurrent neural network in heave 
prediction model. It should be noted that for the 
prediction model, the input layer variable ( )y n i  

represents the immediate past value of the time series 
records.  
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3.2 Feed forward and Recurrent Neural Network Heave 
Prediction Models 
 
A feedforward networks are characterized by one input 
layer, one output layer and one or more hidden layers 
containing a number of network activated variables [5]. 
Figure 5 shows an example of a fully connected three-
layer feedforward network in AR strucure, which is 
referred to as which is referred to as [(p_AR)-(s_hidden)-
(1_out)]. The input variables are simultaneously activated 

by a nonlinear activation function sf and s  provide 

hidden variables in a hidden layer. Then, the resulting 
hidden variables are activated by another activation 

function 
jf   and produce the network output J .   

 
 
Fig. 5: Three-Layer Feedforward Neural Network with the 

Structure [(p_AR)-(s_hidden)-(1_out)]. 
 
The above structure can be represented in a compact 
form as: 
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Alternatively, a recurrent neural network is a highly 
nonlinear dynamic structure and similar to ARMA model 
in the structure [9]. From a dynamic point of view, it is 
important to include the lagged dependent variables as 
feedback loops. The lagged variables are the residual 
errors between the desired outputs and the estimated 
outputs are considered as input variables. Hence, a 
recurrent neural network has been proposed in this 
paper. A recurrent neural networks are similar to the 
feedforward networks, with except that the former have 
at least one feedback loop). Figure 6 shows an example of 
a fully connected three-layer recurrent network in ARMA 
structure, which is referred to as [p_AR + q_MA)-
(s_hidden)-(1_out)]. 
  The following structure can be represented in a 
compact form as: 
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Fig. 6 Recurrent Neural Network structure [(p_AR + 
q_MA)-(s_hidden)-(1_out)] 

 
Training the feed forward neural network and recurrent 
neural network is accomplished through iterative 
adjustments of the free parameters, i.e., the weights and 
bias, of the network till we obtain the optimal values. 
There exist various learning algorithms, which are 
fundamental to the design of neural networks. The 
Levenberg-Marquardt learning algorithm is the most 
widely used for feedforward neural networks and 
recurrent neural network, which is used in this research 
(see [9] for more details). 
 
4. Results and discussion 
 
Five different data series of real time heave, namely 
MBheave-1, MBheave-2, MBheave-3, MBheave-4, and 
MBheave-4, were used to validate the neural network 
model. The structure of the neural network was built 
using the Matlab [8]. Several tests were conducted to 
optimize the structure of the neural network for each of 
the five data series. As mentioned before, we have 
investigated two neural network-based models. First, we 
used the feedforward neural network structure. In this 
approach, immediate past values of the heave records are 
used as input to the network, while future values of the 
tidal records are used as the desired output. Then, we 
followed another neural network structure, which is 
recurrent neural network. In this approach, the 
immediate past values of the heave records and the 
immediate past of value of the residuals are used as input 
to the network, while future values of the heave records 
are used as the desired output.  
 Each of the data series was divided into three 
datasets: training, testing and validation datasets. The 
first 10% heave records were assigned to the testing 
dataset, while the last 10% heave records were assigned 
to the validation dataset. The training dataset was  
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Table 1: Summary results 
 

Data Model AR ARMA FFNN RNN 

MB-1 
MSE-train 1.13E-05 1.07E-05 5.62E-06 5.07E-06 

MSE-valid 1.88E-05 1.85E-05 9.53E-06 8.17E-06 

MB-2 
MSE-train 7.53E-06 7.58E-06 3.77E-06 3.61E-06 

MSE-valid 5.89E-06 5.79E-06 2.96E-06 2.83E-06 

MB-3 
MSE-train 1.34E-05 1.18E-05 6.58E-06 5.71E-06 

MSE-valid 1.01E-05 8.62E-06 5.13E-06 4.60E-06 

MB-4 
MSE-train 1.55E-05 1.35E-05 7.77E-06 6.81E-06 

MSE-valid 1.14E-05 1.04E-05 5.72E-06 5.37E-06 

MB -5 
MSE-train 1.52E-05 1.34E-05 7.59E-06 6.64E-06 

MSE-valid 1.99E-05 1.75E-05 1.00E-05 8.69E-06 

 
selected to represent the middle portion of the data 
series, which varied from one MBheave to another. The 
training was stopped based on testing the generalization 
performance the neural network using the testing 
dataset. After training and testing the network, we 
generalized the model to predict ahead the last 10% 
values of the data series and compared the results with 
the observed heave records. This was done in a 
sequential manner to emulate the real-time condition. It 
was concluded that the recurrent neural network in 
ARMA structure [(6_AR+ 6_MA)-(12_hidden)-(1_out)] 
gives the best results, i.e., has the lowest MSE (MSE) error 
(See Table 1).  
 To further validate our model, we compared it with 
the autoregressive approach. Autoregressive (AR) 
structure and autoregressive Moving Average (ARMA) 
structure were built using the Matlab [8]. Each of the data 
series was divided into two datasets: training, and 
validation datasets. The first 90 % heave records were 
assigned to the training dataset, while the last 10% heave 
records were assigned to the validation dataset. Several 
tests were conducted to optimize the structure of the AR 
and ARMA for each of the five data series. It was 
concluded that the ARMA with the structure [6_AR + 
6_MA)-(1_out)] gives the best results, i.e., has the lowest 
MSE (MSE) error.  
 

 
Fig. 7: Histogram for all models’ residuals 

 
The overall conclusion from Table 1 and Figure 7 was that 
the recurrent neural network with the structure [6_AR + 
6_MA)-(12_hidden)-(1_out)] gives the best results, i.e., 
has the lowest MSE (MSE) error. Figures 8 shows that the 
predicted heave versus the desired values, and the 
prediction errors (i.e., residuals) for MBheave-1. Similar 

results were obtained for the other four data series. It can 
be seen that the maximum prediction error is 
approximately 1 cm, with the bulk of the residuals fall 
within the +/-0.5 cm range (see Figure 7). This shows that 
the developed neural network model has the capability to 
precisely predict the heave values. 

 
 

Fig. 8: Predicted heave versus the desired (i.e., actual) 
values, and the prediction error using Artificial Neural 

Network (RNN) 
 
Conclusion 
 

A sequential heave prediction model using Artificial 
Neural Networks was developed in this paper. The 
recurrent neural network structure gave the best 
performance results (i.e., the minimum RMS), and 
therefore was used in predicting the heave values. Heave 
data series, with varying lengths, from five different real 
time heave data series were used to verify the model. It is 
shown that the maximum prediction error is 
approximately 1 cm, with the bulk of the residuals fall 
within the +/-0.5 cm range. A performance comparison 
was made between the developed neural network model 
and the autoregressive method for heave prediction. It is 
shown that performance of recurrent neural network is 
better than autoregressive method i.e., has the lowest 
MSE (MSE) error. Future development will include a 
complete attitude and heave solution, which takes 
advantage of GNSS heights  
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