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Abstract  
  
Data analysis and graphing workspace was used to determine the optimum solar photovoltaic performance conditions 
in composite climate for multicrystalline technology. An effort has been made to develop a relation with the given data, 
where tests are operated in the site of NISE, Haryana (North Latitude 28.47 

o 
N, East Longitude 77.03

o
E and Elevation 

from sea level is 216m) as specific composite climate environment. Here data are shown considering average values of 
the variables (Efficiency with ambient temperature and irradiation) for a period of three years (2010-2013). The 
objective of this study is to determine the best set of parameters such that the regression model used in the study 
predicts experimental values of the dependent variable (efficiency of PV module) as accurately as possible (i.e. 
calculated values of efficiency of PV module should be close to experimental values). Here the regression model itself is 
verified to fit the observed experimental data choosing the correct mathematical form of it. The analysis indicates that 
both the variables (ambient temperature and irradiation) can be used to optimize efficiency of PV module for potential 
commercial applications. 
 

Keywords:  Crystalline PV module, Regression Analysis, Analysis of Variance. 
 
 
1. Introduction 
 
Solar Panels have become one of the most promising 
ways to handle the electrification requirements of 
numerous isolated consumers worldwide [1].  
 Technological dependency of the industrialized world 
on fossil fuels and the ways in which these fuels have 
steadily degraded the earth’s environment is quite 
alarming.  
 Solar Radiation (flux) is evidently a determining factor 
when it comes to studying the natural potential of solar 
energy as a source of renewable energy. For tropical 
regions, the average solar radiation potential is about 
16.4±1.2MJ/m

2 
per day [2]. Solar Flux is described by the 

visible and near infrared radiation emitted from the sun. 
The different spectrums are described by their 
wavelength that range within the broad range of 0.20 to 
4.0µ (microns). Terrestrial radiation is a term used to 
derive infrared radiation emitted from the atmosphere. 
Approximately 99% of solar or short wave radiation at the 
earth’s surface is contained in the region from 0.3 to 3.0 
µm while most of terrestrial or long-wave radiation is 
contained in the region of 3.5to 50 µm. Outside the 
earth’s atmosphere, solar radiation has an intensity of 
approximately1370watts/m

2
. This is the value at mean 

earth-sun distance at the top of the atmosphere and is 
referred to as solar constant. On the surface of the earth 
on a clear day, at noon, the direct beam radiation will be 
approximately1000watts/meter

2
 for many locations, at 

sea level. The availability of energy is affected by location 
(including latitude and elevation), season and time of the 
day. All of which can be readily determined. However, the 
biggest factors affecting the availability of energy are 
cloud and other meteorological conditions which vary 
with location and time. Solar energy impinging upon a 
transmitted medium or target is partly reflected and 
absorbed. 
 The remainder is transmitted. The relative values are 
dependent upon the optical properties of the transparent 
object and the solar spectrum. Solar radiation is partially 
depleted and attenuated as it traverses the atmospheric 
layers, preventing a substantial portion of it from 
reaching the earth’s surface. This phenomenon is due to 
absorption, scattering and reflection in the upper 
atmosphere (stratosphere), with its thin layer of ozone 
and lower atmosphere troposphere within which cloud 
formations occur and weather conditions manifest 
themselves.  
 Radiation from the sun absorbed by the earth warms 
it up and its temperature rises, this situation also occurs 
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when radiation falls on solar panels. The performance of 
solar panels, in terms of power output, is a function of the 
availability of solar energy resource in the location. Solar 
intensity is high modulated due to the rapidly changing 
cloud cover and accounts for the rapidly changing 
temperatures. Solar panel temperature increases more 
rapidly than ambient temperature. This is because low 
energy solar flux (photons) reaching the solar panel are 
absorbed as heat. Solar cells are encapsulated in black 
material which makes them good heat absorbers. 
 The gap between the solar cell and glass casing of the 
panel encourages greenhouse effect which equally adds 
to the temperature increase of solar panel. While this 
occurs, the ambient temperature remains relatively 
uniform throughout the day. The solar cell is a PN 
junction device which can be modeled as a diode with a 
photo generated current source in parallel. When this is 
done, the current I, flowing through the PN junction is 
given by equation (1). 
 

I = Io (exp qv/ɳKT -1)                                               (1) 
 

Where Io is reverse saturation current that is dependent 
on temperature, K is the Boltzmann’s constant; q is the 
electron charge, η is a diode dependent ideality factor. 
Equation (1) shows the inverse relationship of current and 
temperature [3]. 
 

1.1 Effect of temperature  
 

The changes in ambient temperature influence the 
performance of the solar cell. The efficiency of the cell 
gets reduced with the increase of cell temperature. Voc is 
sensitive to temperature whereas Isc is not. Simple 
calculation may show that the cell voltage and 
temperature are inversely related.  
 For silicon cell, (dVoc/dT) is approximately equal to -2 
mV/°C, which means, that the efficiency of the cell drops 
by about 0.4 % for increase of every one degree Celsius. A 
silicon solar cell of 20% efficiency at 20°C will reduce to 
16% at 30°C [4]. 
 Analysis of performance of industrial solar cell 
depending on the temperature and humidity carried out 
with the help of environmental chamber, by changing the 
conditions inside the environmental chamber shows the 
variation in energy conversion efficiency of solar cell.  
 From the analysis, it is confirmed that as temperature 
increases in the range of 31

0
C to 58

0
C efficiency of single 

crystalline solar cell also varies. The light conversion 
efficiency of single crystalline solar cell shows 9.702 % 
efficiency at 31

0
C as increase in temperature the 

conversion efficiency increases and it reaches up to 
12.0459 % at 36

0
C temperature however, further 

temperature increases from 36
0
C the conversion 

efficiency decreases slowly & it goes up to 6.60% at 45
0
C. 

Further increase in temperature from 45
0
C there is 

continuously decrement in conversion efficiency & we 
found that at 58

0
C the single crystalline silicon solar cell 

shows 2.37061 % conversion efficiency.  

The outcome of the studies can be applied to solar cell 
field with respect to temperature and humidity at specific 
locations. [4] 
 The pronounced effect that the operating 
temperature of a photovoltaic (PV) cell/module has upon 
its electrical efficiency is well documented. There are 
many correlations expressing Tc, the PV cell temperature, 
as a function of weather variables such as the ambient 
temperature, Ta, and the local wind speed, Vw, as well as 
the solar radiation flux/irradiance, GT, with material and 
system-dependent properties as parameters, e.g., glazing-
cover transmittance,ɽ, plate absorptance, a, etc[5]. 

 
1.2 Effect of High Temperature 

 
The temperature of PV surface rises with longer exposure 
period to sunlight and high ambient temperature. The 
elevated temperatures directly impact the PV efficiency. 
Atom vibrations (photons) in a p-n junction cell increase 
and obstruct charge carrier movement which decreases 
cell efficiency [6]. As a part of power system program of 
the International Energy Agency [EIA], a study was 
conducted to analyze data from 18 grid connected PV 
plants located on different geographic locations and it 
showed a direct relation between temperature and PV 
module efficiency. The plants were located in Austria, 
Germany, Italy, Japan and Switzerland. The study 
concluded that 17 out of 18 systems showed annual 
losses in efficiency due to temperature changes by 1.7% 
to 11.3%. The highest efficiency reduction was observed 
at relatively high ambient temperature of 30

o
C [7]. A 

study was conducted on a polycrystalline PV module with 
solar tracker on Dhahran- east of Saudi Arabia showed 
similar temperature effect. The data was compared based 
on daily peak power output. PV module efficiency 
decreased from 11.6% to 10.4% when module 
temperature increased from 38

o
C to 48

o
C which 

corresponds to 10.3% losses in efficiency and a 
temperature coefficient of -0.11ΔE / %

o 
C [8]. 

 An equally large number of correlations expressing 
the temperature dependence of the PV module’s 
electrical efficiency, ɳc, can also be retrieved, although 
many of them assume the familiar linear form, differing 
only in the numerical values of the relevant parameters 
which, as expected, are material and system 
dependent[9]. Many correlations in this category express 
instead the modules maximum electrical power, Pm, 
which is simply related to ɳc through the latter’s definition 
(ɳc = Pm (under standard test conditions1)/AGT, with A 
being the aperture area), and form the basis of various 
performance rating procedures. 
 The effect of temperature on the electrical efficiency 
of a PV cell/module can be traced to the former’s 
influence upon the current, I, and the voltage, V, as the 
maximum power is given by  
 
Pm =   Vm   Im   =   (FF) Voc Isc. 
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In this fundamental expression, which also serves as a 
definition of the fill factor (FF), subscript m refers to the 
maximum power point in the module’s I–V curve, while 
subscripts oc and sc denote open circuit and short circuit 
values, respectively.  
 
1.3Temperature variation as a function of solar irradiance 
intensity 
 

The PV temperature variation as a function of normal 
incident solar radiation, varied from 100 to 1000W/m

2
 is 

observed resulting with the hypothesis as 1) solar 
radiation normal to the PV surface, 2) ambient 
temperature at 20

o
C and 3) tilt angle fixed at 30

o
. 

 Without incident solar radiation the module 
temperature should be almost equal to ambient 
temperature. A small radiative thermal exchange 
between sky and front/rear surfaces arises, due to the 
lower temperature of the sky with respect to the 
surrounding environment, as can be calculated by [10,11]. 
  The operating temperature plays a central role in the 
photovoltaic conversion process [12]. Both the electrical 
efficiency and hence the power output of a PV module 
depend linearly on operating temperature, decreasing 
with Tc. The various correlations that have been proposed 
in the literature represent simplified working equations 
which apply to PV modules or PV arrays mounted on free 
standing frames, to PV/Thermal collectors, and to BIPV 
arrays, respectively. They involve basic environmental 
variables, while the numerical parameters are not only 
material dependent but also system dependent. Thus, 
care should be exercised in applying a particular 
expression for the electrical efficiency or the power 
output of PV module or array, as each equation has been 
developed for a specific mounting frame geometry or 
level of building integration. The same holds for PV 
module rating method, the details and limitations of 
which should be very clear to the prospective user. The 
reader therefore should consult the original sources and 
try to make intelligent decisions when seeking a 
correlation or a rating procedure to suit the needs [5]. 
With increase of ambient temperature there is a 
deficiency in electrical energy that solar cells supply than 
their values under ideal conditions (25 °C - 1000 W/m

2
), 

this situation be of a high affection especially in countries 
of a hot climate [13]. 
 An expression for the variation of the maximum 
theoretical efficiency of a solar cell with temperature is 
presented. The expression relates the difference in the 
maximum theoretical efficiencies of the cell at 0

o
C and a 

given temperature to the difference of the fourth roots of 
the corresponding temperatures. Values of the maximum 
theoretical efficiency at various temperatures obtained 
from the present expression are shown to agree very well 
with values theoretically evaluated by [14]. 
 The correlations expressing the PV module 
performance as a function of weather variables such as 
the ambient temperature, local wind speed, etc. have 

been discussed by [15] and therefore the deviation in the 
performance of solar module under climatic parameter as 
ambient temperature and wind velocity for a given 
location is studied. 
 The objective of this study is to determine the best set 
of parameters such that the regression model used in the 
study predicts experimental values of the dependent 
variable (efficiency of PV module) as accurately as 
possible (i.e. calculated values of efficiency of PV module 
should be close to experimental values). Here the 
regression model itself is verified to fit the observed 
experimental data choosing the correct mathematical 
form of it. 
 
2. PV Modules Description 
 
The tested PV modules are based on multicrystalline solar 
cells JAIN IRRIGATION manufacturers. 
 The area of each solar cell is 96.72cm

2
. Solar cells are 

arranged in 9×4series-parallel connected cells 
configuration. 
 
Table 1 Specifications given by the manufacturers of Jain 

Irrigation 
 

M/S -  Jain Irrigation 

Module No – WS 50 

Serial No-WSAZL061002395 

Module Area- 63×67.5 

Cell Area- 15.6×6.2= 96.72 

No of Cells –36/ Multi C-Si 

Pmax - 50W, Voc-21.0V,Isc-3.17A 

 
3. PV Modules Indoor Testing 
 
Table 2 summarizes PV modules performances prior to 
any outdoor exposure and established through indoor 
measurement with sun simulator under standard test 
condition(STC) as controlled indoor 
conditions(1000W/m

2
, AM 1.5., Global Spectrum, 25

o
C ) 

using a calibrated Solar simulator. 
 

Table 2 PV modules performances at STC Conditions 
 

PV 
Module 

Pmax 
(W) 

Isc     
(A) 

Voc 
(V) 

Rs 
(Ω) 

Rsh 
(Ω) 

η 
(%) 

Jain I. 49.9 3.249 21.84 748 89 11.7 

 
4. PV Module Outdoor Testing In Composite Climate 
 

The outdoor measurements were performed in the site of 
National Institute of Solar Energy, 19

th
 Milestone 

Gwalpahari, Gurgaon–Faridabad Road, Haryana, as 
specific composite climate environment, characterized by 
high irradiation and temperature levels. The geographic 
characteristics of NISE site are North latitude 28.4700

o
N, 

East Longitude 77.0300
o
E, Elevation from sea level is 216 

m.  
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Fig.1 National Institute of Solar Energy located in Gurgaon 

Region of Haryana (India) 
 
An open rack is used to mount the module outside in the 
sun with a pyranometer installed in a specified manner. 
The rack is designed to minimize heat conduction from 
the module and to interfere as little as possible with the 
free radiation of heat from the front and rear surface of 
the module. Both the modules are positioned in a way so 
that it is normal to the solar beam (within ±5

o
) at local 

solar noon. The bottom edge of the module is 0.6m above 
the horizontal plane i.e., ground level as illustrated in 
figure 2.  
 

 
 

Fig.2 PV modules of Jain Irrigation in outdoor exposure 
 
The reference solar cell used in our experimental 
investigation is based on multicrystalline silicon with 
integrated Pt 1000 temperature sensor. The PV modules 
under test receive an electrical performance (I-V), under 
environmental conditions for different values of solar 
irradiance and an ambient temperature on clear sunny 
day. 
 

5. Methodology 
 
5.1Selection of the variables 
 
The efficiency of solar photovoltaic module obtained 
during the day has different values. This fluctuation 
results from different factors affecting the performance 
of solar photovoltaic module. For example, these factors 
may be temperature, humidity, wind velocity, cloud 
cover, dust, etc [16]. 
 Previous studies have been done, where equations 
have been developed with the given data for different 
seasons of particular location called Lucknow, India 
consisting of composite climate, which is helpful in 
developing a relation of efficiency of photovoltaic 
modules with the major climatic parameters like 
temperature, wind velocity, humidity, dust etc, further 
this equation developed mathematically is in good 
correlation with the measured data 

The performance of module gives a broad view of impact 
of climatic variables and helps to find out the efficiency of 
modules while knowing the climatic parameters of a 
particular area [17, 18]. 
 In the present study, three year data is studied for 
multicrystalline PV module of Jain Irrigation in the site of 
National Institute of Solar Energy, 19

th
 Milestone 

Gwalpahari, Gurgaon–Faridabad Road, Haryana, as 
specific composite climate environment, characterized by 
high irradiation and temperature levels. 
 

Table3 Average value of Efficiency of multicrystalline 
Solar PV Module of (JAIN IRRIGATION) with average value 

of ambient Temperature, radiation data for the average 
year (2010-2013) 

 
Month Efficiency 

(average) 
(ɳ) (%) 

Y 

Ambient 
Temperature 
(average) (

o
C) 

X1 

Irradiation 
(average) 
(W/m

2
) 

X2 

Jan 9.53 22.00 535 

Feb 11.79 25.00 801 

March 12.18 34.00 881 

April 11.36 40.25 892 

May 11.00 49.44 978 

June 11.12 40.36 895 

July 11.16 40.47 910 

Aug 11.66 43.76 954 

Sept 11.83 35.65 978 

Oct 10.36 39.00 697 

Nov 9.83 26.80 600 

Dec 8.90 21.00 473 

 
The objective of this study is to give a more detailed 
description of the regression tool using regression and 
correlation analysis as statistical techniques to examine 
relationships among variables. 
 In a regression analysis we study the relationship, 
called the regression function, between one variable Y, 
called the dependent variable, and several others Xi, 

called the independent variables.  
 Here, dependent variable is efficiency of PV module(Y) 
and independent variable is ambient temperature(X1) and 
radiation (X2) according to table 3. 
 
5.2Multiple Linear Models 
 
General Formula:    
 
Y= bo + b1X1 + b2X2 + bpXp                                                        (1)  
 
Y= bo +  Σi bi Xi    i=1,2,…p                                                     (1a) 
 
Polynomial (model is linear in parameters, but not in 
independent variables): 
 
Y= bo + b1X+ b2X

2
 +   …. bp X

p
 , which is just a specific case 

of (1) 
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With X1=X, X2=X
2
, X3=X

3 
 …….. Xp = X

p 
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Fig. 3a. shows   plotting of efficiency (%) and radiation 
(W/m

2
) set of data for the average year (2010-2013) 
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Fig. 3b. shows   plotting of efficiency (%) and ambient 
temperature (

o
C) set of data for the average year  

(2010-2013). 
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Fig. 3c. shows   plotting of radiation (W/m
2
) and ambient 

temperature (
o
C) set of data for the average year 

 (2010-2013) 
 

5.3Polynomial Regression 
 

A common “nonlinear” model is polynomial regression. 
The term nonlinear is put in quotes here because the 
nature of this model is actually linear, this expectation 
can be expressed in the general regression equation: 

 
Efficiency= a+b1* radiation + b2* radiation

2
 

 
and 
 
Efficiency= a+b1* ambient temperature + b2* ambient 
temperature

2
 

 
In the above equations, a represents the intercept and b1 
and b2 are regression coefficients. The non-linearity of 
this model is expressed in the term radiation

2
 and 

ambient temperature
2
. However, the nature of the 

model is still linear, except that when estimating it, we 
would square the measure of radiation and ambient 
temperature. These types of models, where we include 
some transformation of the independent variables in a 
linear equation, are also referred to as models that are 
nonlinear in the variables. 
 
6. Description of the Model used and Its Verification 
 
Our aim is to determine the best set of parameters bi, 
such that the model predicts experimental values of the 
dependent variable as accurately as possible. It is 
necessary to verify that the model itself is adequate to fit 
the observed experimental data. 
 
6.1Detailed Description of Regression input and Output 
 
The following experimental data collected for a whole 
year for daily monthly average values for   the three 
variables, two independent and one dependent illustrates 
the discussion. 

Table 4 Regression Input 
 

Data 
Point 

j 

Dependent 
Variable 

(Efficiency) 
Y* 

Independent 
Variable 

(Ambient 
Temperature) 

X1 

Independent 
Variable 

(Radiation) 
X2 

1 9.53 22.00 535 

2 11.79 25.00 801 

3 12.18 34.00 881 

4 11.36 40.25 892 

5 11.00 49.44 978 

6 11.12 40.36 895 

7 11.16 40.47 910 

8 11.66 43.76 954 

9 11.83 35.65 978 

10 10.36 39.00 697 

11 9.83 26.80 600 

12 8.90 21.00 473 

 
Table 5 Residual Output 

 
Observation Predicted Y Residuals Standard 

Residuals 

1 9.656864 -0.12686 -0.38008 
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2 11.53735 0.252645 0.756919 

3 11.581 0.598999 1.794586 

4 11.26394 0.096063 0.287801 

5 11.34212 -0.34212 -1.02497 

6 11.28024 -0.16024 -0.48007 

7 11.39009 -0.23009 -0.68935 

8 11.52109 0.138911 0.416174 

9 12.23091 -0.40091 -1.20111 

10 9.824201 0.535799 1.60524 

11 9.854262 -0.02426 -0.07269 

12 9.237938 -0.33794 -1.01245 

 
Residual (or error, or deviation) is the difference between 
the observed value Y*of the dependent variable for the 
jth experimental data point (X1j, X2j, …Xpj, Y*) and the 
corresponding value Yj given by the regression function 
Yj= bo + b1X1j + b2X2j (in our experimental analysis)                                                           

(1) 
 
 rj = Yj*-Yj                                                                                                                               (2) 
 
Parameters b (bo,b1,b2…….bp) are part of the ANOVA 
output. 
 A plot of residuals is very helpful in detecting an 
obvious correlation between the residuals and the 
independent variable. 
 

 
 

Fig. 4a. Correlation between the residual and the 
independent variable (ambient temperature) 

 

 
Fig. 4b Correlation between the residual and the 

independent variable (irradiation) 
 

However, the fact that the residual look random and 
there is no obvious correlation with the variable X does 
not necessarily mean by itself that the model is adequate. 
More tests are needed. 

Standard (or standardized) residual is a residual scaled 
with respect to the standard error (deviation) Sy in a 
dependent variable 
 
rj’ =  rj / Sy                                          (2a) 
 
The quantity Sy is part of the “Regression Statistics” 
output.  
 
ANOVA Output 
 
There are two tables in ANOVA (Analysis of variance) 
 

Table 6 ANOVA output (part I) 
 

ANOVA      

 df SS MS F Significance F 

Regression 2 10.29796 5.148979 37.81353 4.17E-05 

Residual 9 1.225509 0.136168   

Total 11 11.52347    

 
Table 6a ANOVA output (part II) 

 

  Intercept 
X Variable 
1(ambient 

temperature) 

X Variable 
2(radiation) 

Coefficients 6.903722 0.007796 -0.06445 

Standard Error 0.509808 0.001095 0.021388 

t Stat 13.5418 7.117329 -3.01346 

P-value 2.73E-07 5.56E-05 0.014634 

Lower 95% 5.750456 0.005318 -0.11283 

Upper 95% 8.056988 0.010274 -0.01607 

 
6.2Coefficients 
 
Coefficients are listed in the second table of ANOVA 
(Table 6a). These coefficients allow the program to 
calculate predicted values of the dependent variable Y 
(efficiency of PV module) which were used above in 
formula (2) and are a part of residual output (Table 5). 
 

6.3Sum of Squares 
 
In the ANOVA regression output one will find three types 
of sum of squares (Table 6) 
 
Total Sum of Squares 
 
SST (Total sum of squares) 
 
= SSE +   SSR                       (3) 
 
Where 
SSE - residual (error) Sum of Squares 
SSR  - regression sum of squares 
 
It is obvious that SST is the sum of squares of deviations of 
the experimental values of dependent variable Y* 
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(efficiency of the PV module) from its average value. SST  
could be interpreted as the sum of deviations of Y* from 
the simplest possible model. 
 
Residual (or error) sum of squares (SSE) 
 
SSE could be viewed as the due –to – random- scattering-
of- Y*- about – predicted –line contributor to the total 
sum of squares SST. This is the reason for calling the 
quantity “due to error (residual) sum of squares”. 
 
Regression Sum of Squares (SSR) 
 
SSR is the sum of squares of deviations of the predicted-
by-regression-model values of dependent variable (i.e. 
Efficiency of PV module) Y from its average experimental 
value Y*avg..  It accounts for addition of p(no.) variables 
(X1, X2,X3,…..XP) to the simplest possible model, here there 
is a transformation from the “non regression model” to 
the true regression model, so SSR is  also called as “ due to 
regression sum of squares”. 
 
Mean square (variance) and degrees of freedom 
 
The general expression for the mean square of an 
arbitrary quantity q is 
  
MSq= SSq / df                                                            (4) 
 
SSq is the sum of squares and df is the number of degrees 
of freedom associated with quantity SSq. MS is also 
referred to as the variance. The number of degrees of 
freedom could be viewed as the difference between the 
number of observations n and the number of constraints 
(fixed parameters associated with the corresponding sum 
of squares).  
 

Total mean square MST (total variance) 
 

MST = SST / (n-1)                                                                     (5) 
 
SST is associated with the model, which has only one 
constraint (parameter bo), therefore the number of 
degrees of freedom in this case is: 
 
dfT = n-1                                                                     (5a) 
 
Residual (error) mean square MSE (error variance) 
 
MSE = SSE / (n-k)                         (6) 
 
SSE is associated with the random error around the 
regression model (1), which has k=p+1 parameters (one 
per each variable out of p variables total plus intercept). It 
means there are k constraints and the number of degrees 
of freedom is: 
 
dfE = n-k                                                                                 (6a) 

Regression mean square MSR (regression variance) 
 
MSR= SSR / (k-1)                                                                      (7) 
 
The number of degrees of freedom in this case can be 
viewed as the difference between the total number of 
degrees of freedom (dfT = n-1) (5a) and the number of 
degrees of freedom for residuals dfE (6a). 
 
dfR = dfT – dfE = (n-1) – (n-k)                                  (7a) 
 
dfR = k-1= p                                                                             (7b) 
 
Test of Significance and F- numbers 
 
The F-number is the quantity which can be used to test 
for the statistical difference between two variances. For 
example, if we have two random variables R and E, the 
corresponding F-number is: 

 
FR = MSR/MSE                                                                           (8) 
 
In our analysis F-number is 37.81353(FR), the variances 
MSR and MSE are defined by an expression of type (4).In 
order to tell whether two variances are statistically 
different, we determine the corresponding probability 
from F- distribution function: 
 
P= P (FR, dfR, dfE)                                                                      (9) 
 
The quantities dfR, dfE – degrees of freedom for 
numerator and denominator- are parameters of this 
function.  
 The probability P given by (9) is a probability that the 
variances MSR and MSE are statistically indistinguishable. 
On the other hand, 1-P is the probability that they are 
different and is often called confidence level. 
Conventionally, a reasonable confidence level is 0.95 or 
higher. If it turns out that 1-P< 0.95, we say that MSR and 
MSE are statistically the same. If 1-P >0.95, we say that at 
least with the 0.95 (or 95%) confidence MSR and MSE are 
different. The higher the confidence level, the more 
reliable our conclusion, calculating the procedure 
numerically we get 
 

Solving eq (9) 
 

P= P (FR, dfR, dfE)                                                      (9) 
 

P= FDIST (37.81353, 2, 9) 
 

= 4.17157E-05 
While calculating 1-P we get 
 
1-P > 0.95= 0.99995 
 
Here the confidence level is much higher; signifying the 
conclusion to be more reliable. 
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There are several F-tests related to regression analysis. 
Here three most common ones have been discussed. 
They deal with the significance of parameters in the 
regression model. 
 
6.4 Significance test of all coefficients in the regression 
model 
 
This test is performed to check with what level of 
confidence we can state that AT LEAST ONE of the 
coefficients b (b1, b2…bp) in the regression model is 
significantly different from zero.  
 After determining FR i.e. F- number for the whole 
regression (part of regression output (as shown in table 
6)). 
 The second step is to determine the numerical value 
of the corresponding probability PR (also a part of 
regression output) 
 Finally we can determine the confidence level 1-P (as 
calculated from equation 9). At this level of confidence, 
the variance “due to regression” MSR (5.148979) (from 
Table 6)) is statistically different from the variance “due 
to error” MSE (0.136168) (from Table 6)). In its turn it 
means that the addition of p variables (X1, X2… Xp) to the 
simplest model where Y = bo (dependent variable Y is just 
a constant) is a statistically significant improvement of the 
fit. Thus, at the confidence level not less than 1-P we can 
say: “At least ONE of the coefficients in the model is 
significant”. The higher the FR the more accurate the 
corresponding model. 
 
6.5 Significance test of subset of coefficients in the 
regression model 
 

With what level of confidence can we be sure that at least 
ONE of the coefficients in a selected subset of all the 
coefficients is significant? So it is necessary to test a 
subset of the last m coefficients in the model with a total 
of p coefficients (b1, b2,….bp). 
 

Here we need to consider two models: 
 

Y=bo+b1X1+b2X2+bpXp   

(unrestricted)                                                                        (10) 
 

Y=b 'o + b'1X1 +   b'2X2 + b'p-m Xp-m     (restricted)            (11) 
 
These models are called unrestricted (10) and restricted 
(11) respectively. We need to perform two separate least 
square regression analyses for each model. 
 The regression output for the unrestricted model is 
already presented in Table 6. To test whether the 
quadratic terms are significant, in this case restricted 
model is considered where the equation comes out to be 
as 
Y= bo + b1X1     (restricted model)                                       (12) 
 

The subset of parameters consists of two parameters and 
m=2. By analogy with the input table for the unrestricted 
model (Table 4) we prepare for the restricted model: 
 
Table7 Regression input for restricted model (considering 

independent variable X1= Ambient Temperature) 
 

Data 
Point # 

j 

Dependent 
Variable 

(Efficiency) 
Y* 

Independent Variable 
(Ambient 

Temperature) 
X1 

1 9.53 22.00 

2 11.79 25.00 

3 12.18 34.00 

4 11.36 40.25 

5 11.00 49.44 

6 11.12 40.36 

7 11.16 40.47 

8 11.66 43.76 

9 11.83 35.65 

10 10.36 39.00 

11 9.83 26.80 

12 8.90 21.00 

 
We perform an additional regression using this input 
table and as part of ANOVA.  
 

Table 8 Regression ANOVA output for the restricted 
model 

 
ANOVA      

 df SS MS F Significance 
F 

Regression 1 3.400 3.400 4.1857 0.067972 

Residual 10 8.123 0.812   

Total 11 11.52    

 
From Table 6 and Table 8 we have:  
 
SSE    =   1.225509 
(Error sum of squares; unrestricted model) 
 

MSE   =   0.136168 
(Error mean square; unrestricted model) 

 
dfE      =   n-k = 9 
(Degrees of freedom; unrestricted model) 
 

SS'E    =   8.123266 
(Error sum of squares; restricted model) 
 

Now we are able to calculate Fm=2 : 
 

Fm=2= {(8.123266-1.225509)/2}/ 0.136168 
        = 25.328 
 
Using the Microsoft Excel function for the F-distribution 
we determine the probability Pm=2: 
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Pm=2 = FDIST (Fm=2, m, n-k) 
 
Pm=2 = FDIST (25.328, 2, 9) 
 
         = 0.0002012 
 
Finally we calculate the level of confidence  
 
1- Pm=2 = 1-0.0002012 
               = 0.999798 
 
Here 1- Pm is big enough (greater than 0.95) we state that 
other coefficients in the subset are significant to a good 
extent. 
 
Table9 Regression input for restricted model (considering 

independent variable X1= Radiation) 
 

Data Point # 
j 

Dependent 
Variable 

(Efficiency) 
Y* 

Independent 
Variable 

(Radiation) 
X1 

1 11.70 535 

2 11.68 801 

3 11.67 881 

4 11.39 892 

5 10.83 978 

6 10.45 895 

7 10.50 910 

8 10.54 954 

9 10.69 978 

10 11.31 697 

11 11.57 600 

12 11.64 473 

 
We perform an additional regression using this input 
table and as part of ANOVA.  
 

Table 10 Regression ANOVA output for the restricted 
model 

 

  Regression 
Residual 
(error) 

Total 

df' 1 10 11 

SS' 9.0614 2.462 11.5234 

MS' 9.0614 0.2462   

F' 36.8045     

Significance F' 0.000121     

 
From Table 6 and Table 10 we have: 
 
 SSE       =      1.225509   
(Error sum of squares; unrestricted model) 
MSE   =   0.136168 
(Error mean square; unrestricted model) 
 
dfE      =   n-k = 9 
(Degrees of freedom; unrestricted model) 

SS'E    =   2.4620 
(Error sum of squares; restricted model) 
 
Now we are able to calculate Fm=2: 

 
Fm=2= 2.4620-1.225509)/2}/ 0.136168 
 
         = 4.5403 
Using the Microsoft Excel function for the F-distribution 
we determine the probability Pm=2: 
 
Pm=2   = FDIST (Fm=2, m, n-k) 
 
Pm=2   = FDIST (4.5403, 2, 9) 
 
           = 0.043314 
 
Finally we calculate the level of confidence  
 
1- Pm=2 = 1-0.043314 
         = 0.956687 
 
Here 1-Pm is also big enough (greater than 0.95), we state 
that other coefficient in the subset is significant also to a 
good extent. 
 
6.6 Significance test of an individual coefficient in the 
regression model 
 
In our illustration P0 = 2.73E-07, and P2 = 0.014634, Table 
6a corresponds to fairly high confidence levels, 1-P0 = 
0.99999 and 1-P2=0.98536. This suggests that parameters 
bo and b2 are significant. The confidence levels for b1 (1-
P1=1- 5.56E-05) = 0.99994 are high, which means that it is 
significant. 
 
6.7 Confidence Interval 
 
For the unrestricted model, the lower and upper 95% 
limits for intercept are “5.75045”and “8.05698” 
respectively. The fact that with the 95% probability zero 
does not fall in this interval is consistent with our 
conclusion of significance of b0 made in the course of F-
testing of individual parameters. The confidence levels at 
the 95% for b1 do not include zero. This also agrees with 
the F-Test of individual parameters. 
 

6.8 Regression Statistics Output 
 

Table 11 Regression Statistics Output 
 

Multiple R 0.945331 
 R Square (R

2
) 0.893651 

Adjusted R
2
(R

2
 adj) 0.870018 

Standard Error (Sy) 0.369009 

Observations (n) 12 

  
The information contained in the “Regression statistics” 
output characterizes the “goodness” of the model as a 
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whole.  The quantities listed in this output can be 
expressed in terms of the regression F-number FR (Table 
6). 
 
Standard Error (Sy) 
 
Sy = (MSE)

 1/2
 

 
MSE is an error variance discussed before (equation 6). 
Quantity SY is an estimate of the standard error 
(deviation) of experimental values of the dependent 
variable Y* with respect to those predicted by the 
regression model.  
 

Coefficient of Determination R
2 

(or
 
R Square): 

 

R
2
 = SSR / SST = 1- SSE / SST 

 

SSR, SSE and SST are regression, residual (error) and total 
sum of squares. 
The coefficient of determination is a measure of the 
regression model as whole. The closer R

2
 is to one, the 

better the model (1) describes the data. In the case of a 
perfect fit R

2
 =1. 

 
Adjusted coefficient of determination R

2
 (or Adjusted R 

Square): 
 
R

2
adj = 1-{SSE / (n-k)} / { SST / (n-1)} 

 
SSE and SST are the residual (error) and total sum of 
squares. The significance of R

2
adj is basically the same as 

that of R
2
 (the closer to one the better).  

 
Multiple Correlation coefficient R 
 
The fact that R

2
adj = 0.870018 in our illustration is fairly 

close to 1 (Table 11) suggests that overall model is GOOD 
to fit the experimental data presented in Table 3. 
  

Conclusion 
 

As clear from Significance test of subset of coefficients in 
the regression model, the regression analysis done for 
the restricted model considering independent variable as 
ambient temperature and radiation respectively, the level 
of confidence is 0.99994 and 0.98536 respectively, which 
confirms that Efficiency of multicrystalline PV module was 
influenced more by ambient temperature than 
irradiation. 
 In conclusion of the F-Test discussion, it should be 
noted that in case we remove even one significant 
variable from the model, we need to test the model once 
again, since coefficients which were significant in certain 
cases might become insignificant after removal and vice 
versa. 
 The proposed model equation illustrated the 
quantitative effect of both the variables in addition to the 

interactions of the variables with the efficiency of the PV 
module. 
 Based on the outdoor conditions, the experimental 
efficiency content was in very good agreements with the 
predicted value, as shown from table 5 where residual 
(error) and standard residual (error) are shown for each 
value of predicted efficiency for the PV module. 
 The results of this analysis indicate that both the 
parameters (ambient temperature and irradiation)   can 
be used to optimize efficiency of PV module for potential 
commercial applications.  
 
Nomenclature 
 
The following notation is used in this work 
 
Y -Dependent variable (efficiency of the PV module) 

predicted by a regression model. 
Y*-Dependent variable (efficiency of the PV module) 

experimental value.  
p- Number of independent variables (ambient 

temperature and irradiation)( number of coefficients) 
Xi- ith independent variable from total set of p variables 

(i=1,2…p). 
bi -   ith coefficient corresponding to Xi (i=1,2…p). 
bo -  intercept (or constant) 
k-  Total no of parameters including intercept 

(constant)(k=p+1) 
n- Number of observations (experimental data points) 
 
i=1,2…p – independent variables index 
j= 1, 2,..n – Data points index. 
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