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Abstract  
  
The purpose of the present work, to study the structural and thermodynamic properties of three discrete potential fluids: 
Lennard Jones (L-J), Lu and Marlow (L-M) and modified Lennard Jones (L-J)M types . All quantities of interest were 
computed using the Ornsetein-Zernike (OZ) integral equation and HMSA (hybridized-mean spherical approximation) 
closure relation. The correlation function, structure we found that the LM contribution corrects structure factors, and 
pressure of the systems thermodynamic properties of the system by taking into account the effect of particle size.  
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1. Introduction 
 

The designation ‘colloid’ is used for particles that can be 
soft or solid and are of some small dimension, ranging 
from nanometers to tens of micrometers and are 
dispersed in a liquid or gaz, that have been recently 
investigated by means of both experimental techniques 
[1,2] and  theoretical [3] and numerical studies [4-10]. 
The great effort is well justified by the importance that 
these systems play in industrial, biological, and medical 
applications (paints, inks, pharmaceutical product, waxes, 
ferrofluids, etc.) *11+. Colloids immersed in a polar solvent 
(water for instance) often carry an electric charge. This 
implies a strong Coulombian interaction between 
colloidal particles. Actually, this interaction is screened 
out due to the presence of proper counterions and co-
ions coming from a salt or an electrolyte [12]. However, 
particles also experience a long-range Van der Waals 
attractive interaction. The former is responsible for 
dispersion, while the second, for flocculation *13+. 
Dispersion and flocculation.  From a theoretical point of 
view, colloids constitute special statistical systems. Thus, 
to study their physical properties such as structure, 
thermodynamics and phase diagram, use is made of 
statistical mechanics methods. Among these, we can 
quote variational and integral equation approaches. The 
more reliable approach is the Ornstein-Zernike (OZ) [14] 
integral equation method [15]. The quantity solving this 
equation is the pair-correlation function , which is a 
crucial object for determining most physical properties. 
But, this equation involves another unknown that is the 
direct correlation function. Thus, this necessitates a 
certain closure, that is, a supplementary relationship 
between these two correlation functions. Integral equa-
tion has been intensively used in the modern liquid  

 
theory. It has been solved using some techniques, which 
are based on the analytical or numerical computation. 
One has used different closures, namely, the Percus-
Yevick approximation [16], the hypernetted chain [17], 
the mean spherical approximation and its modification 
that is the hybridized-mean spherical approximation [18] 
(HMSA) we apply in this work . In order to study the 
structure, we used a traditional repulsive potential 
Verwey and an Overbeek , which come from the mutual 
interaction of electrical double layers surrounding each 
particle, and a new form of the attractive Van der Waals 
potential described by Lu and Marlow (L-M) [19,20].  The 
main advantage of this attractive potential is that it is 
proportional uA the inverse sixth power of the distance, 
for large separations, and in addition, it involves the size 
of the particles which justifies its importance. In Sec III we 
use the (L-J) pair potential, then we introduce the (L-M) 
contribution in the repulsive part of the (L-J) pair potential 
and finally we present the bridge function variation [21] 
and its dependence on particle sizes or solution density, 
respectively. This paper is organized according to the 
following presentation. In Sec. II, we describe the theory 
of integral equation with HMSA enabling us to compute 
the physical properties of interest. We present in Sec. III 
the results and make discussion how we use the Lennard 
Jones (L-J)pair potential, then we introduce the Lu and 
Marlow (L-M) contribution in the repulsive part of the(L-J) 
pair potential. We draw our conclusions   in Sec.  IV. 
 

Theory 
 

A. Pair-potential 
 
In this paper, we used a new expression for the potential 
of van der Waals proposed given by Lu and Marlow (L-M) 
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[19 ,20], and that takes into account the effect of finite 
particle size. This potential has all the characteristics of a 
semi-empirical potential Van der Waals. Even if it was 
applied only to an ordinary molecules, it can be used 
universally in the form: 

6
66

( ) ( )
LM C

U r f r
r

 

                   (1) 

where
6C is a frequency integration of the polarization 

density function and the so-called nonretarded distance 

damping function 6 ( )f r is: 

 
 
                        (2) 
 
 
 

Here 
1

 and 
2

 are two parameters that characterize the 

atomic or molecular size in the case of atoms or small 

molecules. In this article, 
1

 and 
2

 are set equal since 

the considered condensed bodies are always composed 
of the same kind of molecules. 

 

                   (3) 

 

 

 

For simplicity, let 
1 2

    . When the distance r  

tends to infinity, the function 
6 ( )f r  tends to 1  and 

( )
LM

U r  tends asymptotically  to
6

6c r   according to 

plan, but 6
6( 0) 72

LM
U r C a     ,which shows that the 

potential is finite for any  distance. While extremely low 
long distance, it is larger than the electrostatic repulsion. 
The grouping together of the two potentials of interaction 
leads to a minimum adjacent the point 2r a  

 
 

 

Figure (1) Reduced Lu-Marlow (L-M) potential ( )LM
BU r k T  

versus the renormalized distance r   . 

Another pair-potential used here is that derived by 
Lennard-Jones (L-J).The repulsive part of the potential(L-
J)is greater than the attractive part at small distances, and 
inversely at long distances. After this analysis, the 
potential has the following expression [21] 
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where and   are, respectively , the well depth is and 

distance parameters of the (L-J), r
c

 is the cutoff distance , 

rm is the distance where the intermolecular potential 

reaches a minimum. In the (L-J)  potential, the short-range 
repulsion is thought to be dominated by the standard 

12r
 law, whereas the long range London attraction 

varies as 
6

r


 law. Thus, the repulsive part is set with a 
power 12 only for convenience, whereas the attractive 
part has a good theoretical foundation based on three 
different effects; the dispersion force, the permanent 
charge distribution and the induced.  
 

 
 

Figure (2) Reduced (L-J) potential ( )L J
BU r k T  versus the 

renormalized distance r  , for three values  of 

temperatures and particles sizes:  308 K, 36T nm   
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The position of the potential minimum mr  is given as  

 

                      (6) 
 

The expression (3) and (5) in the birth of a new term to 
the(L-J)  potential  
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The New pair potential, which modifies the (L-J)
M

one 

[22]:  
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Figure(3) Variation of the pair potential versus the 
renormalized interparticle distance with (L-J) potential 

modified by the (L-J)
M 

contribution 
 

The following step consists in recalling the essential of the 
integral equation method used in this work.  
 Several approaches exist to study the structural 
property and thermodynamic a fluid from its interactions. 
The method of integral equations is one of these 
techniques which allows to determine the structure of a 
fluid in a thermodynamic state given, characterized by its 
density   and its temperature T, for a potential pair of 

 u r  which mobilize the interactions between the 

particles. Thecalculation of the structure, represented by 

the function of radial distribution  g r , is a own approach 

to the theory. 
 It is easy to see that, on the right hand side of the 
above equation. By convention, repulsive (short-range) 
forces are positive while attractive (long-range). 
 The first derivative of the expression of (L-J) potential 
he presented as follows  
 In fact, the fact that in a liquid the particles are 
partially disordered implies his ignorance apriority. The 

function
 g r

, which describes the arrangement medium 
of particles as a function of distance from an origin theory 

on the one hand, the Fourier transform of
 g r

is the 
factor of structure 

 

      1 1 expS q g r iqr dr                 (9) 
 
That is measured by the experiences of diffraction of X-

ray or neutron in function of the vector transfer q . On the 
other hand, the thermodynamic quantities of the fluids 

are functions of 
 g r

 and the 
 u r

 as the internal energy 
per particle 
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Or the isothermal compressibility T . This last can be 
obtained by two independent see, either by deriving the 
pressure (6) by report to the density: 
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Either share the intermediary of a study of fluctuations in 
the number of particles in the whole grand canonical 

     20 . 1 4 1B TS q k T g r r dr            (13) 

We can note that the isothermal compressibility T

deducted from the pressure of virial is equal to that 
calculated from the angle limit the diffusion of the zero 
factor structure. 
 
C. Integral equation approach  
 
The starting point of such a method is the Ornstein-
Zernike (OZ) integral equation satisfied by the total 
correlation function                     .   The OZ integral 
equation that involves the so-called direct correlation 
function      [23, 24], is given by  
 
                           (14) 
 
where    is the number density of macroions. This 
equation, however, contains two unknown quantitiesh(r)  
and c(r). To solve it, one need a closure relation between 
these two quantities. In this paper, we decide to choose 
the HMSA, and write  
 
                 (15) 
 
where the interaction potential is divided into short-range 

part  1U r
and long-range attractive tail          as 

prescripted by Weeks et al [25]. There, the function γ (r)          
is simply the difference between the total and direct 
correlation functions, i.e.,Quantity                       is the 
mixing function [6], whose a new form was proposed by 
Bretonnet and Jakse [26]. The virtue of such a form is 
that, it ensures the thermodynamic consistency in 
calculating the internal compressibility by two different 
ways. The form proposed by the authors is [26]  
                                                                                             (16) 
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where the is f0 the interpolation constant. This an 
adjustable parameter such that                    This constant 
that serves to eliminate the incoherence thermodynamic, 
can be fixed equating the compressibility deduced from 
virial pressure to that calculated from the zero-scattering 
angle limit of the structure factor, i.e., 
                                                                                               (17) 
 
3. Results and Discussion  
 
Our purpose is a quantitative investigation of 
thermodynamic and structural properties of a dilute 
solution of polyballs (in water), using the integral 
equations method.  
 
Integral equation method results 
 
The HMSA integral equation is applied here for 
accomplishing an alternative computation of structural 
and thermodynamics properties of the colloidal solution 
under investigation. Potentials used here are of Lu-
Marlow type, and the choosing mixing function is that 
pointed out in [26]. 
 Firstly, we have computed the main object that is the 
pair-correlation function g(r)     versus the renormalized 
interparticle distance   r/σFig2. 
 Secondly, we have reported in Fig. 3 the structure 
factors versus the renormalized wave-vector        
computed using integral equations method. Remark, first, 
that the results obtained within the integral equations 
HMSA are in good agreement as in the case of the pair-
correlation function discussed above. The important 
remark is that, the height of the peak of increase 
proportionately with increasing density with (L-M) 
potential  for T =308 K andσ=36nm. 
  

 
 

Figure (4) Plot representing the correlation function g(r) 
with (L-M) potential for (T=308K, σ=36nm) 

 
Thirdly, in Fig. 4, we have reported the structure factors 
computed using the integral equation versus the 
renormalized wave-vector qσ. The obtained results 
present  our numerical prediction concerning the 
variation of the structure factor in the (L-J) pair-potential 

case, it is easy to see that , the structure factor presents 
some oscillations reflecting the interaction between near 
neighbors and the system’s fluctuations. These 
oscillations design generally a morphologic transition in 
the Pluronic solution.   
 Finally, in the same figure, Fig. 6, we plot the structure 
factor in the (L-J)

M
 pair-potential. That is to be expected 

since, from its definition, f6(r) corrects the London 
attraction.  This correction appears clearly in the (L-J)

M
 

potential and confirms the difference between (L-J)
M

 and 
(L-J)  pair potentials.  
 

 
Figure (5) Variation of the structure factor for various 

densities with (L-J) potential for(T=308K, σ=36nm) 
 

 
Figure (6) Comparison of the structure functions 

computed with the modified (L-J)
M

  potential by the 
HMSA integral equation for various temperatures and 

particle sizes 

 
Figure (7) Comparison between the structure factors 
calculated with the (L-J) potential and with the (L-J)

M
 

potential for

00 1.f 

 0 .B TS nk T
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Table (4) Thermodynamic proprieties for   (L-J) and (L-J)
M

  potentials, within HMSA integralequation method, for value 
of the interpolation constant 

 

(L-J) Potential (L-J)
M

Potential 

 T K
 

k TB 
 

/E nk TB  
/P k TB

 
 T K

 
k TB 

 
/E nk TB  

/P k TB
 

308 2.62 -0.62 0.67 308 1.38 - 0.36 0.67 

310 2.35 - 0.58 0.70 310 1.35 - 0.34 0.70 

312 2.16 - 0.54 0.72 312 1.31 - 0.31 0.72 

315 1.93 - 0.48 0.74 315 1.24 - 0.28 0.74 

318 1.71 - 0.41 0.78 318 1.18 - 0.23 0.78 

321 1.76 - 0.45 0.77 321 1.23 - 0.27 0.77 

323 1.81 - 0.46 0.76 323 1.26 - 0.29 0.76 

325 1.86 - 0.48 0.75 325 1.28 - 0.31 0.75 

328 1.95 - 0.51 0.74 328 1.30 - 0.32 0.74 

 
First, it can be observed that the parameter f0 ensuring 

thermodynamic coherence, defined in ref. [30],   takes 

the same values for the two considered pair potentials. 

On the other hand, and in the two cases presented below, 

T = 318 K is a remarkable temperature for all 

thermodynamic quantities. Indeed, in the range of 

temperatures between 308 K and 318 K, the 

compressibility of the system decreases. In parallel, the 

internal energy .From these considerations, we can 

confirm that the thermodynamics of the system is related 

to the particle size if we compare it with the 

hydrodynamic diameter variation. Consequently, T = 318 

K is a veritable temperature of transition of the particles’ 

morphology leading to a transition in the thermodynamic 

properties of the considered system. 

 
Conclusion 
 
We recall that the purpose of this paper is the 

determination of the structure and thermodynamics of a 

monodisperse colloidal solution. We assumed that the 

interaction potential between colloids is of (L-J)
M

or (L-

M)types . In this work we are interested in studying the 

stability of a colloidal solution. The stability of such a 

solution results from the balance between attractive and 

repulsive interactions interactions exerted on the 

particles by preventing the aggregation of particles of the 

dispersed phase. The two main mechanisms of 

stabilization are steric stabilization and electrostatic 

stabilization case before us that we have at hand. In this 

study, we have used a new expression for the potential of 

Van der Waals described by (L-M)and (L-J)
M

 , which takes 

into account the finite size of the particles. To test these 

potentials, we have calculated the structure factor. As a 

method, we use the HMSA method. 
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