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Abstract  
  
In this paper the effect of magnetic field on linear and non-linear thermal instability in an anisotropic porous medium 
saturated with viscoelastic fluid is considered. Normal mode technique is used to investigate the linear stability analysis,  
while non-linear stability has been done using minimal representation of truncated Fourier series involving only two 
terms. Extended Darcy model, which includes the time derivative and magnetic field terms has been employed in the 
momentum equation. The criteria for both stationary and oscillatory convection are derived analytically. The effect of 
magnetic field is found to inhibit the onset of convection in both stationary and oscillatory modes. Thermal Nusselt 
number is defined in weakly non-linear stability analysis. Steady and transient behavior of the thermal Nusselt number is 
obtained by solving the finite amplitude equations using Runge-Kutta method. The nature of streamlines, Isotherms and 
Magnetic stream functions also has been investigated. The results have been presented graphically and discussed in 
detail. 
 
Keywords: Viscoelastic Fluid, Darcy-Rayleigh number, Darcy-Chandrasekhar number, Magnetic field, Porous medium, 
Anisotropy, Heat transfer, Nusselt number. 
 
 
Nomenclature 
 

Latin Symbols 
 

a              Wave number 

ca            Critical wave number 

d             Depth of the porous layer 

Da          Darcy number,   2
zK d  

g             Gravitational acceleration 

H            Magnetic field ( 1H , 2H , 3H ) 

 K           Inverse Permeability, 
^ ^

1 1( ) K ( )x zK ii j j k k    

,l m         Horizontal wave numbers 

p             Pressure 

Pm        Magnetic Prandtl number, 
T z

 
 
 

 

Pr           Prandtl number, 
T z




 
 
 

 

q             Velocity of the fluid ( , ,u v w ) 

Q            Darcy-Chandrasekhar number,      
2

0

m b zH K
 

 
 
 

 

Ra        Darcy-Rayleigh number ( T)dT z

T z

gK
 

 
 
 

 

cRa        Critical Darcy-Rayleigh number 

t             Time 

T            Temperature 

Va          Vadasz number, 
Pr

Da


 

H            Rate of Heat transport per unit area 
T          Temperature difference between the walls 

 p
f

c   Heat capacity of fluid 

 p
s

c   Heat capacity of solid 

 p
m

c   Relative heat capacity of the porous medium, 

   (1 )p p
f s

c c      

 
Greek symbols 
 

T           Thermal expansion coefficient 

             Non-dimensional number,  / PrDa  

             Porosity 

             Thermal anisotropy parameter T x

T z




 
 
 

 

             Ratio of heat capacities 

T           Thermal diffusivity
^ ^

( ) ( )T x T zii j j k k     

1            Relaxation time 
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2           Retardation time 

            Magnetic viscosity 
            Dynamic viscosity 

             Kinematic viscosity,  0    

            Vorticity vector, ( q)   

             Magnetic Stream function 

            Stream function 

            Density 

            Growth rate 

             Mechanical anisotropy parameter,  x zK K  

 
Other symbols 
 

b             Basic state 
c             Critical 

*              Non-dimensional value 
′               Perturbed value 
0             Reference state 

i             Unit normal vector in x-direction 

j            Unit normal vector in y-direction 

^

k            Unit normal vector in z-direction 

2
1          

2 2

2 2x y

 


 
, horizontal Laplacian 

2           
2

2
1 2z


 


 

D             d d z  

 

i                1  

 
1. Introduction 
 

In the recent years, a great deal of interest has been 
focused on the understanding of the rheological effects 

occurring in the flow of non-Newtonian fluids through 

porous media. Many technological processes involve the 

parallel flow of fluids of different viscosity, elasticity and 

density through porous media. Such flows exist in packed 

bed reactors in the chemical industry, petroleum 
engineering, boiling in porous media and in many other 

processes. The flow through porous media is of 

considerable interest for petroleum engineers and in 

geophysical fluid dynamicists. Hence, the knowledge of 

the conditions for the onset of instability will enable us to 

predict the limiting operational conditions of the above 

processes. Excellent reviews of most of the findings on 
convection in porous medium are given by Nield and 

Bejan (2006), Ingham and Pop (2005) and Vafai (2006). 

However Horton and Rogers (1945) and Lapwood (1948) 

were the first to study the thermal instability in a porous 

medium. Many common materials such as paints, 

polymers, plastics and more exotic one such as silicic 
magma, saturated soils and the Earth’s lithosphere 

behaves as viscoelastic fluids. Flow and instability in 

viscoelastic fluids saturating a porous layer is of great 

interest in different areas of modern Sciences, 

engineering and Technology like material processing, 

petroleum, chemical and nuclear industries, Geophysics 
and Bio-mechanics engineering. Some oil sands contains 

waxy crudes at shallow depth of the reservoirs which are 

considered to be viscoelastic fluid. In these situations, a 

viscoelastic model of a fluid serves to be more realistic 

than the Newtonian model. Herbert (1963) and Green 

(1968) were the first to analyze the problem of oscillatory 

convection in an ordinary viscoelastic fluid of the Oldroyd 
type under the condition of infinitesimal disturbances. 

Later on Rudraiah et al. (1989, 1990) studied the onset of 

stationary and oscillatory convection in a viscoelastic fluid 

of porous medium. Kim et al. (2003) studied the thermal 

instability of viscoelastic fluids in porous media, 

conducted linear and non-linear stability analyses and 
obtained the stability criteria. Young-Yoon et al. (2004) 

studied the onset of oscillatory convection in a horizontal 

porous 

 layer saturated with viscoelastic fluid by using linear 

theory. Laroze et al. (2007) analyzed the effect of 

viscoelastic fluid on bifurcations of convective instability, 
and found that the nature of the convective solution 

depends largely on the viscoelastic parameters. Tan and 

Masuoka (2007) studied the stability of a Maxwell fluid in 

a porous medium using modifiedDarcy-Brinkman-

Maxwell model, and found the criterion for onset of 

oscillatory convection. 

 Malashetty and Swamy (2007) studied the onset of 
convection in a viscoelastic liquid saturated anisotropic 
porous layer and obtained the stability criteria for both 
stationary and oscillatory convection. Sheu et al. (2008) 
investigated the chaotic convection of viscoelastic fluids 
in porous media and deduced that the flow behaviour 
may be stationary, periodic, or chaotic. However, the 
study of convective flow and instability in a porous 
medium under the influence of an imposed magnetic field 
has gained momentum during the last few decades due to 
its relevance and applications in engineering and 
technology. For example the above study is useful in 
commercial production of magnetic fluids. Other 
applications are in geophysics: to study the earth’s core, 
where the molten fluid is viscoelastic and conducting, and 
becomes unstable due to differential diffusion; and to 
understand the performance of petroleum reservoir 
(Wallace et al. (1969)). Although the research field is 
quite interesting but only limited literature is available; 
Patil and Rudraiah (1973) have studied the problem of 
setting up of convection currents in a layer of viscous, 
electrically conducting fluid in the presence of a magnetic 
field, using linear and nonlinear theories, and investigated 
the combined effect of magnetic field, viscosity and 
permeability on the stability of flow through 
porous medium. Rudraiah and Vortmeyer (1978) have 
investigated the above problem for stability of finite-
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amplitude and overstable convection of a conducting fluid 
through fixed porous bed. Using linear and nonlinear 
analysis Rudraiah (1984) has studied the problem of 
magnetoconvection in a sparsely packed porous medium. 
Alchaar et al. (1995a, b) and Bian et al. (1996a, b) have 
also investigated the magnetoconvection in porous media 
for different physical models. Oldenburg et al. (2000) and 
Borglin et al. (2000) have carried out numerical and 
experimental investigations on the flow of ferrofluids in 
porous media. Sekar et al. (1993a, b) considered the 
problem of convective instability of a magnetized 
ferrofluid in a porous medium and studied the effect of 
rotation on it. Desaive et al. (2004) have studied linear 
stability problem of thermoconvection in a ferrofluid-
saturating a rotating porous layer by considering 
Brinkman model and using modified Galerkin method, 
and discussed both stationary and overstable 
convections. Sunil et al. (2004, 2005) have investigated 
the effects of rotation and magnetic fields on 
thermosolutal convection in a ferromagnetic fluid 
saturating porous medium. Saravanan and Yamaguchi 
(2005) performed a linear analysis to study the influence 
of magnetic field on the onset of centrifugal convection in 
a magnetic fluid filled porous layer placed in zero-gravity 
environment and established the stability criterion. 
Recently Bhadauria (2008a) investigated the 
magnetoconvection in a porous medium under time 
dependent thermal boundary conditions. But in these 
entire studies porous medium is considered to be 
saturated by Newtonian fluid. To the best of authors’ 
knowledge no literature is available in which 
magnetoconvection in a porous medium saturated by a 
viscoelastic has been investigated. Therefore the purpose 
of the present investigation is to study the effect of 
magnetic field on thermal instability in a porous medium 
saturated by a viscoelastic fluid. We obtain the result 
regarding the onset of convection using linear theory 
analysis and extract the informations for rate of heat 
transfer across the porous layer using a weakly nonlinear 
theory. 
 
2. Governing Equations 
 
We consider an electrically conducting viscoelastic fluid 
saturated horizontal anisotropic porous layer, confined 

between two parallel horizontal planes at 0z   and 

z d , a distance d  apart. The planes are infinitely 

extended horizontally in x  and y  directions. A Cartesian 

frame of reference is chosen in such a way that the origin 
lies on the lower plane and the z - axis as vertical 
upward. A constant magnetic field is applied vertically 
upward across the porous layer. Adverse temperature 
gradient is applied across the porous layer and the lower 

and upper planes are kept at temperatures 0T T , and 

0T  respectively. Oberbeck Boussinesq approximation is 

applied to account the effect of density variations. The 

governing equations for magnetoconvection in a 
viscoelastic fluid saturating a porous medium are given by 
 

 

0
1 2

1

1 . 1 .

1

m

q
H H K q

t t t

p g
t


   



 

       
        

       

 
    

 

               (1) 

 . .T

T
q T T

t
 


    


                                              (2)                                                                                        

2( . ) H (H. )q
H

q H
t


     


                            (3)                                                                                                                  

. 0q                                                                                       (4)                                                                                                                                                             

.H 0                                                                                 (5)                                                                                             

0 01 (T T )T                                                            (6)                                                                                               

 

where    p pm f
c c    is ratio of heat capacities and 

 T m p m
c    is effective thermal 

conductivity of porous media. . The thermal boundary 
conditions are 
 

0T T T   at 0z  and 0T T at z d .       (7)                                                                                            

 
Eqs.(1)-(5) are satisfied by basic solution given by, 
 

(0,0,0), p (z), H (0,0, )b b bq p H   and (z)b 
  

(8)                                                                         

 
We now slightly perturb the basic state and write 
 

q q q', T', p', ',

H '

b b b b

b

T T p p

H H

         

 
                (9)                                                       

 
Putting Eq.(9) in Eqs.(1)-(5) and using basic state Eq.(8), 
the perturbation equations are obtained in the form 
 

. ' 0q                                                                                (10)  

                                                                                                                          

 

0
1

2 1 0

'
1 . '

1 . ' 1 ' '

m b

T

q
H H

t t

K q p gT
t t


 



    

    
      

    

    
       

    

    (11)            

' 2
2
1 2

' '
( '. ) ' 'b

T x T z

dTT T
q T w T

t d z z
  
 

     
 

                  (12)                                                                                  

2' '
( '. ) H' (H'. )q' H 'b

H q
q H

t z

 
      

 
     (13)                                                                                    

For non-dimensionalization the following scaling has been 
used: 

2

(x', y', z') (x*, y*, z*) d, t *, ' *,

' ( T) T*, ' *

T z

T z

T z

d
t q q

d

T p p
K







  

  

, 
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2 2

1 1 2 2*, *
T z T z

d d
   

 
   and ' *bH H H  

Then with the help of the above expressions the non-
dimensionalized form of the above equations(dropping 
the asterisks for simplicity) is 
 

. 0q                                                                                    (14)                                                                                                                                     

1

^

2 1

1
1 .

1 1

m

a

q H
Q P

t Va t z

q p RaT k
t t



 

     
     

     

     
         

      

                  (15)                                

2
2
1 2

( . )
T

q T w T
t z

 
  

         
                 (16)                                                                                              

2( . ) H (H. )q m

H q
q P H

t z

 
      

 
          (17)                                                                                            

where 
2

0

m b zH K
Q



 



is Darcy-Chandrasekhar number, 

m
T z

P



  is the magnetic Prandtl number, 

( T)dT z T zRa g K    is the Darcy-Rayleigh number, 

1 1
, ,aq u v w

 

 
  
 

 is the anisotropic modified velocity 

vector,  
0





 is kinematic viscosity, x zK K  is the 

mechanical anisotropy parameter and T x T z    is 

the thermal anisotropy parameter. The parameter Va
includes the thermal Prandtl number, Darcy number and 

the porosity   of the medium and is given by 

                               
Pr

Va
Da


         (18)                                                           

Now to eliminate the pressure term p from Eq.(15), we 
take the curl of it and obtain an equation in the form 

1 2

1

1
1 . ( H) 1

1

m

w
Q P

t Va t z t

T T
Ra i j

t y z

  



        
        

        

      
       

       

        (19)       

 

where q   and  aq    denotes the vorticity 

vector and modified vorticity vector 

respectively and 
1 1

, ,aq u v w
 

 
  
 

. Applying curl on 

Eq.(19), we get the following equation 
 

2 2
1 2

2 2 ^
2

1 1

1
1 ( q) . 1

1

m

H
Q P C

t Va t z t

T T
i Ra jRa k Ra T

t x z y z

 



         
           

          

    
      

        

    (20)  

where  1 2 3, ,C C C C and 

2 2 2 2

1 2 2

1 1v w v u
C

y x x z y z 

    
           

, 

2 2 2 2

2 2 2

2
2

3 1 2

1 1
,

1

u w v v
C

x y y z x z

C w
z

 



    
           

 
      

 

 

3. Onset of Magnetoconvection 
 
To obtain the information regarding the onset of 
magnetoconvection, We perform a linear stability 
analysis. For this, we neglect the nonlinear terms in the 
Eqs.(16), (17) and (20), and reduce the equations into the 
linear form. Then taking vertical component of the 
reduced equations, we get 
 

2 2
1

2
2 2

2 1 1 12

1
1 ( w) .

1
1 1

z
m

H
Q P

t Va t z

Ra T
t tz



 


     
        

       

      
               

               (21) 

2
2
1 2

T w
t z

 
  

       
                                       (22)                                                                                           

2
z

w
Pm H

t z

  
   

  
                                                  (23)                                                                                                     

where w and zH  are the vertical components of velocity 

and magnetic field respectively. 
 
Using Eqs.(21), (22) and Eq.(23), eliminating all variables 
except the vertical component of velocity, we get a single 
equation for w  in the form 

2
2 2
1 2

2
2 2

1 2 1 12

2 2
2 2 2 2

1 1 2 2

[

1
1 1 1

]w 0

m

m

P
t tz

t t t tz

Ra P QPm
t t z z

 

   


 

    
           

            
                           

       
                    

  (24)                                                                                         

 

The boundaries are considered to be impermeable, 
isothermal and perfect electrically conducting, therefore 
we have the following conditions 
 

0zw T H   at 0z  and 1z  .                                 (25)                                                                         
 

Here we use free-free boundaries for simplification of the 
problem. Normal mode technique is used to solve the 
above partial differential equation for w . For this we 

seek solution of the unknown field w  in the form 

 

(z)exp (l x m y) tw W i    
 

         (26)                                                                                
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where l and m are the horizontal wave numbers and   

is the growth rate, which in general a complex quantity 

given by .r ii    . Substituting Eq.(26) in to Eq.(24), 

we obtain a single ordinary differential equation for (z)W  

in the form 
 

  

  
 

2 2 2 2

2 2 2 2
1 2

2 2 2

1
2 2 2 2

[ (D a )

1 1
(1 ) (D a ) (1 )

D a
(1 ) ]W(z) 0

(D a )

a D Pm

a D
Va

a Ra Pm

QPm a D

  

   





 

    

   
       

   

   
 

   
   
 

         (27)  

where a  is the horizontal wave number. The boundary 

conditions in terms of W are given by 
 

 
2 4

2 4
0

d W d W
W

d z d z
    at 0z  and 1z  .                  (28)                                                           

 

The above problem Eq.(27) and Eq.(28) can be regarded 
as an eigen value problem. The solutions of the boundary 
value problem are assumed to have the form 

'(z) A sin(n z)nW  , where 
'

nA  denotes the amplitude 

which gives the minimum Darcy-Rayleigh number when 

1n  , showing that '
1(z) A sin( z)W   is the eigen 

function for the marginal stability. Then the expression 
for the Darcy-Rayleigh number is obtained as 
 

       

 

   
  

2 2 2 2 2 2
1 2

2
1

2 2 2 2 2

2 2 2

1
1 1

1

a a a

Ra
a

Q Pm a a

a Pm a

        




    

 

  
        

   


  

 

                                                                                                

                (29) 
3.1 Stationary State 
 

For the occurrence of stationary convection, we consider 

that .r ii     with the possibility that non zero 

would cause the overstability at the marginal state. 

Therefore at the marginal state we assume 0   for 

stationary convection and obtain the expression forthe 
Darcy-Rayleigh number as 

 
 2 2 2 2 2

2

1

st

a a Q

Ra
a

   


  
    

               (30)                                              

For 1   ,we have 

   2 2 2 2 2

2

st
a a Q

Ra
a

     
                           (31)                                             

Taking 0
stRa

t





, we obtain critical wave number 

ca a  and the critical value of Darcy-Rayleigh number, 

as given below 

   
1

1 41ca Q  
  

  
and  

2
2 11st

cRa Q    
  

       
(32) 

For 1   , we have 

 
1

41ca Q   and 
2

2 1 1st
cRa Q    

 
      (33)                                           

 
The above results (31) and (33) are similar to those 
obtained by Bhadauria and Sherani (2008b) for the onset 
of Darcy convection in magnetic fluid saturated porous 

medium. For the non-magnetoconvection  0Q   and 

1    (isotropic porous medium) we obtain 

 

ca  and 24st
cRa                                                         (34)                                      

 
which are exactly same results as obtained by Lapwood 
(1948). 
 From the expression Eqs.(30) for Darcy-Rayleigh 
number for onset of stationary magnetoconvection, it is 
found that the critical Darcy-Rayleigh number and wave 
number are independent of the viscoelastic parameters 
and therefore same as magnetoconvection in an 
anisotropic porous medium saturated with Newtonian 
fluid. 
 
3.2 Oscillatory state 
 
We know that the oscillatory convection are possible only 
if some additional constraints like rotation, magnetic 
field, and salinity gradient, are present. For oscillatory 

convection at the marginal state, we must have 0r   

and 0i   . Now substituting ii   into the Eq.(29) 

and separating the real and imaginary part, we obtain 
                          

 

   

   

   

2
' 2 2 2 2

2
2 2 2 2 2 2 2

1

2 2 2 2 2
1

2
2 2 2 2 2 2 2

1

1

' 1

1

m i
OSC

i m i

m i

i

i m i

A P a

Ra

a P a

B QP a
i X

a P a

 

   

   


   

 
    

 
    

 


 
    

    (35)                            

where X  is given as 
 

     

   

2
2 2 2 2 2 2 2 2 2

1

2
2 2 2 2 2 2 2

1

' ' 1

1

m i m i

i m i

C P a D QP a

X

a P a

     

   

 
      

 
    

   (36)   

the expressions for ', ', 'A B C  and 'D  are given in the 

Appendix. Since Oscillatory Darcy Rayleigh number 
OSCRa  must be real therefore we must have 0X  . 

Thus we obtain a quadratic 

Eq. in 
2

i  in the form 

 

   
2 2

1 2 3 0i iK K K                                                (37)                                                                
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where the values of 1 2,K K  and 3K  are given in 

Appendix. 

 Since 
2

i  has to be positive always, therefore for two 

positive roots of the Eq.(37) we must have 1 0K   and 

2 0K   according to Descartes’s rule of signs. If there are 

two positive real roots then minimum of 
2

i will gives the 

oscillatory neutral Darcy-Rayleigh number OSCRa  

corresponding to critical wave number ca  and critical 

value of
2

i . If there is no positive real root then no 

oscillatory motion is possible. However we found during 
our calculations that Eq.(37) has only one positive real 
root for some values of fixed parameters 

1 2, , , , , ,Q     ,Pm  and  . 

 Further the corresponding value of the critical Darcy-
Rayleigh number for the oscillatory mode is derived and is 
given in Eq.(35). It is found to be the function of 
mechanical anisotropy , thermal anisotropy , Darcy-

Chandrasekhar number Q , relaxation time 1 , the 

retardation time 2 , a non dimensional number  , 

Magnetic Prandtl number Pm , and of ratio of heat 

capacities  . The graphically representation of these 

results is given in Section 5. 
 

4. Weak Nonlinear Analysis 
 

Now to extract the information about the rate of heat 

transfer and the convection amplitudes, we need to do a 

nonlinear analysis of the above problem. Therefore in this 

section, we will perform a weakly non-linear analysis and 

obtain some additional informations by considering a 

truncated representation of Fourier series for velocity, 

temperature and Magnetic field. This will be one step 

forward in understanding the non-linear mechanism of 

thermal convection. Here we have considered the case of 

two dimensional rolls, and thus made all physical 

quantities independent of y . We eliminate pressure term 

from Eq.(15) by operating  .J  on it and introduce the 

stream function   such that ,u z w x        

in the above resulting equation and in equation (16). Also 

we consider xH z   and zH x   then we 

obtain 
2 2 2 2

1 2 2 2 2

2 2

2 12 2

1

1
1 1

QPm
t t zx z x z

T
Ra

t t xx z

   

  


           
                         

        
                

           (38)                                                                                  

2 2 2

2 2 2

T T T
T

t z x x z x x z z

  
 

          
                   

             (39)                                                                 

2 2

2 2
Pm

t x z z x z x z

     


        
              

              (40)                                                                                    

To solve the above system, we use a minimal system of 
Fourier series by considering only two terms, thus we 
have expressions for stream function, temperature and 
Magnetic field as given by 
 

 1(t) sin( a x)sin( z)A        (41)                                                                                            

1 1T B (t)cos( a x)sin( z) (t)sin(2 z)C                    (42)              

                            

1 1D (t)sin( a x)cos( z) E (t)sin(2 a x)                 (43)                                                   

Amplitudes 1 1 1 1(t),B (t),C (t),D (t)A  and 1(t)E  are 

functions of time and to be determined. 
 
4.1 Steady Analysis 
 

Here we take 0
t





  for the steady case, and assume 

that the amplitudes 1 1 1 1,B ,C ,DA  and 1E  are constants. 

Substituting the above expressions for , T  and   in 

Eqs.(38)-(40), and equating the coefficients of like terms 
of the resulting equations, we obtain 
 

 2 2 3 2
1 1 1

1
1 0a A a Ra B Q Pm a D  



 
     

 
   (44)                                                                              

 2 2 2
1 1 1 11 1 0a A a B a AC        

 
             (45)                                                                                           

 
2

2
1 1 14 1 0

2

a
A B C


                                               (46)                                                                                                            

 2 2 2
1 1 1 11 0a A a Pm D a A E                             (47)                                                                                   

2
2 2

1 1 14 0
2

a
A D a Pm E


                             (48)                                                                                                        

 
Further from the above equations, a single equation for 

the amplitude 
1A  can be found as 

   

 

   

     

2
12 2 2 2

2
12 2

2
12 2 2

2
12 3 2 2 2

1

1
[ 1 1

8

1
8

1 1
8

1 1 1 ] 0
8

m

m

m

A
a a a

A
a P

A
a Ra a P

A
QP a a a a A

   




   

     
              

   
    
    

   
     
    

   
       
    

       (49) 

 

Since the solution 1 0A  corresponds to the pure 

conduction solution, therefore we put other part of the 
above equation as zero and obtain the amplitude 
equation as 
                                                             

2
2 2
1 1

1 2 3 0
8 8

A A
x x x
   

        
   

               (50)                                                      
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2 2 2
1

1
x a a



 
  

 
 

     

     

2 2 2 2 3 2 2
2

2 2 2 2 2 2

1
1 1 1

1 1 1

m

m m

x a a QP a a

P a a a Ra P a

    




 
        

 

   

 

And 

   

     

     

2 2 2
3

2 3 2 2

2 2 2 2 2

1 1

1 1 1

1
1 1 1

m

m

m

x a a Ra P

QP a a a

a a P a



   

   


   

   

 
      

 

 

 
We note that the amplitude of stream function must be 
real, therefore we have to take positive sign in the root of 

Eq.(50). Once we determine the value of 1A , we can find 

the value of heat transfer. If H  denotes the rate of heat 
transport per unit area, then we have 
 

0

total
T z

z

T
H

z





 


                         (51)                                                               

where angular bracket represents the horizontal average. 
Also we have 

0 (x, z, t)total

z
T T T T

d
          (52)                                                             

Thus, we have 
 

 11 2
T z T

H C
d





                                             (53)                                  

Further the expression for Nusselt number Nu  can be 

given by 
 

11 2
T z

H
Nu C

T d



  


                                  (54)                                

 

Putting the value of 1C  in terms of 1A  we obtain 

                                                          

 
    

2 2
1

2 2 2
1

8
1

1 1 8

a A
Nu

a a A  
 

   
                   (55)                          

 
 

which is found to be the function of the parameters 
, , ,Ta Ra   and a . The corresponding results have been 

presented in the figures 2(a-d) and discussed in detail  
in section 5. 
 
4.2 Non-steady Analysis 
 
In this section we will perform the unsteady nonlinear 
analysis and investigate the transient behavior of Nusselt 
number with respect to time. Also we will study time 
dependent behavior of the stream function, temperature 
and magnetic field. For unsteady analysis of the problem, 

we solve Eqs.(38)-(40) with the help of Eqs.(41)-(43) and 
then equate the coefficients of like terms of resulting 
equations. We obtain the following set of nonlinear 
ordinary differential equations 
 

1
1

(t)
(t)

dA
F

d t
                                         (56)                                                                                                                               

2 2 21
1 1 1 1

(t) 1
(t) (t) (t)C (t)

dB
a A K B a A

d t
  


    
 

 (57)                                                                           

 
2

1 1 21
1

(t) B (t)(t) 1
4 1 (t)

2

a AdC
C

d t


 



 
    
  

           (58) 

                                                                               

 2 2 21
1 1 1 1

(t)
(t) 1 (t) (t) E (t)m

dD
a A a P D a A

d t
             (59)                                                                      

2
1 1 2 21

1
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2
m

a AdE
a P E

d t




 
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  

                  (60)     
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 
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 

 
  
 
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 
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 
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
1

1
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

 
 
 
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 
  

       (61) 

 
The above system of simultaneous ordinary differential 
equations has been solved numerically using Runge-
Kutta-Gill method (“Sastry, (1993)”). After determining 
the value of the amplitude functions 

1 1 1 1(t),B (t),C (t),D (t)A  and 1( )E t , we evaluate the 

Nusselt number as a function of time. 
 
 

5.  Results and Discussions 

 
Thermal instability in an anisotropic porous layer 

saturated with viscoelastic fluid has been investigated 

under a vertical magnetic field, using linear and nonlinear 

analyses. The linear stability analysis gives the conditions 

for stationary and oscillatory convection as presented in 

the Figs. 1 (a-h). In these Figs. 1(a-h), we draw neutral 
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stability curves and depict the variation of the Darcy-

Rayleigh number Ra  with respect to the wave number a 

for the fixed values of the parameters 

1 20.7, 0.9, 20, 0.8, 0.4, 1.0, 0.4mQ P          

and a non-dimensional number 1.6  , while varying 

one of the parameters. 

 

 
 

Fig. 1(a): Variation of Ra with wave number a . 
 

 
 

Fig. 1(b): Variation of Ra with wave number a . 
 

 

 
 
 

Fig. 1(c): Variation of Ra with wave number a . 

 
 

Fig. 1(d): Variation of Ra with wave number a . 
 

 
 

Fig. 1(e): Variation of Ra with wave number a . 
 

 
 

Fig. 1(f): Variation of Ra with wave number a . 
 

 
 

Fig. 1(g): Variation of Ra with wave number a . 
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Fig. 1(h): Variation of Ra with wave number a . 
 

We observed in most of the Figs. 1 (a-h) that when wave 
number a is small oscillatory convection sets in earlier 
than the stationary convection, however for intermediate 
and large values of the wave number a , stationary 

convection prevails. These figures give the criteria for 
thermal instability in terms of the critical Darcy-Rayleigh 

number cRa . If the value of the Darcy-Rayleigh number is 

below cRa  the system will remain stable, however above 

this value the system become unstable and the onset of 
convection will occur. Further for instability to set in as 

over stability the condition
2 0i   is only a necessary 

condition but not sufficient. For this to happen we must 

have the condition that osc stRa Ra , which is observed 

in most of the Figs. 1 (a-h), for small values of a . Further 

from Fig. 1(a-c) we clearly see the points of intersection 

of OSCRa  and stRa  at a particular value of 
*a . If a  is less 

than
*a  then oscillatory convection otherwise convection 

will set in as stationary. Also from the Figs. 1(d-h) we can 
clearly see the bifurcation points where the curves 
corresponding to the oscillatory convection branch off the 
stationary convection curves.  
 From Figs. 1(b) and 1(c) we observed respectively, 

that on increasing   and Q  the value of Ra  increases, 

however it decreases on increasing mechanical 

anisotropy  (Fig. 1(a)). Thus increments in   and Q  

make the system stabilized, however an increment in  , 

makes the system destabilized. From Fig. 1(d), we find 

that the instability sets in from left to bifurcation point as 

over stability and on decreasing the value of the 

relaxation time 1 , the critical value of 
OSCRa  increases 

and thus system becomes more stabilized. However on 

further decreasing the value of  1 , the over stability 

shifts towards right and the critical value of 
OSCRa  

further decreases. In Figs. 1(e-h), we find qualitatively 

similar results to Fig. 1(d) as here also the instability sets 

in as over stability form left to the bifurcation point. 

However OSCRa  increases on increasing the values of the 

parameters 2 ,  , mP  and  , thus stabilizing the 

system. 

 Weakly nonlinear stability analysis of the problem is 

carried out using truncated representation of the Fourier 

series and the informations regarding the rate of heat 

transfer across the porous layer are obtained. The effect 

of time on Nusselt number is also investigated by 

considering nonlinear, unsteady problem. At the end we 

obtained some graphs for the steam lines, isotherms and 

the magnetic stream lines. 

 First we investigate the nonlinear steady problem, and 

present the results in Figs. 2(a-d). In these figures, we 

depict the variation in Nusselt number Nu  with respect 

to the Darcy Rayleigh number Ra  for different values of 

the mechanical anisotropy  , thermal anisotropy  , 

Darcy-Chandrasekhar number Q  and the magnetic 

Prandtl number mP  respectively. From these figures, we 

find that the value of the Nusselt number Nu  increases 

on increasing the value of Ra , which shows that heat 

transfer across the porous layer increases on increasing 

the value of Ra .  

 

       

Fig. 2(a): Variation of Nu with wave number Ra  
. 

 
 

              Fig. 2(b): Variation of Nu with wave number Ra . 
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Fig. 2(c): Variation of Nu with wave number Ra . 
 

 
 

Fig. 2(d): Variation of Nu with wave number Ra . 

 
However when the value of Ra  is sufficiently large, the 

value of Nu  becomes almost constant i.e. beyond a 

certain value of Ra , the heat transfer across the porous 

layer remains constant. In Fig. 2(a), we exhibit the effect 

of  on heat transfer. From the figure we see that when 

Ra  < 1150, the value of Nu  decreases on increasing  , 

at about Ra  = 1150 the value of Nu  becomes almost 

same and when Ra  > 1150, Nu  increases with 

increasing  . This shows that the effect of mechanical 

anisotropy   is to suppress the convection initially and 

then advance it. In Figs. 2(b) and 2(c) we display the 
effects of thermal anisotropy η and Q on the Nusselt 
number Nu. From the figures, we observe that on 
increasing the value of   and Q , the value of Nu  

decreases, thus decreasing the rate of heat transfer 
across the porous medium. Further in Fig. 2(d), we obtain 
qualitatively similar result as shown in Fig. 2(a), for 

different values of magnetic Prandtl number mP . 

Here we discuss the transient behavior of the system by 
solving the autonomous system of ordinary differential 
Eqs. (56)-(61) numerically, using Runge −Kutta−Gill 

Method, and calculate Nusselt number Nu  as function 

of time t . The Figs. 3 (a-i) depict the response of the time

t corresponding to the Nusselt number Nu to variation in 

one of the parameters, while the others are held fixed at 
their respective values; 
 

1 20.2, 1.0, 0.6, 0.4mP       

0.2, 0.6, 20, 1.6Q      and 200Ra   

 

 
 

Fig. 3(a): Variation of Nu with wave number t . 

 

 
 

Fig. 3(b): Variation of Nu with wave number t . 
 

 
 

Fig. 3(c): Variation of Nu with wave number t . 
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Fig. 3(d): Variation of Nu with wave number t . 
 

 
 

Fig. 3(e): Variation of Nu with wave number t . 
 

 
 

Fig. 3(f): Variation of Nu with wave number t . 
 

 
 

Fig. 3(g): Variation of Nu with wave number t . 

 
 

Fig. 3(g): Variation of Nu with wave number t . 
 

 
Fig. 3(h): Variation of Nu with wave number t . 

 

 
         

               Fig. 3(i): Variation of Nu with wave number t . 
 
It is found from the figures that initially the value of the 

Nusselt number Nu  is 1 at t = 0. It increases and 

oscillates at intermediate values of time t , and then 

becomes almost constant and approaches the steady 
state value at very large value of time t . The effects of 

various parameters on the Nusselt number Nu  for 

unsteady case are found to be the same as that for steady 
state case.  

 In Figs. 4(a-b), we draw streamlines for 10Q   and 

100Q   at 0.3, 0.5, 0.9mP     . From these 

figures, we see that stream lines are equally divided.  
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x       
0.3, 0.5, 0.8Pm    

 
 

Fig 4(a): Stream lines for 
10Q 

. 
 

 

x       
0.3, 0.5, 0.8Pm    

 
 

Fig 4(b): Stream lines for 
100Q 

. 
 

The effect of increasing the Darcy-Chandrasekhar number

Q  is to decrease the wavelength of the cells, thereby 

contracting the cells. Isotherms are drawn in Figs. 5 (a-b) 

for 10Q   and 100Q  . 

 

x       
0.3, 0.5, 0.8Pm    

 
 

Fig 5(a): Isotherms for 
10Q 

. 

 
0.3, 0.5, 0.8Pm    

 
 

Fig 5(b): Isotherms for 
100Q 

. 
 

We observed that isotherms are almost horizontal at the 
boundaries and oscillatory in the middle of the porous 
layer, thus showing conductive nature at the boundaries 
and convective behavior in the middle of the system. The 
isotherms become more oscillatory in nature on 

increasing the value of Q . Magnetic stream functions are 

drawn in Figs. 6(a-b).  
 

 

                             x       
0.3, 0.5, 0.8Pm    

 

    Fig. 6(a): Magnetic stream function for 
10Q 

. 
 

 

                       x       
0.3, 0.5, 0.8Pm    

 

Fig. 6(b): Magnetic stream function for 
100Q 

. 



Jogendra Kumar                                                                                  Weakly non-linear magnetoconvetion in a viscoelastic fluid saturating a porous medium 

 

268 | Int. J. of Multidisciplinary and Current research, Vol.3 (March/April 2015) 

 

Here also we observed that the effect of increase in the 
magnitude of the magnetic field is to contract the cells, 
thereby reducing the wavelength of the cells. Further in 
Figs. 7-9, which are drawn at P m = 0.3 and P m = 0.6, 
respectively for streamlines, isotherms and magnetic 
streamlines, we find qualitatively similar results to Figs. 4-
6. Also we calculated the results for velocity streamlines, 
isotherms and magnetic streamlines in unsteady case and 
found that when t is very large, these results approach 
those which are presented in the figures 4-9. 
 

 

x       
20, 0.5, 0.8Q    

 
 

Fig. 7(a): Stream lines for 0.3Pm  . 
 

 

x       
20, 0.5, 0.8Q    

 
 

Fig. 7(b): Stream lines for 0.6Pm  . 

 

x       
20, 0.5, 0.8Q    

 

Fig. 8(a): Isotherms for 0.3Pm  . 

 

x       
20, 0.5, 0.8Q    

 
 

Fig. 8(b): Isotherms for 0.6Pm  . 
 

 

x       
20, 0.5, 0.8Q    

 
 

Fig. 9(a): Magnetic Stream functions for 0.3Pm  . 
 

 

                              x       
20, 0.5, 0.8Q    

 

Fig. 9(b): Magnetic Stream functions for 0.6Pm  . 

 
Conclusion 
 
The effect of magnetic field on the onset of convection in 
an anisotropic horizontal porous layer saturated with 
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viscoelastic fluid has been investigated. The problem has 
been solved analytically, performing linear and weakly 
nonlinear analyses. The results have been obtained for 
steady and non-steady case. The following points have 
been observed: 
 
1. We obtain both stationary as well as oscillatory 
convection, depending on the values of the parameters. 
2. In linear analysis, the effect of increasing the values of 

  is found to decrease the value of Ra  thus advancing 

the onset of convection. 
 

3. The effect of increasing the values of   and Q  is 

found to increase the value of Ra  thus delaying the 

onset of convection. 
 

4. The critical value of 
oscRa  increases on decreasing the 

value of the relaxation time 1  and on increasing the 

value of retardation time 2 . 

 

5. For nonlinear, steady motion, the effects of , ,Q   

and mP  are found to suppress the convective flow since 

the value of Nu  decreases on increasing the values of 

, ,Q   and mP . 

 
6. In nonlinear unsteady motion the effects of increasing 

,   and Q  are to reduce the heat transfer, thus 

suppressing the convection, however the effects of 1  

and 2  are found to enhance the heat transfer. 

Furthermore the value of Nu  approaches the steady 

value for large value of t . 

 

7. Finally we find that the effect of increasing Q  and mP  

is to decrease the wavelength of the cells thereby 
contracting the cells. Further isotherms are found to be 

more oscillatory in nature on increasing Q  and mP . 

 
Appendix A 
 

   

   

2 2 2 2 2 2 2 2
1 1

2 2 2 2 2 2 2
1 2

1
'

1

i i

i

A a a a

a a a

      


        


               

             

          (A1)   

  2 2 2 2 2' m iB P a a                                       (A2) 

                                                                                           

   

   

2 2 2 2 2 2 2
1 2

2 2 2 2 2 2 2
1 1

1
C'

1

i

i

a a a

a a a

       


       


               

             

              (A3)   

   2 2 2 2D' mP a a                             (A4)                                                                                                      

3 2 3 2 2
1 1 2 2 1

1
K Ta a      



 
   

 
                              (A5)                                                                                               

   

   

2 2 2 2 2
2 1 2 1 2 1 2

2 2 2 2 2 2 2
1 2 1 2

2 2 2
1 2

1
2

1
1

1

K Ta a a

a Ta a

Ta a

          


        


    


                

              

  
   
  

    (A6) 

 

   

2 2 2 2 2
3 1 2

2 2 2 2 2
1 2

1
2

1
1

K a Ta a

a Ta a

      


      


  
      

  

             

   (A7)                          

 
Acknowledgments 
 
Author is grateful to Dr. B. S. Bhadauria, Professor, 
Department of Mathematics, Faculty of Science, Banaras 
Hindu University for his valuable suggestions. 

 
References 

 
[1]. Alchaar, S., Vasseur, P., Bilgen, E. ,(1995a), Effect of a 

magnetic field on the onset of convection in a porous 
medium, Heat Mass Transfer, Vol. 30, pp. 259-267. 

[2]. Alchaar, S., Vasseur, P., Bilgen, E., (1995b), 
Hydromagnetic natural convection in a tilted rectangular 
porous enclosure, Numer. Heat Transfer, Vol. A27, 
pp.107-127. 

[3]. Bhadauria, B.S. ,(2008a), Combined effect of 
temperature modulation and magnetic field on the onset 
of convection in an electrically conducting fluid-
saturated porous medium, ASME J. Heat Transfer, Vol. 
130(5), pp. 0526(1- 9) 

[4]. Bhadauria, B.S., Sherani, Aalam, (2008b), Onset of Darcy-
convection in a magnetic fluid-saturated porous medium 
subjected to temperature modulation of the  
boundaries, Transp Porous Med. Vol. 73, pp. 349-368,. 

[5]. Bian, W., Vasseur, P., Bilgen, E., (1996a), Effect of an 
external magnetic field on buoyancy driven flow in a 
shallow porous cavity, Numer. Heat Transfer, Vol. A29, 
pp. 625-638. 

[6]. Bian, W., Vasseur, P., Bilgen, E., F. Meng ,(1996b), Effect 
of an electromagnetic field on natural convection in an 
inclined porous layer, Int. J. Heat Fluid Flow, Vol. 17, pp. 
36-44. 
Borglin, S. E., Moridis, G. J., Oldenburg, C. M., (2000), 
Experimental studies of flow of ferrofluid in porous 
media, Transp. Porous Media, Vol. 41 pp. 61-80. 

[7]. Desaive, T., Hennenberg, M., Dauby, P. C., (2004),  
Stabilite thermomagne to convective d’un ferrofluide 
dans une couche poreuse en rotation, Mecanique & 
Industries, Vol. 5, pp. 621-625. 

[8]. Green, T.,(1968), Oscillating Convection in an 
elasticviscos Liquid, Phys. Fluids, Vol. 11 pp. 1410 



Jogendra Kumar                                                                                  Weakly non-linear magnetoconvetion in a viscoelastic fluid saturating a porous medium 

 

270 | Int. J. of Multidisciplinary and Current research, Vol.3 (March/April 2015) 

 

[9]. Herbert, D. M., (1963), On the stability of vis co-elastic 
liquids in heated plane Couette flow, J. Fluid Mech., Vol. 
17, 353-359. 

[10]. Horton, C.W. Rogers, F.T., (1945), Convection currents in 
a porous medium, J. Appl. Physics,16, 367-370. 

[11]. Ingham, D.B., Pop, I.,  (2005), Transport Phenomena in 
Porous Media, Elsevier, Oxford, Vol. III 

[12]. Lapwo o d, E.R., (1948),Convection of a fluid in a porous 
medium, Proc. Camb.Phil. So c., 44, 508-521. 

[13]. Laroze, D., Martinez-Mardones J., Bragard, J., (2007), 
Thermal convection in a rotating binary vis co elastic 
liquid mixture, Eur. Phys. J. Sp ecial Topics 146, 291-300. 

[14]. Long-Jye Sheu, Lap-Mou Tam, Juhn-Horng Chen, H sien-
Keng Chen, Kuang-Tai Lin, Yuan Kang, (2008), Chaotic 
convection of visco elastic fluids in porous media, Chaos, 
Solutions and Fractals 37 , 113-124. 

[15]. Malashetty, M.S., Swamy Mahantesh, (2007), The onset 
of convection in a viscoelastic liquid saturated 
anisotropic porous layer, Transp Porous Med., 67, 203-
218. 

[16]. Min Chan Kim, Sang Baek Lee, Sin Kim, Bum Jin Chung, 
(2003), Thermal instability of viscoelastic fluids in porous 
media, International Journal of Heat and Mass Transfer, 
46, 5065-5072. 

[17]. Nield, D.A., Bejan, A., (2006),  Convection in Porous 
Media, 3rd ed., Springer Verlag, New York. 

[18]. Oldenburg, C. M., Borglin, S. E., Moridis, G. J.,(2000), 
Numerical simulation of ferrofluid flow for subsurface 
environmental engineering applications, Transp. Porous 
Media, Vol. 38, pp. 319-344. 

[19]. Patil, R. Prabhamani, Rudraiah, N. ,(1973),  Stability of 
Hydromagnetic Thermo convective Flow through porous 
medium, Trans. ASME J. Appl. Mech., Vol. E40, pp. 879- 
884. 
Rudraiah N., Kaloni P. N., Radhadevi P. V., (1989), 
Oscillatory convection in a visco elastic fluid through a 
porous layer heated from b elow, Rheol. Acta, 28, 48-5 

[20]. Rudraiah N., Radhadevi P.V., Kaloni P.N., (1990), 
Convection in a viscoelastic fluid-saturated sparsely 
packed porous layer, Can. J. Phys. 68, 1446-1453. 

[21]. Vafai, K.,  (2006), Hand book of Porous Media, Taylor & 
Francis, London / CRC, Bo ca Raton, FL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[22]. Rudraiah, N., Vortmeyer, D.,(1978),  Stability of finite-
amplitude and overstable convection of a conducting 
fluid through fixed porous bed, WarmeStoffubertrag., 
Vol. 11, pp. 241-254. 

[23]. Rudraiah, N., (1984), Linear and non-linear 
megnetoconvection in a porous medium, Pro c. Indian 
Acad. Sci.(Math. Sci.), Vol. 93, pp. 117-135. 

[24]. Saravanan, S.,Yamaguchi, H., (2005), Onset of centrifugal 
convection in a magnetic-fluid-saturated porous 
medium, Physics Fluids, Vol. 17, pp.1-9(084105). 

[25]. Sastry, S.S., (1993), Introductory Methods of Numerical 
Analysis (2nd edition), Prentice-Hall of India Private 
Limited, New Delhi,. 

[26]. Sekar, R., Vaidyanathan, G., Ramanathan, A.,  (1993a), 
The ferro convection in fluids saturating a rotating 
densely packed porous medium, Int. J. Engng. Sc., Vol. 
31(2), pp. 241-250. 

[27]. Sekar, R., Vaidyanathan, G.,  (1993b), Convective 
instability of a magnetized ferrofluid in a rotating porous 
medium, Int. J. Engng. Sc.,Vol. 31(8), pp.1139-1150. 

[28]. Sunil, Divya, Sharma R.C., (2005), The effect of magnetic 
field dependent viscosity on thermosolutal convection in 
a ferromagnetic fluid saturating a porous medium, 
Transp. Porous Media, Vol. 60 pp. 251-274 (2005). 

[29]. Sunil, Divya, Sharma, R. C., (2004), Effect of rotation on 
ferromagnetic fluid heated and saluted from below 
saturating a porous media, J. Geophys . Eng., Vol. 1, pp. 
116-127. 

[30]. Wallace, W. E., Pierce C. I., Sawyer, W. K., (1969), 
Experiments on the flow of mercury in porous media in a 
transverse magnetic field, Re p ort RI-7259(PB-184327), 
Bureau of Mines, Washington D.C., pp. 18 

[31]. Tan Wenchang, Masuoka Takashi, (2007), Stability 
analysis of a Maxwell fluid in a porous medium heated 
from below, Physics Letters A, 360, 454-460. 

[32]. Yo on, D.Y., Kim, M.C., Choi, C.K., (2004), The onset of 
oscillatory convection in a horizontal porous layer 
saturated with viscoelastic liquid, Transport Porous 
Media, 55, 275-284. 

 
 
 
 
 


