

412|Int. J. of Multidisciplinary and Current research, March/April 2015

International Journal of Multidisciplinary and Current Research

Research Article

 ISSN: 2321-3124

 Available at: http://ijmcr.com

Java 8 New Features Improvements and Complications

Jaza Mahmood Abdullah, Mohammed Anwar Mohammed and Danial Abdulkareem Muhammed

University of Sulaimani\Computer Science Department, Statistics & Computer, Iraq

Accepted 04 May April 2015, Available online 13 May 2015, Vol.3 (May/June 2015 issue)

Abstract

This paper will discuss the last version of JDK platform (JDK 8). As well as, it compares this new version with the previous
versions of JDK and showing the change made in java 8 memory management. In addition, this paper aimed to present
the advantages and disadvantages of the new features of JDK8. Nowadays, java language is used by many
programmers to develop their projects. Therefore, appearing new advancements in java platforms are lead to change
developer's attitudes about using such language. This paper tries to answer the questioning that whether these
improvements have positive or negative effects on the experienced programmer's point of views.

Keywords: JDK 1.8, JVM, Stream, Lambda Expressions, Type annotations, Reflection.

1. Introduction

Features advancement of JDK java platform is a
controversial among many java developers. Acronym of
Java Development Kit is JDK. Constructing application,
applets, and components using the Java programming
language needs JDK which is an environment growth for
them [1]. Programs written in the Java programming
language and running on the Java platform can be
developed and tested by tools are involved in the JDK [1].
There are many versions of JDK for instance, JDK 5.0
which presents a number of new extensions to the Java
programming language. Introducing generics is one of
these features [2].Abstracting over types is permitted by
generics. Container types are the best illustrations, such
as those in the Collections hierarchy [2].
 Next version JDK 6.0 was released with new ability
such as Scripting gives the capability of mixing
JavaScript technology source code, which makes a better
prototype. Database is another feature, when database
application is developed; finding and configuring JDBC
database is no more need. Nevertheless, efficient JDBC
4.0, an API with lots of vital advancements will also
achieve. such as exceptional care for XML as an SQL data
type and enhanced addition of Binary Large OBjects
(BLOBs) and Character Large OBjects (CLOBs) into the
APIs [3]
 Before the latest version was JDK 7 that conceded
many new features such as using Strings in Switch
Statements. It is case sensitive and compared to if-then-
else statement it is more competent. Superior care for
Linux fonts: five logical fonts from the time when Java
1.0necessary to be mapped for physical fonts such as
Serif, Sans-serif, Monospaced, Dialog, and DialogInput [3].

Today, many developers use java programming language
in developing their projects. Java users work with this
language five days a week around eight hours a day. From
this point, improvements in the features of java platform
have impact on both expert programmers and beginner
of this language. The experts believe that the new
features help them to do a lot of work within a shorter
time and less effort. Expert’s point of views comes from
their familiarity with almost all features of the different
levels of JDK platform. Hence, old users of java language
have positive attitudes with inventing new capabilities for
JDK platform in order to be simpler, easier, and
convenience. Inversely, new features of the java platform
for the beginner of this language might create negative
attitudes while they have lack of experience and of none
verbose in writing programs.
 Recently, new version of JDK 1.8 (Java Development
Kite) has been released by Oracle (Oracle Corporation)
with many enhancement and advancement. For example,
lambda, expression, Stream, Base64 and From Permanent
Generation to Metaspace.
 In this paper, the cons and pros of the new JDK
features will be discussed. Moreover, it illustrates the
impact of these new features on learning curve of new
programmers, furthermore, questioning that whether
these improvements have positive or negative effects on
the experienced programmer.

2. Literature Review

A. Lambda Expressions

One of the most controversial and significant upgrade
that have made in java 8 model is a Lambda Expression; is

http://www.oracle.com/technetwork/articles/javase/beta2-135158.html

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

413 | Int. J. of Multidisciplinary and Current research, March/April 2015

the most important theme and probably the greatest
awaited feature for Java developer. Arguably, the highest
motivation behind lambda feature is the hardware trend
of going towards multi-core. Hardware designers prefer
parallel approaches and software developers need to
utilize the features of the underlying hardware [4] [5] [6].
 On the other hand, all Java developers are not

convinced of their usefulness. In particular they think

adding new functional features to Java could be a

mistake, because they argue that this could lead of

compromising it is imperative and tough object oriented

nature. [1][2] [4] [5]

 Lambda Expression are anonymous methods for

representing behavior as data, also known as closure,

“This enables the development of libraries that do a

better job of abstracting over behavior, which in turn

leads to more-expressive, less error-prone code” As Brian

Goetz, Oracle’s Java language architect explained [4][5].

In this section, lambda expression will be discussed with

straightforward examples. Also shows how much the Java

core has been upgraded to support more-query-like

calculations over collections.

Lambda Expression has this syntax (argument(s)) ->

(body) for instance

In term of parameters, lambda expression may have
none, one or more parameters. Also parameters enclosed
in parentheses are separated by comma as usual,
parameters type might be declared explicitly or they can
be inferred from the context. Moreover, the body of
lambda expression may include of more than one line of
code, if the body is consisted of a single statement then
curly brackets are not mandatory.

Also considered as a valid lambda expression, here are
some other examples:

Using lambda expression makes code statements shorter,
which make codes more clear, readable and easier for
maintenance. For example, handling events in swing:

However, these shorten in code statements come with
some complications in JVM (Java Virtual Machine),
because of the complex lambda nested structure, these
complications can be understood during exception
handling and error tracking. For example, when the line
numbers from the stack traces correlated to the source
code, much longer synthetic call stacks can be seen
compared to the older version of java. As a result, tracing
the cause of the exception will no longer be easy for the
developers as used to be [7].

B. Stream

The verbose way to express the iteration of a collection
can be considered as shortcomings of Java before JDK 8.
Moreover, the fact that collection can only be
manipulated through iterators (for-loops, while-loops or
manually) was frustrating the java developers. Example
below shows how to iterate list of employees as we used
to do before java 8.

Fortunately, JDK 1.8 comes with Stream API
package (java.util.stream) known as the Stream interface.
It outlines a list of operators of several different
categories. Each of these operators are usually functional
interfaces and takes zero or more arguments, in this way,
they can be expressed with lambda expressions [8]. By
using combination of stream function with lambda
expressions previous example can be expressed as follow.

Also, the result of iteration can be collected as shown
below, since stream does not offer any mechanism for
storing these results. The Collectors class have used, it
contains many common collectors; toList() and toSet() are
the most frequently used, nonetheless, there are many
other collector methods that can be used to perform
sophisticated transforms on the data [9].

http://lambdadoc.net/api/index.html?java/util/stream/package-summary.html
http://lambdadoc.net/api/index.html?java/util/stream/Stream.html

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

414 | Int. J. of Multidisciplinary and Current research, March/April 2015

C. Base64

It is describe a standard API in JDK 1.8 for Base64
encoding and decoding. Java programmers have had to
depend on third-party libraries for encoding and decoding
Base-64. Because these encoding schemes are often used
to encode binary/octet sequences, which then
transmitted as a textual data. It is regularly used by
applications using Multipurpose Internal Mail Extensions
(MIME), encoding passwords, message and others. Thus a
project might contain several different implementations
of Base64. For instance: Spring, Guava and Apache
commons-codec have separate implementations [10].

Now, Java 8 has it is own Base64. Which is
java.util.Base64; it has been designed to acts as a factory
for Base64 encoders and decoders. Here are some
methods that offered by Base64 class.

D. From Permanent Generation to Metaspace

Another significant improvement was made in memory
management. Pre-java 8 developers have to deal with
OutOfMemoryError sometimes, due to the permanent
generation (PermGen) space depletion of the HotSpot
VM. Usually, this exception pops out because of dynamic
re-deployments of the application. For example, load and
unload of the Java EE application from the application
server, which might triggering Class metadata leak;
eventually lead to the complete depletion of the fixed
PermGen space.
 Now, HotSpot JVM in java 8 uses native memory for
representing the class metadata instead of PermGen, as it
has used separate memory from native memory (C heap).
Removing PermGen space means configuration and
tuning of this memory space via -XX:MaxPermSize and –
XX:PermSize will no longer needed. Subsequently, the
Class metadata will be relocated to the native memory
and OldGen space [11] [12]. Figure () shows the change
made in java 8 memory management.

Figure 1: Java Memory Management comparison [27]

E. Default methods on interfaces

Basically, in the pre-Java 8, interfaces can only declare a
method without implementing it. Nevertheless, it can
now implement methods; these methods are called
Default methods, or as they are often called Virtual
extension methods. As a result, it’s possible to add a new
default method to the interface without breaking the
implementations [6].

From here, it is possible to call defaultMethod from class
Test without implementing it, since it has been
implemented inside A interface class.

Now, the question might come “what will happen if there
are two interfaces with the same method name?”,
considering previous example, let say interface B also
created as follow:

Result, completion error with this message

This is because class Test has implemented both interface
A and B, therefor, the compiler cannot decide which one
to choose, the error can be resolved by overriding the
conflicting method manually and refer to the targeted
interface method. For instance, the defaultMethod of
interface A can be summoned as follow: [6] [13]

F. Interface static methods

Static methods are very much like to default methods
which has been explained in previous section, with the

http://en.wikipedia.org/wiki/Base64

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

415 | Int. J. of Multidisciplinary and Current research, March/April 2015

exception of overriding features. No more method
overriding capability will helps to avoid undesired results
of weak implementation in child classes.

Below additional class with poor implementation of
isNull() method.

If annotation sign @Override added to the isNull()

method in the Address class. Consequently, it will result in

compiler error. That is because isNull(String data) is

just a simple class, not an override method. After running

the above code the result will be:

In case the interface method has changed from static to
default, the output will be completely dissimilar.

That is because the static methods are accessible to
interface methods only. Moreover, if the isNull() method
removed from the Address class, Address object cannot
use it any more. However, interface static methods can

be accessed by using its class name as used to be in pre-
java 8 [13].

G. Type annotations

It is one of the features of Java with some improvements
in Java SE 8, prior to Java SE 8 declarations was the only
place in program for applying annotations. Since the new
release annotation can be used whenever a type used.
For instance, it can be used with the new keyword, casts,
throws and implements clauses [14].

Type definition with annotations [15]

Constructor with annotations [15]

Type casts with annotations [15]

Stronger type checking was the main aim of creating type
annotations. However, type checking framework dose not
supported by Java SE 8, it only allows the programmer to
write or download a type checking framework that is
implemented as one or more pluggable modules that are
used in combination with the Java compiler [14].

H. Reflection

Reflection can provide Java programmers the power of
inspecting interfaces, classes, methods and fields at
runtime, without having information about their names at
compile time [17]. In addition, it is usually used by
programs which require the capability to change the
runtime activities of applications running in the Java
virtual machine [17]. Also, it helps retrieving the
definition of final or protected members, with the ability
to remove the protection and use it as if it had been
declared variable. However, this ability makes many
guarantees of the program to be weakened [18].
 Additionally, it is a powerful technique which is
recommended to be used by developers who have a great
knowledge of the fundamentals of the language [17].
Moreover, a useful usage of reflection is when writing a
framework, which deals with the user-defined class
without knowing what the members or class will be [18].
Furthermore, class inspection is often the first thing a
programmer can do when using Reflection, then from the
class information about class name, class modifies (public,

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

416 | Int. J. of Multidisciplinary and Current research, March/April 2015

private, synchronized), package, super class,
implemented interfaces, constructors, methods, fields
and annotations can be obtained [16]. Before performing
any inspection the java.lang.Class object must be
obtained, which is associated with any all types in Java
[16]. In order to get the class of an object one of these
methods can be used [19]:

1. Static variable class.
2. getClass() method of object.
3. java.lang.Class.forName(String ClassName).

Using Class.forName()

Getting the full class name including package name [16]

Getting only the class name [16]

Accessing the class methods [16]

The new Java SE 8 allows a new call for getParameters()
which returns an array of parameter objects, also the
method getName() can be called on the parameter’s
object [20]. Although it is preferable to not use reflection
indiscriminately, the following titles should be concerned
once accessing a code via reflection [17].

 Performance overhead: While using reflection some
JVM optimizations cannot be completed, due to the
involving of dynamically resolved types. As a result,
reflective operations have slower performance than
their non-reflective counterparts.

 Security restriction: Runtime permission is required
for reflection which may not be allowed under a
security manager. Therefore, codes that run in a
restricted security context must be considered, for
instance, an Applet.

 Exposure of Internals: Reflection may cause code to
be dysfunctional, since it performs operations which
may be not allowed in non-reflective code such as
accessing private fields and methods.

I. Compact Profiles

It was first introduced in Java SE 8 in order to reduce the
memory footprint of applications that run on resource-

constrained devices, because it is a subset of the full Java
SE platform API [21]. Additionally, Java SE 8 has released
three Profiles which are compact1, compact2 and
compact3. They are organized in additive order, which
means that the last Profile contains all the APIs of the
previous smaller Compact Profiles and adds proper APIs
on top when used. Also the second Profile has all the APIs
of first Profile with other additional APIs, whereas, it
contains less APIs comparing to the third Profile. In
addition, this ordering helps reducing memory usage by
the applications. For instance, if an application does not
require Swing/AWT/2D graphics libraries, it uses a profile
which does not contain those libraries [22]. Nonetheless,
Compact Profiles deal only with the API choices; they are
independent from the Java virtual machine, the language
proper, or tools. The bellow table shows the high-level
structure of the Compact Profiles:

J. Advantages of Compact Profiles

The main inspiration of releasing Compact Profiles is

running applications on resource-constraint devices,

without using the complete Java SE platform [22], as

consequence of this advantage other benefits can be

derived, such as, increasing performance and start up

time, reducing unused code is an admirable idea from a

security perspective, and helps downloadable

applications to be downloaded quickly [23].

Date and Time

A new Date and Time API has been introduced in Java 8,

which is easier to read, safer and more comprehensive

than the previous API. The implementation of Calendar

class was not improved enough since its introduction;

nevertheless, the introduction of new API Joda-Time was

a great replacement for it. On the other hand, the new

Date and Time API has initialized many different classes to

represent time, date, time period, and time zone specific

data, besides there are transformers for dates and times

[24].

Prior to Java 8 getting date and time was as follow:

Using Date Class Prior to Java 8

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

417 | Int. J. of Multidisciplinary and Current research, March/April 2015

Table 1: High-level composition of the Compact Profiles
[8]

Using Calendar class prior to Java 8

In Java 8 these classes are used for getting dates and
times:

 LocalDate - Day, month and year without time zone.

 LocalTime - Time of day only without time zone.

 LocalDateTime - Both date and time without time

zone.

 ZonedDateTime- For timezone specific time.

Previous to Java 8, in order to calculate the time eight
hours in the future the bellow would be written:

Calculating eight hours in the future before Java 8 [24]

In Java 8 it can be done simply like the following:

Calculating eight hours in the future using Java 8 [24]

There are also methods such as plusDays, plusMonths,
minusDays, and minusMonths. For instance:

Using different methods [24]

Since the new Date and Time types are immutable, each
method returns a different instance of LocalDate, and the

original instance, today, remains unchanged. As a result,
it allows them to be thread-safe and cacheable.
 In Java 8 a number of enums for representing days
and hours has been introduced such as
java.time.temporal.ChronoUnitinstead of using constant
integers as used in Calendar API. In addition, Clock class
can also be used in combination with dates and times.
Moreover, Period and Duration is another feature of Java
8 for representing time differences as humans
understand them. Period is a date-based amount of time,
for instance, ‘4 years, 1 month and 8 days’. Duration is a
time-based amount of time, for example, ‘25.8 seconds’.
Additionally, for determining Periods and Durations the
between method is used, also they can be subtracted or
added to Java 8 date types. [24].

Using between method for determining Periods and
Durations [24]

Creating durations [24]

Adding Duration to the LocalTime [24]

Furthermore, TemporalAdjuster is another class which is
introduced in Java 8, used to do tricky date “math” that is
popular in business applications, for instance, finding the
next Tuesday or first Tuesday of the month. It contains
many useful methods for creating TemporalAdjuster, such
as:

 firstDayOfMonth()

 firstDayOfNextMonth()

 firstInMonth(DayOfWeek)

 lastDayOfMont()

 next(DayOfWeek)

 nextOrSame(DayOfWeek)

 previous(DayOfWeek)

 previousOrSame(DayOfWeek)

TemporalAdjuster uses with method, which returns a
modified copy of the date-time or date object. For
example:

Using with method [24]

Java 8 provides developers to work on Time Zones by
using a new class known as ZoneId. There are two kinds of

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

418 | Int. J. of Multidisciplinary and Current research, March/April 2015

ZoneIds, geographical regions and fixed offsets. This is to
compensate for things like “daylight saving time” which
can be very complex.

An example of getting ZoneId instance [24]

Optional

In order to avoid null return values (and as a consequence
NullPointerException) the new Java SE 8 has introduced a
new class called Optional in the java.util package. The key
point of Optional is to provide a means for a function
returning a value to denote the absence of a return value.
In addition, Optional has many helpful static, instant and
concrete methods for dealing with missing values such as
[24]:

 Optional.of(x) wraps a non-null value.

 Optional.empty() represents a missing value.

 Optional.ofNullable(x) creates an Optional from a

reference that may or may not be null.

 isPresent() determines if the there is a value.

 get() gets the value.

 orElse(T) returns the given default value if the

Optional is empty.

On the other hand, others are arguing that Optional is
only a wrapper that has a reference to some other object
and is not close to being a solution for
NullPointerExceptions. Additionally, it increases the heap
size, makes debugging more difficult, throws
NullPointerExceptions and Can itself be null, causing a
NullPointerException [25].

Nashorn

Nashorn is a JavaScript engine which released in Java SE 8
and it replaces Rhino as the default JavaScript engine for
the Oracle JVM [26]. In addition, it is has a better
performance because of the using of invokedynamic
feature of the JVM. It includes a command-line tool (jjs)
which is located in $JAVA_HOME/bin [24]. Moreover,
Nashorn can be used as a standalone engine using the
command-line or it can be used as an embedded scripting
engine inside Java applications. Java and JavaScript can
work interoperability; Java types can be implemented and
extended from JavaScript.

Using jjs to find the sum of numbers

Running JavaScript from Java

The output will be “Hello Nashorn”. However, the typical
variables which are available in browsers such as window
and document are not available here [24].

Using Java in jjs
3. Discussion

For every major JDK release, there are two sides must be
addressed, firstly, bright side which is been discussed
previously in this paper, secondly the dark side which it
will be debated in this section. Over all, JDK 8 is a great
successful improvement of java. However, before getting
too much enthusiastic about it, one must admit that some
of the newly placed futures were already existed in other
languages, for instances, lambda expressions were exist in
Java script, the first mainstream language. Here are some
minor disadvantages:

 It is true that lambda expression has shortened the

program lines. However, these shorten in code

statements come with some complications in JVM

(Java Virtual Machine), because of the complex

lambda nested structure, these complications can be

understood during exception handling and error

tracking. For example, when the line numbers from

the stack traces correlated to the source code, much

longer synthetic call stacks can be seen compared to

the older version of java. As a result, tracing the

cause of the exception will no longer be easy for the

developers as used to be [7].

 Features such as Overloading, generics and varargs

are became even more complicated than ever

before, these might not be an everyday problems,

however, it might lengthen the java learning curve

for the beginners.

 Some keywords are not supported in the default

methods on interfaces, they cannot be finale, and for

example the code blow will not work.

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

419 | Int. J. of Multidisciplinary and Current research, March/April 2015

Also default methods on interfaces cannot be
synchronized,

 Due to not completion of some JVM optimizations

reflective operations are slower than none reflective

operations.

Security considerations must be taken into account, this is
because of reflective requires runtime permissions.

Conclusions

Nowadays, life has become simple and fast compare to
the past. This is also correct in developing system via
different programming languages. Newest versions of
programming languages’ components contain several
features and advancements that give new abilities to the
programming languages for developing system. In this
paper, some of the new features and capabilities of the
latest version of JDK has been presented. Moreover, we
present a brief comparison between the previous version
of the JDK components’ features and the latest version’s
new features. Furthermore, Advantage and disadvantages
of the latest version of this platform were presented and
discussed. Finally, new abilities has been discussed to
show that whether these improvements have positive or
negative effects on the experienced programmer, as well
as to show that whether these advancements have
positive or negative impact on the beginner users of java
programming.

References

*1+ Oracle 2014, README Java™ Platform, Standard Edition 8
Development Kit JDK™ 8 *Online+.Available at
http://www.oracle.com/technetwork/java/javase/jdk-8-
readme-2095712.html [Accessed at 14/02/2015]
*2+ Oracle 2014, The Java™ Tutorials *Online+.Available at

http://docs.oracle.com/javase/tutorial/extra/generics/intr
o.html [Accessed at 15/02/2015]

[3] Slides from deck presented at EclipseCon Europe 2011, on
November 2nd in Ludwigsburg, Germany [Online].Available
at
http://www.oracle.com/technetwork/articles/javase/beta2
-135158.html [Accessed at 15/02/2015]

[4] Mario, F. (2013) Why We Need Lambda Expressions in Java -
Part 1 [Online]. Available at
http://java.dzone.com/articles/why-we-need-lambda-
expressions 03.27.2013 [Accessed at 25/02/2015]

[5] Brian, G. (2014) java magazine, Lambda Expression, pg6
[Online]. Available at http://www.oraclejavamagazine-
digital.com/javamagazine_open/20140304#pg7 [Accessed
at 17/02/2015]

[6] Anton, A. (2013) Java 8 Revealed: Lambdas, Default Methods
and Bulk Data Operations [Online]. Available at
http://zeroturnaround.com/rebellabs/java-8-revealed-
lambdas-default-methods-and-bulk-data-operations/
[Accessed at 19/02/2015]

 [7] Tal, W. (2014) The Dark Side Of Lambda Expressions in Java
8 [Online]. Available at http://www.takipiblog.com/the-
dark-side-of-lambda-expressions-in-java-8/ [Accessed at
20/01/2015]

[8] David, H. (2013) JDK 8 3/3 - The Stream API [Online].
Available at http://blog.hartveld.com/ [Accessed at
20/01/2015]

[9] Brian, G. (2014) Lambdas and Streams in Java 8 Libraries
[Online]. Available at
http://www.drdobbs.com/jvm/lambdas-and-streams-in-
java-8-libraries/240166818?pgno=2 [Accessed at
22/01/2015]

[10] Alan, B. (2014) JEP 135: Base64 Encoding & Decoding
[Online]. Available at http://openjdk.java.net/jeps/135
[Accessed at 08/02/2015]

[11] Pierre, H. (2013) Java 8 : from PermGen to Metaspace
[Online]. Available at
http://javaeesupportpatterns.blogspot.co.uk/2013/02/java
-8-from-permgen-to-metaspace.html [Accessed at
12/02/2015]

[12] Jon, M. (2014) JEP 122: Remove the Permanent Generation
[Online]. Available at http://openjdk.java.net/jeps/122
[Accessed at 17/02/2015]

[13] Pankaj, K. (2014) Java 8 Interface Changes – static methods,
default methods, functional Interfaces [Online]. Available
at http://www.journaldev.com/2752/java-8-interface-
changes-static-methods-default-methods-functional-
interfaces [Accessed at 21/02/2015]

 [14] Oracle. (2014) Type Annotations and Pluggable Type
Systems [Online]. Available at
http://docs.oracle.com/javase/tutorial/java/annotations/ty
pe_annotations.html [Accessed at 23/02/2015]

[15] Michael, S. (2014) Java 8 Type Annotations [Online].
Available at http://java.dzone.com/articles/java-8-type-
annotations [Accessed at24/02/2015]

[16] Jakob, J. (2014) Java Reflection Tutorial [Online]. Available
at http://tutorials.jenkov.com/java-reflection/index.html
[Accessed at25/02/2015]

[17] author. (2014) , Java Reflection Tutorial – List Methods Of A
Class [Online]. Available at
http://sanjaal.com/java/tag/drawbacks-of-java-reflections/
[Accessed at 25/02/2015]

[18] Dec 8 '11 KilianFoth , Why should I use reflection? [Online].
Available at http:// programmers.
stackexchange.com/questions/123956/why-should-i-use-
reflection [Accessed at 27/01/2015]

http://www.oracle.com/technetwork/java/javase/jdk-8-readme-2095712.html
http://www.oracle.com/technetwork/java/javase/jdk-8-readme-2095712.html
http://docs.oracle.com/javase/tutorial/extra/generics/intro.html
http://docs.oracle.com/javase/tutorial/extra/generics/intro.html
http://www.oracle.com/technetwork/articles/javase/beta2-135158.html
http://www.oracle.com/technetwork/articles/javase/beta2-135158.html
http://java.dzone.com/articles/why-we-need-lambda-expressions%2003.27.2013
http://java.dzone.com/articles/why-we-need-lambda-expressions%2003.27.2013
http://www.oraclejavamagazine-digital.com/javamagazine_open/20140304#pg7
http://www.oraclejavamagazine-digital.com/javamagazine_open/20140304#pg7
http://zeroturnaround.com/author/anton/
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-methods-and-bulk-data-operations/
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-methods-and-bulk-data-operations/
http://www.takipiblog.com/the-dark-side-of-lambda-expressions-in-java-8/
http://www.takipiblog.com/the-dark-side-of-lambda-expressions-in-java-8/
https://plus.google.com/115247432224818205222
http://blog.hartveld.com/2013/03/jdk-8-33-stream-api.html
http://blog.hartveld.com/
http://www.drdobbs.com/jvm/lambdas-and-streams-in-java-8-libraries/240166818?pgno=2
http://www.drdobbs.com/jvm/lambdas-and-streams-in-java-8-libraries/240166818?pgno=2
http://openjdk.java.net/jeps/135
http://javaeesupportpatterns.blogspot.co.uk/2013/02/java-8-from-permgen-to-metaspace.html
http://javaeesupportpatterns.blogspot.co.uk/2013/02/java-8-from-permgen-to-metaspace.html
http://openjdk.java.net/jeps/122
http://www.journaldev.com/2752/java-8-interface-changes-static-methods-default-methods-functional-interfaces
http://www.journaldev.com/2752/java-8-interface-changes-static-methods-default-methods-functional-interfaces
http://www.journaldev.com/2752/java-8-interface-changes-static-methods-default-methods-functional-interfaces
http://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
http://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
http://java.dzone.com/articles/java-8-type-annotations
http://java.dzone.com/articles/java-8-type-annotations
http://jakob.jenkov.com/
http://tutorials.jenkov.com/java-reflection/index.html
http://sanjaal.com/java/236/java-utilities/java-reflection-tutorial-list-methods-of-a-class/
http://sanjaal.com/java/236/java-utilities/java-reflection-tutorial-list-methods-of-a-class/
http://sanjaal.com/java/236/java-utilities/java-reflection-tutorial-list-methods-of-a-class/
http://sanjaal.com/java/tag/drawbacks-of-java-reflections/
http://programmers.stackexchange.com/questions/123956/why-should-i-use-reflection

Jaza, Mohammed and Danial Java 8 New Features Improvements and Complications

420 | Int. J. of Multidisciplinary and Current research, March/April 2015

[19] Pankaj Kumar August 3, 2013 [Online]. Available at
http://www.journaldev.com/1789/java-reflection-tutorial-
for-classes-methods-fields-constructors-annotations-and-
much-more#get-class-object [Accessed at 27/01/2015]

[20] Andreas Jan 30 '14, How to get Method Parameter names
in Java 8 using reflection? [Online]. Available at
http://stackoverflow.com/questions/21455403/how-to-
get-method-parameter-names-in-java-8-using-reflection
[Accessed at 25/01/2015]

[21] Oracle. (2014) Compact Profiles [Online]. Available at
http://docs.oracle.com/javase/8/docs/technotes/guides/co
mpactprofiles/compactprofiles.html [Accessed at
20/01/2015]

[22] AJITESH, K. (2014) Why & When Use Java 8 Compact
Profiles? [Online]. Available at http://vitalflux.com/why-
when-use-java-8-compact-profiles/ [Accessed at
05/02/2015]

[23] Jim Connors-Oracle. (2013) An Introduction to Java 8
Compact Profiles [Online]. Available at
https://blogs.oracle.com/jtc/entry/a_first_look_at_compac
t [Accessed at 07/02/2015]

[24] Adam L. (2015) What's New in Java [Online]. Available at

https://leanpub.com/whatsnewinjava8/read#leanpub-

auto-new-date-and-time-api [Accessed at 03/03/2015]

[25] Hugues, J. (2014) Java 8 Optional: What's the Point?

[Online]. Available at http://java.dzone.com/articles/java-

8-optional-whats-point [Accessed at 10/03/2015]

[26] Julien, P. (2014) Oracle Nashorn: A Next-Generation

JavaScript Engine for the JVM [Online]. Available at

http://www.oracle.com/technetwork/articles/java/jf14-

nashorn-2126515.html [Accessed at 15/03/2015]

[27] Mentor, (2014) One important change in Memory

Management in Java 8 [Online]. Available at

http://karunsubramanian.com/websphere/one-important-

change-in-memory-management-in-java-8/ [Accessed at

01/04/2015]

https://plus.google.com/+PankajKumarJ?prsrc=5
http://www.journaldev.com/1789/java-reflection-tutorial-for-classes-methods-fields-constructors-annotations-and-much-more#get-class-object
http://www.journaldev.com/1789/java-reflection-tutorial-for-classes-methods-fields-constructors-annotations-and-much-more#get-class-object
http://www.journaldev.com/1789/java-reflection-tutorial-for-classes-methods-fields-constructors-annotations-and-much-more#get-class-object
http://stackoverflow.com/questions/21455403/how-to-get-method-parameter-names-in-java-8-using-reflection
http://stackoverflow.com/questions/21455403/how-to-get-method-parameter-names-in-java-8-using-reflection
http://stackoverflow.com/questions/21455403/how-to-get-method-parameter-names-in-java-8-using-reflection
http://stackoverflow.com/questions/21455403/how-to-get-method-parameter-names-in-java-8-using-reflection
http://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html
http://vitalflux.com/author/vitalflux/
http://vitalflux.com/why-when-use-java-8-compact-profiles/
http://vitalflux.com/why-when-use-java-8-compact-profiles/
https://blogs.oracle.com/jtc/entry/a_first_look_at_compact
https://blogs.oracle.com/jtc/entry/a_first_look_at_compact
https://blogs.oracle.com/jtc/entry/a_first_look_at_compact
https://leanpub.com/u/adamldavis
https://leanpub.com/whatsnewinjava8/read#leanpub-auto-new-date-and-time-api
https://leanpub.com/whatsnewinjava8/read#leanpub-auto-new-date-and-time-api
http://java.dzone.com/articles/java-8-optional-whats-point
http://java.dzone.com/articles/java-8-optional-whats-point
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
http://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
http://karunsubramanian.com/websphere/one-important-change-in-memory-management-in-java-8/
http://karunsubramanian.com/websphere/one-important-change-in-memory-management-in-java-8/

