

523|Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

International Journal of Multidisciplinary and Current Research

Research Article

 ISSN: 2321-3124

 Available at: http://ijmcr.com

Converting XML Schema into Object-Relational Model with Data Constraints
Preservation

Mustapha Machkour

†‡
, Said Aminzou

ϯ
, Karim Afdel

†‡
, Youness Idrissi Khamlichi

ǂ

†Department of Computer Sciences, Faculty of Sciences, Agadir, Morocco
‡Laboratory of the Computing Systems and Vision, Faculty of Sciences, Agadir, Morocco
ϯ Laboratory of Industrial and Computer engineering, ENSA Agadir, Morocco
ǂDepartment of Computer Engineering, ENSA of Khouribga, Morocco

Accepted 05 June 2015, Available online 11 June 2015, Vol.3 (May/June 2015 issue)

Abstract

XML is widely used for data exchange between systems and applications. XML data are described in hierarchical form
using XML schema languages such as XML DTD (Document Type Definition), W3C XML Schema or XDR (XML Data
Reduced). To make these data accessible to relational database systems, which represent a dominant and efficient tool
for storing and retrieving structured data, schema conversion methods must be developed. The early conversion
methods have focused on mappings between DTDs and relational model. But, due of the needs to hold complex data,
certain relational database builders have evolved their systems into object-relational model. Meanwhile, XML Schema
language developed to describe data in more detail than DTD is a mature technology. So, in this paper we propose a
methodology for translating data described in XML Schema language into object-relational model. This translation
preserves integrity constraints defined in XML Schema and uses composition of conversions.

Keywords: XML Schema, DTD, Data Constraint, Object-Relational Model, Conversion Composition

1. Introduction

XML (Extensible Markup Language) [6] is the de facto
standard for the data exchange between different types
of applications. It would be beneficial to have a method
to store and retrieve XML data as relational data in
relational databases [10] which currently are the most
used type of databases. For this purpose, methods and
algorithms of schema conversion have been developed
[8,18,19]. The first algorithms dealt with XML DTD

1
[7]

schema. However, some relational systems like Oracle
database [12,22,23] PostGres [24] Informix and DB2/IBM,
have added object characteristics and become object-
relational systems.
 Recently, W3C

2
 XML Schema

3
 language [4,16,25],

among other (e.g., XDR
4
[20] and SOX

5
[13]), is increasingly

used to describe XML data. This is due, compared to the
DTD, to its richness in terms of structures, type and
constraints, and the backing of W3 Consortium.
 To follow such changes, the current issue is to
translate XML data described by XML Schema language

1 Document Type Definition.
2
 World Wide Web Consortium.

3 The initial 's' in Schema should be capitalized.
4 XML-Data Reduced.
5 Schema for Object-Oriented XML.

into object-relational schema. Thus, our contribution in
this paper is to propose a new conversion methodology
as solution.
 This methodology is done by using two steps shown in
Figure 1. The XML Schema is first converted into a DTD
schema as an intermediate representation and extended
with the constraints of type, value and structure. We
name this extended DTD schema. This extended DTD,
designated eDTD, is then translated into Object-relational
schema (ORS).

Figure 1 Conversion from XML Schema to Object-
relational schema using DTD

Our rationale for using model composition is as follows:
1) there are software (e.g., Altova XMLSpy, XMLBlueprint
and Netbeans) that enable the mapping from XML
Schema to XML DTD even though they do not consider
type, value and structure constraints, 2) we can learn
from algorithms already developed for mapping XML DTD
into database schema.
 The remainder of this paper is organized as follows.
Section 2 presents an overview of model conversions. In

First step in

Translation

ORS

< >

< >

XML
< >

< >

< >

XML Schema

< >

< >

XML
< >

< >

< >

Extended DTD

Second step in

Translation

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

524 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

Section 3, notions and definitions for describing our
transformations and conversions are given. Steps in our
mapping methodology are described in Sections 4, 5 and
6. The Section 7 concludes the paper.

2. Related work

Many studies have dealt with the conversion between
data models at different levels e.g., conceptual, logical
and physical. Among those, in this paper, we cite the
conversion between: Entity-Relationship and Object-
Oriented models[5], Relational model and XML
schema[8,17], XML DTD and Object Model [1], and, UML
and XML models [9]. There are also tools for converting
XML schema into different XML schema languages (e.g.,
XML DTD and XML Schema).
 In our context, we have closely reviewed algorithms
that have been developed for mapping between XML
(often based on DTD) and relational schemas, and,
between XML DTD and Object-Relational schemas.
 Our work focuses on conversion from XML Schema
into Object-Relational model using DTD schema as
intermediate schema.

3. Definitions and notations

In this section we describe the definitions and notations
from object-relational, XML DTD and XML Schema used in
this paper.

3.1 Object-relational model

According to the standard SQL

6
: 2003 [11,12,14,15,21] a

schema of the object-relational model includes:
- Object types(UDT) with attributes or fields (similar to

classes in object-oriented programming language),
- Reference or Type Reference of an object,
- Collections of objects or collections of object

references (using varying array or nested table
7
),

- Object tables : tables that store objects,
- Generic type,
- Inheritance: for creating type hierarchies.

Below, we use notations similar to those used in context-
free grammar or BNF

8
 (Backus-Naur Form) [3].

3.2 XML DTD

Let E be an XML element, its definition E (E underscored)
is given as follows:

E → <E; Attrs; D>

Figure 2 Definition of XML element using to its DTD.

6 Structured Query Language is a standard language for databases.
7 Terms used in Oracle DBMS.
8 Backus-Naur Form: notation used to describe language grammars.

where
- E : is the name of the element;
- The symbols → denotes a definition or production;
- D: represents the content model of the element E

eventually empty;
- Attrs: is a list containing the attributes of the element

E, i.e.
Attrs → (Attr1, Attr2…).
The definition of "Attrs" that we note Attrs (underlined
Attrs) is given by a list containing the definition of each
attribute of "Attrs". This can be expressed as following:
Attrs →(Attr1, Attr2…).

The Definition of each attribute is as follows:

Attri→<Attri; typeOrValues; Description>

Figure 3 Definition of an XML attribute in terms of its DTD

where
- typeOrValues stands for type of the attribute or list

of values in the XML model;
- The value of Description is given by :

Description→#REQUIRED|#IMPLIED|#FIXED value|value/

Figure 4 Definition of Description for an attribute

Obviously, the Meta symbol "|" denotes the alternative.

3.3 XML Schema

For XML Schema, we give notations for element and type
that represent its fundamental components.
If E is an element in XML Schema, its definition is given by
E (E double underlined):

E→<E; Type>

Figure 5 Definition of XML element in XML Schema.

The "Type" as shown in the following BNF expression,
represents a type of an XML element.

Type→simpleType | complexType | simpleContent |
complexContent

Figure 6 Simplified type in XML Schema

The next sections describe the transformations from XML
Schema to ORM. In this article, we consider XML Schema
in Russian Doll pattern with only one global element, the
root element.

4. Converting XML Schema into Extended DTD

There is several software that map XML Schema into XML
DTD but don't preserve constraints. To remedy this

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

525 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

deficiency we extend the DTD schema to a new XML
schema able to support the constraints. We call this
schema extended DTD (in shortcut eDTD). The purpose of
this section is to show how to map XML Schema into
eDTD.

4.1 Converting XML Schema into Extended DTD

Let E be an element in XML Schema. Its definition is given
by (see Figure 5):
E → <E; Type>.
Let Ψ be a function defined from XML Schema to eDTD.
If E is an element and Attr is an attribute, their images by
Ψ are given by:
Ψ : ,XML Schema language- → ,eDTD language-
 E → Ψ(E) = Eextended

Attr → Ψ(Attr)= Attrextended

Figure 7 Function Ψ from XML Schema to DTD

The expression Eextended is defined as follows:

Eextended →<E; Constraints>.

Figure 8 Representation of an element in eDTD
Where
- "E" (E underscored) represents the definition of E in

DTD, see Figure 2;
- "Constraints" are constraints of element E in XML

Schema language.
Similarly, for attribute Attr, we have the following
representation:

Attrextended→<Attr; Constraints>.

Figure 9 Representation of an attribute in Extended DTD

Where
- Attr is the definition of Attr in DTD as shown in Figure

3;
- "Constraints" are constraints of the attribute "Attr" in

XML Schema language that are not taking account in
XML DTD.

In this paper, we consider three types of constraints,
value constraints, type constraints and structure
constraints, explained as follows:
- Value constraints: These constraints check the value

of the element, especially element with simpleType.
They are based on the values of minInclusive,
maxExclusive attributes…;

- Type constraints: These constraints deal with nature,
length of the element (integer, float, date, time) and
check the value of type, base, length, minLength,
maxLength attributes;

- Structure constraints: These constraints treat the
values of minOccurs and maxOccurs attributes which

are present in "sequence", "choice", "all" and simple
element.

To obtain the value of these constraints, we consider the
three followings functions:
- valueConstraint(element) that returns a list of value

constraints of the element given in its argument;
- typeConstraint(element) that returns a list of type

constraints; and
- structureConstraint(element) that returns structure

constraint of the element given in its argument.
Before continue, we note that valueConstraint and
typeConstraint functions can have an attribute as
argument (i.e., we can call valueConstraint(Attr) where
Attr is an attribute).
 We now present the bodies of these functions.
The body of valueConstraint function is given below:

Function valueConstraint (element E) return constraints;
/*function called for element E that has a simple type*/
Cs: string; /* variable to concatenate all constraints*/
begin
Cs=""; // initialization
for each constraint c in (Bounds, Pattern, Enumerated
values, default, fixed) of E loop
create a logic constraint using c;
/*let LC be the name of this constraint*/
set Cs=Cs +","+ LC; /* "+" denotes concatenation*/
end loop;
return Cs;
end;

Figure 10 valueConstraint function

The body of typeConstraint function is shown below:
Function typeConstraint (element E) return constraints;
/*function called for element E that has a simple type*/
Cs : string; /* variable for grouping all constraints*/
begin
Cs="";
for each constraint c in (type, base, Length, Precision) of E
loop
create a logic constraint using c; /*let LC be the name of
this constraint*/
set Cs=Cs + ","+ LC;
end loop;
return Cs;
end;

Figure 11 TypeConstraint function

The body of structureConstraint function is as follows:

Function structureConstraint (element E) return string;
/*function called for element E that has different default
value for minOccurs and/or maxOccurs*/
v_minOccurs, v_maxOccurs : string;
begin

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

526 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

Let v_minOccurs be the value of minOccurs associated to
element E;
Let v_maxOccurs be the value of maxOccurs associated to
element E;
return v_minOccurs+ "," + v_maxOccurs;
end;

Figure 12 structureConstraint function

Using these functions, Constraints can be expressed as
follows:

Constraints → (valueConstraint | typeConstraint |
structureConstraint)*.

Figure 13 XML Schema Constraints

The best way to understand this conversion from XML
Schema into eDTD is through an example, shown in the
figure below.

<xs:element name="nb_pages">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs: minInclusive value="4"/>
<xs:maxInclusive value="10"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

Figure 14 XML Schema of element "nb_pages"

In this schema, the name of the element is "nb_pages".
To have the expression of "nb_pagesextended"(i.e. the
expression of nb_pages and its constraints (see Figure 8),
we need to calculate the image by Ψ of nb_pages and add
to it nb_pages constraints defined in XML Schema.
The value of nb_pages, using formula in Figure 5, is
nb_pages=<nb_pages; Type>
where
Type is a string delimited by "<xs:simpleType>"
and "</xs:simpleType>".

The image by Ψ of nb_pages is given by
 Ψ(nb_pages) = nb_pages
 =<nb_pages; ;#PCDATA>,
since: 1) the correspondent type to integer in DTD
schema is #PCDATA and 2) the structure of the element
nb_pages in DTD schema is <!ELEMENT nb_pages
(#PCDATA)>.

The constraints of nb_pages (see Figure 14) are:

- Type constraint: the type of nb_pages is integer (can

be expressed by regular expression [0..9]+). The value
of this constraint is returned by typeConstraint
function defined in Figure 11.

- Value constraint: value of nb_pages must be
between 4 and 10. The value of this constraint is
returned by valueConstraint function defined in
Figure 10.

Hence, the representation of nb_pages in eDTD is given
by:
nb_pagesextended = <nb_pages;
 typeConstraint(nb_pages),
 valueConstraint(nb_pages)>.

To illustrate the conversion that deal with structure
constraints, we consider the example in the figure below:
<xs:element name="authors">
<xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="5">
 <xs:element name="author">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="4"/>
 <xs:maxLength value="50" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
</xs:element>.

Figure 15 XML Schema of element "authors"

In this example, the definition of "authors" element is
authors=<authors;Type>.
The value of its "Type" is the string delimited by
"<xs:complexType>" and "</xs:complexType>".
The reformulation of this XML Schema in DTD is given by
<!ELEMENT authors (author)+>
<!ELEMENT author (#PCDATA)>

Figure 16 DTD of element "authors"

If we apply to the element "authors", the notations
defined in Figure 2 and Figure 7 we get
 Ψ(authors) = authors
 =<authors; ; (author)+>.
Similarly for the element "author", we get
 Ψ(author) = author
 =<author; ; #PCDATA).
To have the structure constraints for the element
"authors" we call structureConstraint function described
in Figure 12. Its result is "1,5" where "1" (resp. 5) is the
value of minOccurs (resp. maxOccurs).

Then, the value of the element "authors" with constraints
in extended DTD is

authorsextended =<authors;structureConstraint (authors)>

Figure 17 Representation of authors in extended DTD

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

527 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

and the value of author in extended DTD is given by

authorextended =<author;valueConstraint(author)>

Figure 18 Representation of author in extended DTD.

Likewise we calculate the representation of the attributes
of an XML Schema in extended DTD.
For instance, in the figure below, we have an XML Schema
representing a journal element with two attributes id and
issn.

<xs:element name="journal">
<xs:complexType>
 <xs:sequence>
 <xs:element name="titre" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"
 use="required"/>
 <xs:attribute name="issn">
 <xs:simpleType >
 <xs:restriction base="xs:string">
 <xs:length value="9" />
 <xs:pattern value="\d{4}\-\d{3}[/dX]"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>
</xs:element>

Figure 19 XML Schema of journal element

Let us look for the images by Ψ of id and issn attributes
and their representation in extended DTD.
The DTD schema associated to the journal element is:

<!ELEMENT journal (title)>
<!ATTLIST journal id ID #REQUIRED
 issn CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>.

Figure 20 journal element in XML DTD

Using expressions in Figure 7, Figure 3 and Figure 5 the
image by Ψ of "issn" attribute is specified by
Ψ(issn)=issn=<issn; CDATA; #IMPLIED>.
We have for issnextended (see Figure 9) the expression
below:
issnextended=<issn; Constraints>
where
"Constraints" is calculated by valueConstraint(issn) and
typeConstraint(issn) as follows:
- valueConstraint(issn) is specified by the value of

pattern of issn, we name this constraint valueCissn;
- typeConstraint(issn) is specified by the value of

length of issn, we name this constraint typeCissn.
Then the expression of "issn" attribute in eDTD is

issnextended=<issn; valueCissn, typeCissn >.

Figure 21 Value of issn with schema constraints.

With the same procedure, we obtain the expression of
"id" attribute. In effect, we have
Ψ (id)=id =<id; ID; #REQUIRED> (see Figure 20),
and then
idextended=<id; Constraints>.
In this last expression, the value of "Constraints" is empty,
because "id" attribute have not value constraint and type
constraint.

Hence, the expression of id in extended DTD becomes:

idextended=<id>.

Figure 22 Value of id with schema constraints

So far, we have shown how an element E described in
XML Schema (i.e. E: E double underlined) can be
translated into eDTD (i.e. Eextended) which represents an
intermediate schema. In the next sections, we describe
the conversion from eDTD to Object Relational Schema
(ORS) in order to complete our conversion methodology.

5. Transforming XML DTD into Object-Relational schema

In this section, we present algorithms to translate an
eDTD schema into object-relational schema.
 In order to take into account the constraints defined
by XML Schema, this conversion uses the notations
indicated in Figure 8 and Figure 9. These constraints will
be added, for both element and attribute, to DTD
constraints that we will calculate in this section.
 Let us now consider the polymorphic

9
 function φ

which allows us converting an eDTD schema into Object-
relational schema.
This function φ maps each element E of eDTD schema
onto an object type

10
 "E". In other words, the value of φ

for a given argument Eextended is an object type "E". So, we
have the mapping

 φ: eDTD → ORS
 φ(Eextended) = E(list_of_attributes_definition)

Figure 23 Definition of the object type φ(E)

where "list_of_attributes_definition" is a list of the
attribute definitions of the object type E.
To describe an attribute "Attr" of an object type we use
the following notation:

<Attr; Type[;Modifiers] >,

Figure 24 Definition of an object type attribute

9 Function having an arbitrary number of different types arguments.
10 Object type is similar to UDT in the standard SQL: 2003.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

528 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

where
- "Type": is the type of the attribute "Attr" in object-

relational model;
- Modifiers: represents constraints of the attribute

"Attr". These include schema constraints obtained at
the previous section and those obtained from DTD of
the element E, e.g., null, not null, unique, check and
foreign key constraint. The brackets indicate that
"Modifiers" is an option and may be empty as in
extended BNF

11
 notation [3].

Now, we show how to calculate the attributes of the
object type "E" using the function φ.
We have in Figure 2, the production:
E → <E; Attrs; D>.
The definition of the object type "E" is given by the
following formula:

φ(E) = E (φ(Attrs) υ φ(D))

Figure 25 Definition of an object type.

where the symbol ‘υ’ denotes the union operator.
With this formula, we mean that the list of attributes of
the object type E is obtained by the union of the image
(by φ) of Attrs which represents the attributes list of the
XML element E, and the image (also obtained by φ) of its
content (i.e., D).
So, to get the structure of the object type E, we have to
calculate φ(Attrs) and φ(D).
We start by calculating φ (Attrs).

5.1 Calculation of φ(Attrs)

φ(Attrs) is a list of attributes definition (of the object
type) obtained by the following algorithm:
Algorithm listAttributes;
Input Attrs : list of attributes;
Output φ(Attrs):list of attribute definitions (of an object
type);
begin
if Attrs=empty then
/*There is no attributes for the DTD element.*/
 φ (Attrs)=""; //empty string
 else
 if Attrs=(Attr1, Attr2, ...) then
 φ(Attrs) = (φ (Attr1), φ (Attr2) ...);
 end if;
 end if;
return φ(Attrs);
end;

Figure 26 Calculation of φ (Attrs)

The expression of Attri, as shown in Figure 3, is
Attri → <Attri; typeOrValues; Description>.

11 Extended BNF notation: BNF notation including the symbols: (,),*,+,,,-…

If we apply φ to Attri, we obtain
φ(Attri) = φ(<Attri; typeOrValues; Description>).
The value of φ (<Attri; typeOrValues; Description>) is
specified by the formula:
φ (<Attri; typeOrValues; Description>) =
 <Attri; φ(typeOrValues) minus Constraints;
 φ(Description) + Constraints + Constraint_on_Attri>.

Figure 27 Definition of the attribute "Attri"

- This requires the calculation of:
- φ(typeOrValues),
- φ(Description),
- Constraints and
- Constraint_on_Attri. This is obtained using

valueConstraint, typeConstraint and
structureConstraint functions that are explained in
subsection 4.1.

(a)Calculation of φ(typeOrValues)

The value of φ(typeOrValues) is a type and constraints on
the attribute "Attri". This value is based on the following
table. Constraints are defined using regular expressions[2]
in which:

- the character "|" is the alternative;
- the character "*" means 0 or more characters;
- The parentheses are meta-characters for priority and

grouping.

Figure 28 Calculation of φ(typeOrValues)

The two most-right columns of this table are explained as
follows:

i) In the "Type" column, we have:
- Varchar(n): a basic database type for strings. n is

the maximum number of characters.
- Varray

12
(p): a data type representing a variable-

length array in object-relational databases. p is the
size of the collection.

- Nested table
13

: a data type representing unlimited
collection in object-relational databases.

ii) In the "Constraints" column, we have:

12 Type of variable-length collection used in Oracle DBMS.
13 Type of unlimited collection used in Oracle DBMS.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

529 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

- patterns that attribute in object-relational model
must respect in order to preserve the semantic of the
XML element attributes. These patterns are similar
for all constraints and expressed using the regular
definitions [2]: Letter→*A..Za..z+ and Digit→*0..9+. For
simplification, we call this shared constraint:
LexAttrConstraint (as contraction of Lexical Attribute
Constraint);

- Foreign key Constraint (FKC) represents the usual
referential integrity in the database literature;

- Unique Constraint (UC) indicats that attribute values
are distinct;

- Enumerated List Constraint (ELConstraint):
represents a constraint that limits the values of
attribute in object-relational model to those
enumerated in the content model of its
corresponding in XML DTD

(b) Calculation of φ(Description)

In order to complete the calculation of φ(Attrs), we must
calculate φ(Description). The value of φ(Description) is a
list of usual constraints in database system. It is obtained
using the following table:

Description φ(Description)

#REQUIRED Not null

#IMPLIED Null

#FIXED Value Not null, default Value

Value default Value

Figure 29 Calculation of φ(Description)

To show how the function φ works, we consider in the
example below, the element journal obtained from XML
Schema, shown in Figure 19.
<!ELEMENT journal (…)>
<!ATTLIST journal id ID #REQUIRED>
<!ATTLIST journal issn CDATA #IMPLIED>

Calculus of φ(journal)
The element journal in this example has two attributes: id
and issn.

If we apply φ to "journal" element we obtain:
φ(journal)=journal(φ(id), φ(issn),…).
"journal" (at the right of "=" symbol) is an object type
with attributes φ(id), φ(issn)…
In order to have φ(journal) we must calculate
φ(id)= φ (<id;ID;REQUIRED>)
and
φ(issn)= φ (<issn;CDATA;#IMPLIED>).

i) Calculus of φ(id)

According to formula in Figure 27 and table in Figure 28,
we have

φ (id) =<id; φ(ID) – (LexAttrConstraint+UC);
 φ(#REQUIRED)+(LexAttrConstraint+UC)+
Constraints_on_id

14
>.

Moreover,
φ(ID)=varchar+(LexAttrConstraint+UC),
φ(#REQUIRED)=not null
and
Constraints_on_id="" (see Figure 22).
Hence, φ(id) becomes
φ(id)=<id; varchar; not null+LexAttrConstraint+UC>.
This signifies that φ(id) is an attribute of the object type
"journal" with the following specifications:
- id: name of object-type attribute;
- varchar: type of attribute id;
- not null, LexAttrConstraint, and unique are

constraints on id.
ii) Calculus of φ(issn)
If we apply the same procedure for φ(issn), we obtain the
following expression
φ(issn)=<issn; varchar; null + Constraint_on_issn>
So, the expression of object type "journal" with its
attributes is:
journal(
<id;varchar;not null+LexAttrConstraint+UC)>
<issn; varchar; null + Constraint_on_issn>,…
).
That's all for the image of the element journal (i.e.
φ(journal)).

We can recapitulate these steps in the following
algorithm:

Algorithm XML_Attribute_to_Object_Attribute;
Input Attri: an attribute of a DTD element;
Output φ(Attri) : an object- type attribute;
Begin
 Calculate φ(typeOrValues);
 Calculate φ(Description);
 Return <Attri; φ(typeOrValues) minus Constraints;
 φ(Description) plus Constraints>;
End;

Figure 30 Algorithm that map an XML attribute onto an
Object-type attribute

5.2 Calculating φ(D)

We recall that the expression of φ(E) (see Figure 25) is
given by :
φ(E)=E (φ(Attrs) U φ(D)).
We have already shown how to obtain φ(Attrs). We now
calculate φ(D).
We have in Figure 2:
E=<E; Attrs; D>
where D is the content model of the element E in XML
DTD.

14 Constraints from XML Schema on id attribute.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

530 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

D can be:
- List of symbols between "<! ELEMENT ElementName

(" and ")>",
- EMPTY,
- ANY.

To see what it can be the value of D, we consider the
example below:

<!ELEMENT journal (volume+)>
<!ATTLIST journal id ID #REQUIRED category CDATA
#IMPLIED>
<!ELEMENT volume (issue+)>
<!ELEMENT issue (paper+)>
<!ELEMENT paper (title, author)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>

Figure 31 Example of DTD

Here, the element "journal" has the following
representation:
journal=<journal; id, category ; volume+>.
The value of D for element "journal" is "volume+".
The definition of the element "volume" is
volume=<volume; ; issue+>.
Similarly, the element paper has the following
representation:
paper=<paper; ; title,author>.
The value of D for the element "paper" is
"title, author".
The representation for the element "title" is given by
title = <title;;#PCDATA>

Figure 32 Definition of the element title.

and likewise the element "author" has the expression :
author =<author;; #PCDATA>.
Hence, the value of D for both "title" and "author" is
#PCDATA.
 By definition, elements of D are connected together
by sequence, alternative, Kleene closure, transitive
closure and optional value [7].
 In order to simplify the calculation of φ(D), we use the
following BNF (Backus-Naur Form) grammar for
representing the content model. We call this grammar G
(E is an element of DTD).
a) E → ANY
b) E → EMPTY,
c) E → E, E for the sequence,
d) E → E + E for the alternative,
e) E → ,E- for the Kleene closure (replace *),
f) E → ,E-,E for the transitive closure (replace +),
g) E → [E] for an optional value (replace?),
h) E → #PCDATA for a simple type.

Figure 33 BNF (Backus-Naur Form) grammar G.

To have the value of E which represents the definition of
element E (see Figure 2), we associate to the grammar G
the following grammar which we note G.

a) E → ANY
b) E → EMPTY
c) E → E, E
d) E → E1+E2
e) E → ,E}
f) E → ,E}, E
g) E → *E]
h) E →#PCDATA

Figure 34 BNF (Backus-Naur Form) grammar G.

Now, if we apply φ to each item of the grammar G, we
obtain a grammar shown in figure below. We call this
grammar φ(G).

a) φ(E)→ φ(ANY)=AnyData

15
 or AnyType

16
. (Generic type

in object-relational model).
b) φ(E)→ φ(EMPTY)=Empty string
c) φ(E)→ φ(E1, E2)= φ(E1), φ(E2), E1 and E2 are used to

distinguish between E at left of '→' and E at the right
of the '→'.

d) φ(E) → (+, φ(E1), φ(E2)). Here, we define a generic
type that can hold the object types φ(E1) and φ(E2).

e) φ(E) →,φ(E)-, list of φ(E) with null constraint;
f) φ(E) →,φ(E)- list of φ(E) with not null constraint;
g) φ(E) → *φ(E)+, φ(E) with null constraint ;
h) φ(E) → φ(#PCDATA).

Figure 35 BNF (Backus-Naur Form) grammar φ(G).

The value of φ(#PCDATA), that represents a simple type
of an element E, is given by the following expression:

φ(#PCDATA)=<value;varchar; PCDATA_Constraint plus
Constraints_on_E>

Figure 36 Value of φ(#PCDATA)
where
- value is an attribute of the object type containing the

value of the XML element;
- Varchar representing the type of the attribute value;
- PCDATA_Constraint is a constraint on "value"

attribute. It is defined by the following regular
expression[2]: (Letter | _ | Digit | . | - | :)*.

- Constraints_on_E: represents constraints defined by
XML Schema of E. we recall that

- Eextended=<E; Constraints_on_E) (see Figure 8).

To see how the function φ converts an XML DTD into an
object-relational model, we propose below some
conversion examples.

15 Type used in Oracle DBMS.
16 Type used in Oracle DBMS.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

531 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

(a) Example 1
For element "title", we have (see Figure 32)
title=<title;;#PCDATA> and titleextended=<title;Constraints>
(see Figure 8)
If we apply the function φ on "title", we obtain
φ(title)= φ(<title; ; #PCDATA>)
 =title(φ (Attrs)U φ (#PCDATA))
 =title(φ(#PCDATA));
since φ (Attrs) is empty(there is no attribute for title).
Afterwards we replace φ(#PCDATA) with its value using
the grammar φ(G) and get the final expression of φ(title):
φ(title)=title(<value;varchar;PCDATA_Constraint+
Constraints>).
Then title is an object type (in object-relational model)
with an attribute named "value". The type of attribute
"value" is varchar and its values verify both
"PCDATA_Constraint" and "Constraint" constraints.

(b) Example 2

We can do the same for the element "author" defined by
(see Figure 18)
author = <author; ; #PCDATA> and
authorextended =<author; authorCValue>
and we get
φ(author)=author(φ(#PCDATA))
 =author(<value;varchar;
 PCDATA_Constraint + authorCValue>).

(c) Example 3

For a complex example that illustrates how φ works, we
take the paper XML element defined as follows:
paper=<paper; ; title, author>.
In this case
φ(paper)=paper(φ(title,author))
 =paper(φ(title), φ(author)).
If we replace φ(title) and φ(author) by their values as
computed above, we obtain:
 φ(paper)=paper(title(<value; varchar;
 PCDATA_Constraint + Constraints>),
 author(<value; varchar;
 PCDATA_Constraint+ Constraints>)).
Hence, "paper" is an object type with two attributes:
"title" and "author". Each of these attributes is an object
type with an attribute named "value".
In general, the calculation of φ(D) is given by the
following algorithm:
Algorithm Calculus_of_Attributes;
Input: D, model of content of an XML element E;
Output: φ(D), list of object attributes;
begin
loop
 select an arbitrary φ(v) in φ(D) with v different to E;
 if (φ(v) is not in v (to avoid recursion)) then
 Calculate φ(v) using the φ(G) grammar and
 algorithm at Figure 30;

 End if;
 If (there is no φ(v) in φ (D)) or (each φ(v) in φ (D) is
 in v) /*case of recursion*/ or φ (v)=φ (E)) then
 Exit; /*to leave loop*/
 End if;
End loop;
End ; /*end of algorithm*/

Figure 37 Calculation algorithm of an object Attribute

(d) Example of the calculus of the φ(D) with recursion

To illustrate the calculus of the φ(D) with recursion, we
consider the following example:

<!ELEMENT paper (title, author, cite?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT cite (paper*)>

Figure 38 Example with recursion

where the element "cite" represents the cited papers in
paper references.
Here we have
paper=<paper; ; D>
where D is (title, author, cite?).
Therefore
φ(paper) = paper(φ(D).
If we replace φ(D) with its value φ(title, author, [cite])
in last formula, we get
φ (paper) = paper(φ(title, author, [cite])).
Then
φ(paper)=paper(φ(title),φ(author),*φ(cite)]).

Figure 39 Intermediate value of φ (paper)

We have already calculated φ(title) and φ(author) above.
Let us find φ(cite).
From the expression <!ELEMENT cite (paper*)>, we can
write cite= <cite;;{paper}>.
If we apply the function φ to cite element, we obtain:
φ(cite) = φ(<cite;;,paper}>)
 =cite(φ (,paper}))
 = cite(,φ (paper)}).
Replacing φ(title), φ(author) and φ(cite) in Figure 39 with
their values, we obtain
φ(paper)=paper(φ(D))
 =paper(title(<value;varchar; PCDATA_Constraint+
Constraints>),
 author(<value; varchar;
 PCDATA_Constraint+ Constraints>),
 [cite({φ (paper)})])

Figure 40 Value of φ(paper)

We notice that we have found φ(paper) in φ(D) which is a
definition for the "paper" element. Hence, the process

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

532 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

halts here since there is no more φ(v) in φ(D) without
recursion nor φ(v) different to φ(paper).

6. Algorithm of conversion

In this section, we present the conversion algorithm from
XML DTD to object-relational model. This algorithm uses
"CreateObjectType(…)" function that creates an object
type representing the image by φ of an XML element. Its
body, presented in subsection 6.2, calls the function
"CreateObjectAttribute(attr(…))" detailed in the next
subsection 6.1.

6.1 Creation of object type attribute

To obtain the attributes of an object type, we use the
function "CreateObjectAttribute" which takes as
argument an attribute with a list of items and returns the
expression:
"<attr; typeOfAttribute; modifiers>" .
This expression, as seen in Figure 24, represents a
definition of the attribute "attr" in object-relational
model.
The body of this function is given in the figure below:
Function CreateObjectAttribute (attr(listOfItems)) return
ObjectAttribute ;
y ObjectAttribute ; //y is variable for an object attribute.
i integer initialized by 0;
/*the variable i is counts the number of attributes which
are added in the case of the alternative that is not
surrounded by an element This case is treated at line
34)*/
begin
/*processing of closure*/
1) for each ,x(…)- in attr loop /* x is an element*/
2) y= CreateObjectAttribute (x(…));
3) Create a type of nested table named xs (name of x
 concatenated to s) based on object type y;
4) Replace ,x(…)- in attr by <"xs";xs;
 constraints_on_x>;
 /* therefore "xs" is an attribute of the object-type
 attr. The type of this attribute is xs.*/
5) end loop;
6) for each ,φ(x)- in attr loop /* x is an element*/
7) If type x is not yet created then
8) Create the object type x as incomplete type;
 /* necessary to have recursion*/
9) End if;
10) Create a type of nested table named xs (name of

type
 "x" concatenated to letter 's') based on ref object
type
 "ref x"; /*(norme SQL3)*/
11) Replace in attr, ,φ(x)- by <"xs";xs; ' '>;
12) End loop;
13) for each *x(…)+ in attr loop /* x is an element*/
14) y= CreateObjectAttribute (x(…));

15) add to y a null constraint;
16) Replace *x(…)+ in attr by y;
17) End loop;
18) Loop
19) If each item of listOfItems matches "<…>" then
20) If the attr type is not yet created then
21) Create an object type named attr having
 its attributes corresponding to item of listOfItems;
22) End if;
23) Return the object attribute
<"attr";attr;list_of_item_constraint>;
24) Else /*case of alternative with named element (for

 example <!ELEMENT a (b|c)>)*/
25) If each item of listOfItems matches "<…>" except

one
 item that matches "+" then
26) If the attr type is not yet created then
27) For each item <x…> in listOfItems loop
28) Create an object type named "x" if it’s not

created;
29) End loop;
30) Create an object type named attr that has an

attribute
 named 'value' with a generic type (e.g., ANYDATA);
31) Add to attr a constraint that limits values of the
 attribute 'value' to objects that are instances of
types
 'x' created by "for each" above at lines 28 to 30";
 //we call this constraint: constraint_on_attr;
32) End if;
33) Return the object attribute
 <"attr"; attr;list_of_item_constraint +
 constraint_on_attr>;
34) Else //case of alternative with unnamed element
 //(e.g., <!ELEMENT a (b|c), d>)
35) i=0;
36) For each item (+,…) in (listOfItems) loop
37) i i+1;
38) Replace, in attr, (+,…) by
 CreateObjectAttribute (_attr_i(+,…));
 //_attr_i is created for alternative.
39) End loop;
40) For each item e(…) in (listOfItems) loop
41) If e(…) doesn’t contain directly any φ then
42) Replace, in attr, e(…) by
 CreateObjectAttribute (e(…));
43) Else /*Case of recursive element (direct).*/
44) If e(…) matches e(φ(x)) then
45) Replace, in attr, e(…) by <"e"; ref x;>;
 /*ref type is a type that allows an attribute to
 contain an object reference.*/
46) Else /*Case of elements mutually recursive.*/
47) If e(…) matches e(…,φ(x),…) then
48) If the x type is not yet created then
49) Create the object type x as incomplete type

(in

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

533 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

 order to have recursion);
50) End if;
51) Replace φ(x) by <"x";ref x;>;
52) End if;
53) End if;
54) End if;
55) End loop;
56) End if
57) End if;
58) End loop;
End; /*End of function : CreateObjectAttribute */

Figure 41 CreateObjectAttribute Function

To illustrate the usage of this function, we consider the
example below:

<!ELEMENT paper (title, author, cite?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (fn, ln)>
<!ELEMENT fn (#PCDATA)>
<!ELEMENT ln (#PCDATA)>
<!ELEMENT cite (paper*)>

Figure 42 Example of DTD

We have in Figure 39 the expression:
φ(paper)=paper(φ(title), φ(author),*φ(cite)]).
Let us apply CreateObjectAttribute function to
paper(φ(title), φ(author),*φ(cite)]).
In this case :
- attr is "paper" and
- listOfItems is "φ(title), φ(author),*φ(cite)+".
To obtain the image of paper by CreateObjectAttribute
function, we have to find φ(title), φ(author) and *φ(cite)].
The value of φ(title) (as seen above) is given by
φ (title)=title(<value; varchar; PCDATA_Constraint +
Constraints >).
The element author is defined by
<!ELEMENT author (fn, ln)>.
So,
φ(author)=author(φ(fn), φ(ln)).
The element fn is defined by
<!ELEMENT fn (#PCDATA)>
then
φ(fn)=fn(<value;varchar;
PCDATA_Constraint + Constraints>
We can do the same for ln:
φ(ln)=ln(<value;varchar;
PCDATA_Constraint + Constraints >.
Then φ(author) becomes
φ(author)= author(fn(<value; varchar;
PCDATA_Constraint + Constraints>),
ln(<value; varchar;
PCDATA_Constraint + Constraints>)).
The value of *φ(cite)] is
*cite(,φ (paper)})] (see Figure 40).

If we replace φ(title), φ(author) and *φ(cite)+ in φ(paper)
we obtain the expression:
φ(paper)=paper(φ(D))
 =paper(title(<value; varchar;
 PCDATA_Constraint + Constraints>),
 author(fn(<value; varchar;
 PCDATA_Constraint + Constraints >),
 ln(<value; varchar;
 PCDATA_Constraint + Constraints >)),
 [cite({φ (paper)})]).
Applying the CreateObjectAttribute function to paper, we
transform recursively:

- title(<value;varchar;
PCDATA_Constraint+Constraints >);

- author(fn(<value;varchar;CDATA_Constraint+
Constraints >),

 ln(<value; varchar; PCDATA_Constraint +
Constraints >)) and

- *cite(,φ (paper)-)+.
We begin with *cite(,φ (paper)})].
To transform *cite(,φ (paper)})] by CreateObjectAttribute
function, we use

i) lines between 6 and 12 to eliminate "{" , "}"
symbols and "φ";

ii) lines between 13 and 17 to eliminate "[" and "]"
symbols.

So, for lines between 6 and 12:
- we create an incomplete object type named paper;
- we create a nested table type based on "ref paper"

named papers;
- we replace,φ (paper)} by <"papers";papers;' '>.

After that, we get the expression:
 [cite(<"papers";papers;' '>)].
Furthermore, with lines between 13 and 17, we apply
CreateObjectAttribute(cite(<"papers";papers;''>)) that
uses lines between 19 and 23, and returns
 <"cite";cite; null_constraint>
We continue the transformation with the element title.
The element "title", as seen earlier, has the expression:
title(<value;varchar;PCDATA_Constraint+ Constraint>).
Since title contains only items that match " <…>", the call
of CreateObjectAttribute(title(<value…>)) uses lines
between 19 and 23, and creates an object type named
title with one attribute named value and returns an
object-type attribute defined by :
<"title";title;PCDATA_Constraint on "title".value
+Constraints >.
Similarly, for fn and ln element, we obtain the two
following object-type attributes:
<"fn";fn;PCDATA_Constraint on "fn".value + Constraints >
and
<"ln";ln; PCDATA_Constraint on "ln".value+ Constraints >.
For convenience, we suppose that we have XML Schema
constraints "Constraints" for both fn and ln elements (for
instance the value of length facet).
Now, search CreateObjectAttribute (author(…)) for the
author element.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

534 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

We have φ(author)=author(fn(<value; varchar;
PCDATA_Constraint + Constraints >),
ln(<value; varchar;
PCDATA_Constraint + Constraints >)).
In this expression, author has items (fn and ln) that do not
match "<…>".
In that case, to have CreateObjectAttribute (author(…)),
we use lines 40 and 41 and we get
<"fn";fn; PCDATA_Constraint on "fn".value + Constraints>
(obtained by CreateObjectAttribute(fn(…)))
and
<"ln";ln; PCDATA_Constraint on "ln".value + Constraints>
(obtained by CreateObjectAttribute(fn(…))).
After this substitution, author becomes
author(<"fn";fn; PCDATA_Constraint on "fn".value +
Constraints >,
<"ln";ln;PCDATA_Constraint on "ln".value+ Constraints >)
Then, we can use statements between 19 and 23 lines:

 create an object type named author with
attributes "fn" and "ln";

 return an attribute defined by <"author", author,
fn_constraint + ln_constraint>.

Hence, paper has the expression
paper(<"title";title; PCDATA_Constraint on "title".value +
Constraints >,
<"author"; author; fn_constraint +ln_constraint>,
<"cite";cite;null_constraint>).
Finally, we obtain the object type:
<"paper";paper;constraint_on(title,author,cite)>.
Now, let us see how this function works in the case of the
alternative. For this, we propose the example below:
<!ELEMENT person (name, (email | phone))>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

First, we calculate φ(person).
We have
φ(person)=person(φ(name, (email | phone))>.
If we use the algorithm at Figure 37, we obtain
person=person(φ (name), φ (email | phone)),
which becomes
person=person(
name(<value;varchar; PCDATA_Constraint + Constraints
>),
(+,email(<value;varchar;PCDATA_Constraint +
Constraints>),
phone(<value; varchar; PCDATA_Constraint+ Constraints
>))).

Now, we apply "CreateObjectAttribute" function to
"person (…)":
- with lines 40, 41 and 42, then lines between 19 and

23, we transform "name(<…>)" to
<"name";name;PCDATA_Constraint on name.value +
schemaConstraints>;
- with lines 34 to 39, we transform

(+,email(…), phone(…))
to
 _person_1 (+,email(…), phone(…));
- with lines 40-42, we obtain :
for email :
<"email";email;PCDATA_Constraint on email.value +
Constraints >;
and for phone: <"phone";phone;PCDATA_Constraint on
phone.value+Constraints >)>;
Thus "_person_1" becomes
_person_1(+,<"email"; email;
PCDATA_Constraint on email.value+ Constraints>,
 <"phone"; phone; PCDATA_Constraint on phone.value +
Constraints >);
- with lines 25 to 33 applied to "_person_1" we get
<"_person_1";_person_1;
constraints_on_email_phone +
constraint_on_"_person_1">.
and person takes the structure
person (<"name";name;PCDATA_Constraint on
name.value + Constraints >;
<"_person_1"; _person_1;
constraints_on_email_phone
+constraint_on_"_person_1">)
Finally, we apply lines between 19 and 23 to person
obtained above and we get:
<"person"; person; constraints_on_name_phone…>

6.2 Creation of the objet type associated to XML DTD

Now we consider the function CreateObjectType. It takes
an object obtained by applying the function φ to root
element of XML DTD document and returns an object
type (UDT) with constraints. This function is called only
with this type of object. Its body is presented below:
Function CreateObjectType (Object(listOfItems)) return
ObjectType;
y ObjectAttribute ; /*y is an object attribute variable.*/
Begin
y=CreateObjectAttribute(Object(listOfItems));
/* y has the form <"Object"; Object; Constraints>.*/
return <Object, Constraints>;
//an object type with its constraints.
End;

Figure 43 CreateObjectType function

If we call CreateObjectType with object paper (that we
suppose the root of document) defined by
<"paper"; paper; constraint_on(title,author,cite)>,
we obtain the object type
<paper, constraint_on(title,author,cite)>.
We present in the following subsection the algorithm of
conversion.

6.3 Algorithm of conversion

The algorithm of conversion takes a valid XML document
with its XML Schema and returns an object-relational
schema through XML DTD.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

535 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

Algorithm Conversion;
Input: a valid XML document with its XML Schema; Let be
E the root of this document;
Output: an object-relational schema;
Begin

1) Calculate Ψ(E)= E /* see Figure 7*/
2) Calculate φ(E) using the rules presented

above in Figure 35;
3) Let be "E(listOfItems)" this value;
4) Let be <E, Constraints> the object type

obtained by
 CreateObjectType(E(listOfItems));
 /*algorithm at Figure 43*/

5) Create an object table named "E_Table" with
object type E and constraints defined by E;

 /*"E_Table" is a an object table in which we store the
content of the XML document.*/
End; /*end of Conversion*/

Figure 44 Algorithm of Conversion

Then, as we have seen in the last above algorithm, we
finish the transformation of structure.
The content (values of elements and attributes) of the
XML document will be stored in the object table created
by the last instruction (at line 5) of conversion algorithm.
The object type of this table is the root element of the
XML document.
Let us apply this algorithm to the following example that
represents an XML Schema for the element named paper.
<xs:element name="paper">
<xs:complexType>
<xs:sequence>
<xs:element name="title">
 <xs:simpleType><xs:restriction base="xs:string">
 <xs:length value="50"/></xs:restriction>
 </xs:simpleType></xs:element>
 <xs:element name="author">
 <xs:complexType><xs:sequence>
 <xs:element name="fn">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="15"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="ln">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="15"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="cite" minOccurs="0">

<xs:complexType><xs:sequence>
<xs:element ref="paper" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence></xs:complexType></xs:element>
</xs:sequence></xs:complexType>
</xs:element>

Figure 45 XML Schema for paper

First, we create the image by Ψ of the element paper (i.e.
Ψ(paper)=paperextended , see Figure 7). The structure of
paper is shown in Figure 42.
Next we create the image of paper by φ (i.e.
φ(paper)=paper, see Figure 23).
Finally, we create an object table named "Paper_Table"
based on object type "paper". The table has constraints
defined by
constraint_on(title, author, cite).
The structure of table is given below:

Figure 46 Structure of paper_table

Conclusion

In this paper, we have presented a methodology to

translate XML Schema into object-relational schema using

mapping composition. The XML Schema is converted into

extended XML DTD which in turn is converted into object-

relational schema.

 This methodology conserves integrity constraints and,

comparing to others methods, integrates XML elements

in a few object tables.

 In perspectives, we envisage use this technique of

composition to convert other XML schemas into database

models through DTD.

References

[1] L. Al-Jadir and F. El-Moukaddem, "F2/Xml: Storing Xml
Documents in Object Databases," International Conference on
Object Oriented Infomation Systems, Montpellier, France, 2002.
[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and J. D. Ullman,
Compilers Principles, Techniques & Tools 2nd Edition ed., 2007.
[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and J. D. Ullman,
"Compilers Principles, Techniques, & Tools," 2nd ed, 2007, pp.
42-50, 197-199, 204-205.

Mustapha Machkour et al Converting XML Schema into Object-Relational Model with Data Constraints Preservation

536 | Int. J. of Multidisciplinary and Current research, Vol.3 (May/June 2015)

[4] P. V. Biron and A. Malhotra, "Xml Schema Part 2:
Datatypes.," W3C, 28 October 2004, Second Edition
[http://www.w3.org/TR/xmlschema-2/].
[5] A. Boccalatte, D. Giglio, and M. Paolucci, "An Object-
Oriented Modeling Approach Based on Entity-Relationship
Diagrams and Petri Nets," IEEE Internal conference on Systems,
Man and Cybernetics,San Diego, CA, 1998.
[6] T. Bray, J. Paoli, and C. M. Sperberg-Mcqueen, "Extensible
Markup Language (Xml) 1.0," W3C, http://www.w3.org/TR/REC-
xml, February 1998.
[7] T. Bray, J. Paoli, C. M. Sperberg-Mcqueen, and E. Maler,
"Extensible Markup Language (Xml) 1.0 (Second Edition)," W3C
Recommendation. http://www.w3.orglTR2OOOlREC- XML-
20001006l, 2000/10.
[8] E. Castro, D. Cuadra, and M. Velasco, "From Xml to
Relational Models," Informatica, vol. 21(4), pp. 505-519,
2010/12.
[9] R. Conrad, D. Scheffner, and J. C. Freytag, "Xml Conceptual
Modeling Using Uml," International Conference on Conceptual
Modeling, Salt Lake City, UT 2000.
[10] C. Coronel, S. Morris, and P. Rob, Database Systems:
Design, Implementation, and Management, 10 ed.: Cengage
Learninig, 2012.
[11] C. J. Date, "Preview of the Third Manifesto," Database
Programming & Design Journal (San Francisco, CA: Miller
Freeman Publications), vol. 11(8), 1998(8).
[12] C. J. Date and H. Darwen, Databases, Types and the
Relational Model: The Third Manifesto, 3 ed.: Addison-Wesley,
2007.
[13] A. Davidson, M. Fuchs, and M. H. e. Al., "Schema for
Object-Oriented Xml 2.0," W3C, July
1999.(http://www.w3.org/TR/Note-SOX).

[14] A. Eisenberg and J. Melton, "Sql:1999, Formerly Known
as Sql3," SIGMOD Record, vol. 28(1), March 1999.
[15] A. Eisenberg, J. Melton, K. G. Kulkarni, J.-E. Michels, and
F. Zemke, "Sql: 2003," SIGMOD Record, vol. 33(1), pp. 119-126,
2004.
[16] D. C. Fallside and P. Walmsley, "Xml Schema Part 0:
Primer," W3C, 28. October 2004, Second Edition.
[http://www.w3.org/TR/xmlschema-0/].
[17] S. Kanagaraj and D. S. Abburu, "Converting Relational
Database into Xml Document " IJCSI International Journal of
Computer Science Issues, vol. 9(2), pp. 127-131, 2012/3.
[18] J. Kim, D. Jeong, and D.-K. Baik, "A Translation Algorithm
for Effective Rdb-to-Xml Schema Conversion Considering
Referential Integrity Information," Journal of Information
Science and Engineering, vol. 25, pp. 137-166, 2009/1.
[19] D. Lee, M. Mani, and W. W. Chu, "Solving Schema
Conversion Problem between Xml and Relational Models:
Semantic Approach," ResearchGate, 2003/7.
[20] Microsoft, "Xml Schema Developer's Guide," Internet
Document, May 2000. (http://msdn.microsoft.com/xml/
XMLGuide/schemaoverview.asp).
[21] S. Navathe and R. Elmasri, "Fundamentals of Database
Systems," ed: Addison-Wesley, 2011, pp. 353-413.
[22] J. Price, "Oracle Database 11g Sql," ed: McGraw -Hill,
2008, pp. 379-473.
[23] J. W. Rahayu, D. Taniar, and E. Pardede, Object-Oriented
Oracle: IRM Press, 2006.
[24] M. Stonebraker, L. A. Rowe, and M. Hirohama, "The
Implementation of Postgres," IEEE on Knowledge and Data
Engineering, vol. 2, pp. 125-142, Mars 1990.
[25] H. S. Thompson, D. Beech, M. Maloney, and N.
Mendelsohn:, "Xml Schema Part 1: Structures," W3C, 28.
October 2004, Second Edition [http:// www.w3.org
/TR/xmlschema-1/].

http://www.w3.org/TR/xmlschema-2/%5d
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.orgltr2ooolrec-/
http://www.w3.org/TR/Note-SOX)
http://www.w3.org/TR/xmlschema-0/%5d

