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Abstract  
  
In this work, we consider a pair of interacting strings that may thermally fluctuate around some line-reference. We 
assume that the two strings interact via a  -deformed Morse potential that reproduces well the features of the real 
interaction. Using the Transfer Matrix Method, based on the resolution of a Schrödinger equation, we first exactly 
determine their solutions that were found to be bound states. Second, from the exact expression of the ground state, we 
compute the contact probability that is the probability to find two interacting strings at a (finite) distance apart, and 
obtain its exact scaling form and the associated contact exponents. The main conclusion is that, the analytical studies 
reveal that the  -deformed Morse potential is a good candidate for the investigation of the statistical properties of 
fluctuating strings. 
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1. Introduction 
 
Strings are one-dimensional objects that possess rich 
statistical properties due to their soft and flexible 
morphology. For example, DNA molecule is formed by 
two connected flexible polymer chains that are organized 
in a double helice configuration. In particular, a pair of 
strings may exhibit an unbinding transition [1]. We 
emphasize that the mechanism ruling this phenomenon is 
analog to that governing interfacial wetting [2] and 
adsorption-desorption transitions of polymers [3]. The 
common feature of these interfacial phenomena is that, 
they have a behavior similar to that of 1-dimensional lines 
or strings of finite tension [4], such as ledges on crystal 
surfaces, stretched (or directed) polymers and vortex 
lines in superconductors.  
 We note that the unbinding transition from strings, as 
from bilayer membranes, is often driven by steric shape-
fluctuations [5] whose amplitude increases with 
temperature. These repulsives entropic forces are 
actually in competition with the van der Waals attractive 
ones. There exists a certain value of the Hamaker 
amplitude (threshold) beyond which the van der Waals 
attractive interactions are sufficient to bind the string 
together, while below this characteristic amplitude, the 
membrane undulations dominate the attractive forces, 
and then, the string separate completely.  
 An interesting alternative tool to quantitatively 
investigate the statistical properties of string-pairs is the 

so-called Transfer Matrix Method (TMM) usually 
encountered in Quantum Mechanics [6-8] and Critical 
Phenomena [9,10]. Very recently, TMM was applied to 
extract the statistical properties of adjacent strings using 
the generalized Morse potential [11]. 
 In this paper, we apply TMM to some new potential 
we introduce, for the first time, which is the  -deformed 
Morse potential (MP). The value     gives the standard 
Morse potential used in Atomic Physics to study the 
atoms vibrations within molecules [12]. Also, such a 
potential was recently used for the study of DNA 
denaturation problem [13,14]. While the value    1 
defines a generalized Morse potential that was 
introduced by Deng and Fan [15], in Quantum Mechanics 
context.  
 The choice of this  -deformed MP can be motived by 
the fact that its shape models well the real interaction 
potential (repulsive at short-distances and attractive at 
high-distances). Another virtue of this potential is that, its 
associated energy spectrum is discrete, and then, all its 
eigenfunctions are bound states. The existence of these 
states makes it a good candidate for the study of the 
statiscal properties of adjacent strings.  
 This paper is organized as follows. In Section 2, we 
present the used string model and the analytical 
expression of the  -deformed MP. In Section 3, we solve 
the associated Schrödinger equation to get the exact form 
of the contact propability. Finally, some concluding 
remarks are drawn in the last section. 
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2. String model 
 
Consider two interacting strings that move on a two-
dimensional space. We assume that, on average, they 
fluctuate around a line-reference, say x-axis, and in 
addition, their associated elongations remain 
perpendicular to this axis. The conformation of strings can 
be described by the local field-separation [16],       , 
which is perpendicular to the line-reference. The 
Statistical Mechanics of strings is based on the 
Hamiltonian 
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Here,   is the string length,   is the effective tension, and 
      represents the interaction potential, whose form is 

the following 
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with the notation 
 

                                                                                   (3) 
 
where    denotes the minimum point of the potential. 
We assume that the parameter   is such that     or 
      . In fact, the parameter   acts as an 
important deformation parameter. There,   is the 
potential deepth and     defines the potential-range. 
As physically required, the potential       fails to   , at 

infinity, that is for     .  
 Notice that, the proposed potential is a four-
parameter exponential-type one that already pointed out 
in Ref. [17], and it may reduce to the most well-known 
exponential-type molecule potentials by choosing 
appropriate parameters          . The values     and 
     describe the standard and generalized MPs, 
respectively. Hence, potential       is more general and 

may be a good candidate for the study of a large class of 
interacting molecular systems.  
 
The potential       possesses one root for 
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  )                                                                (4) 

 
provided that          is fulfilled. Then, the 
condition that     is ensured. 
 
We show that the unique minimum point of the potential, 
  , is above the zero   , and it is given, in terms of 
parameters      , by 
 
                                                                             (5) 
 
It is easy to that the interaction potential presents no 
asymptote at non-vanishing positive abscissa, for 

       or    . But, it does for     , where it 
becomes infinite at the distance-origin    . 
 In Fig. 1, we report the  -deformed MP, for various 
values of the parameter   keeping fixed the other ones 
       . In particular, this figure shows that, the 
potential minimum is shifted towards its smaller values, 
as the parameter   is increased. 
 

 
 

Figure 1 : Reduced Morse potential,        , versus 

distance   (in nanometer unit), for various parameters 
    ,     ,   and    . These curves are drawn with 

the parameters :         and          . 
 

2. Exact contact probability 
 
In the framework of TMM, the contact probabilty to have 
the two strings at some distance apart is given by the 
knowledge of the ground state that solves a Schrödinger 
equation described below.  
 
Let us start by recalling the useful Katos's mathematical 
theorem [18] : 
 
Suppose that the potential      of the Schrödinger 
operator                  is bounded from below 
and that 
 
                                                                                 (6) 
 
Notice that   has no positive eigenvalues. Indeed, if 
     , with     and        , then,    .  
 
Therefore, all eigenfunctions of the Schrödinger equation 
are bound states, of negative eigenvalues. The 
eigenvalues spectrum is then discrete. As remark [18], the 
point     can be an eigenvalue of the operator 
                , even when           .  
 The considered  -deformed MP effectively satisfies 
the above theorem conditions. First, it is bounded from 
below, since        , for all values of distance  . 
Second, the limit (6) is also fulfilled, due to the presence 
of exponential tails in the potential expression (2). In 
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addition, according to the above remark, this potential 
may have a ground state, since it is infinitely 
differentiable. The conclusion is that, the Schrödinger 
equation with a  -deformed MP has only bound states as 
solutions and a discrete spectrum. 
 Now, we note that, in the thermodynamic limit, that is 
for    , the statistical properties of model     can be 
studied using TMM that is based on the resolution of a 
Schrödinger-equation type [6-8], 
 
      

  

    

   
                                                          (7) 

 
where   is the absolute temperature and    is the 
Boltzmann's constant. In the above differential equation, 
the parameters   ’s and   ’s denote the set of 
eigenvalues and wave-functions, respectively. The 
eigenvalues   ’s are ordered in such a way that 
          .  
 The ground state eigenvalue    defines the free 
energy density,  , that is     , while the corresponding 
eigenvector,      , determines the probability 
distribution,     . In fact,        represents the 
probability of finding two strings at a separation between 
  and     . The probability distribution is then given by 
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With the help of this distribution, we can calculate, for 
example, its first and second moments, 
 
〈 〉  ∫          〈  〉  ∫                                              (9) 
 
The string roughness is given by 
 

   [〈  〉  〈 〉 ]    .                                                          (10) 
 
Before making explicit calculations, it will be convenient 
to recall some backgrounds concerning the general 
statistical properties of the string-pairs. 
 First, we recall the definition of the roughness 
exponent. Consider a fluctuating manifold (string or 
bilayer membrane) and notice that the latter makes large 
transverse excursions from its average position. The 
manifold is rough if the typical size,   , of its transverse 
excursions grows with its lateral size,   . It is admitted 
that the two lengths obey the following scaling relation 
[1,19] 
 

       
  .                                                                                (11) 

 
This relation then defines the roughness exponent  . The 
latter crucially depends on the nature of the considered 
manifold. For example, for strings,      , and    , 
for almost-flat fluid membranes. 
 The last and interesting exponent to recall is the 
contact exponent. This characterizes the singular behavior 

at roughening of the contact probability of two adjacent 
manifolds. The latter scales as [1] 
 

      
      

                                                                    (12) 
 
On the other hand, we can put the probability distribution 
on the following scaling form 
 

       
                                                                     (13) 

 

Here, the explicit factor   
   arises from normalization. 

To recover relationship (12), the scaling function      
must behave as 
 

                   for small   (with     ) .                  (14) 
 
This scaling behavior remains valid as long as the mean-
separation is such that 〈 〉      .  
 Now, to determine the scaling behaviour of the 
contact probability, we must solve the differential 
equation (7). We first note that it is very similar to the 
traditional Schrödinger equation 
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where   is the reduced mass and   is the renormalized 
Planck's constant, making the substitution  
 
      

  
   

  

  
                                                                           (16) 

 
This Schrödinger equation has been exactly solved [17], 
and it will be convenient to recall briefly the essential 
steps of its resolution, in particular, for the ground state, 
  .  
 To determine the ground state of interest, we first 
write it as follows 
 

          , 
√  

   
 ∫      - ,                                   (17) 

 
where   is a normalization constant and      is called a 
superpotential in supersymmetric language. The latter 
satisfies a non-linear Riccati differential equation, 
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where    is the ground state energy. The above equation 
has an exact solution that is [18] 
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It is easy to see that     . 
 

Now, combining Eqs. (17) and (19) gives the exact form of 
the ground state 
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 ,                                           (22) 

 

The normalization constant    is exactly known. This 
computed ground state gives the contact probability 
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                            (23) 
 

with the known normalization constant   . From the 
above exact formula, we can compute all moments of 
separation between adjacent strings.  
 The above formula clearly shows that the contact 
probability has a finite (small) value at the origin 
 

                  ⁄                                                 (23a) 
 
While at infinity, it decays with the average-separation as 
 

        
    ,                                                          (23b) 

 
It is easy to see that the contact probability obeys the 
following scaling form 
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)                                                                   (24) 

 
with the scaling function  
 

        
  (

     

       
)
     ⁄

.                                         (25) 

 

Thus, the associated contact exponent exactly reads 
 
                                                                                       (26b) 
 
Then,      ⁄ , for strings. 
 
We emphasize that the discussion of the temperature-
dependence of all separation-moments will be presented 
in another publication. 
 
Conclusion 
 
The aim of this paper is an analytical study of the 
statistical properties of string-pairs, from a  -deformed 
Morse potential, using the Schrödinger equation method. 
It was found that its solutions where bound states.  
 From the exact ground state expression, we computed 
the contact probability that is defined as the probability 
to find the two interacting strings at a (finite) distance 

each other. This probability gives all length-scales, which 
are the average-separation and roughness.  
 The main conclusion is that, our analytical studies 
reveal that the  -deformed Morse potential is a good 
candidate for the description of the statistical properties 
of interacting strings.  
 We emphasize that the study of the unbinding 
transition from string-pairs with this potential will be 
appeared elsewhere. 
 This work must be considered as a natural extension 
of some very recently published one [11], dealt with an 
exact study of the statistical properties of string-pairs 
from standard      and generalized        Morse 
potentials. 
 Finally, the present analysis may be extended to more 
than two strings. 
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