
 
 

 

772|Int. J. of Multidisciplinary and Current research, Vol.3 (July/Aug 2015) 

 

International Journal of Multidisciplinary and Current Research                                           
                                                      

Research Article                                   

 

 ISSN: 2321-3124 

   Available at: http://ijmcr.com 

 

Dirac-Equation for Graphene with an Arbitrary Potential: Exact Analytical Results 
and General Proof of Bloch's Theorem 
 
M. Benhamou and Y. Khaled 
 
Equipe Matériaux Avancés et Applications, ENSAM, Moulay Ismail University, P.O. Box 15290, Al Mansour, 50000, Meknès, Morocco 

 
Accepted 05 Aug 2015, Available online 11 Aug 2015, Vol.3 (July/Aug 2015 issue) 

 
  
Abstract  
  
In this work, we reexamine the problem of the investigation of the electronic band structures of graphene using the 
Dirac-equation approach, with massless fermions (electrons). It is assumed that the charges experience a periodic 
external interaction potential of arbitrary form. First, we study all analytical properties of the wave-function that solves 
such an equation, and exactly solve the latter for normal incident wave-vectors, whatever is the potential expression. 
Second, we exactly determine the Dirac energy spectrum (at Dirac points). Thirdly, we give a general proof of the Bloch's 
theorem, usually encountered in Solid State Physics. Finally, the discussion is extended to nonzero gap monolayer-
graphenes and to a finite number of parallel graphene layers. 
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1. Introduction 
 

Graphene is the first truly two-dimensional crystal ever 
observed in nature. It is a single plane of carbon atoms 
distributed regularly on a hexagonal lattice in the form of 
honeycomb. Graphene is considered as the mother of all 
other known carbon-rich materials, as graphite, diamond, 
fullerenes and carbon nanotubes. The graphene-
terminology was introduced in 1986 for the first time by 
H.P. Boehm, R. Setton and E. Stumpp [1,2] to describe the 
graphite intercalation compounds. The first observation 
of a graphene sheet by Electron Microscopy was due in 
1962 to H.P. Boehm and coworkers [3]. The microscopy 
images show graphite oxide flakes reduced with 
hydrazine of apparently atomic thickness, but this 
discovery remained a simple curiosity of laboratory. A real 
revolution in the field was marked by the isolation of 
graphene in 2004 by S.K. Novoselov and A.K. Geim [4] by 
an exfoliation of graphite using adhesive tape techniques. 
Due to its remarkable and exciting electronic and 
mechanical properties, the graphene has received a great 
deal of attention from both scientific community and 
industrials. As a matter of fact, the graphene possesses a 
very high electrical mobility and a great stability at the 
nano-scale [5-7]. Furthermore, contrarily to the carbon 
nanotubes, the graphene may be produced on large 
substrates. All these properties allow the manufacturing 
of graphene based-microelectronics systems that may 
treat information ten times more rapidly than the actual 
systems. Then, the graphene presents new features that 
may have some interest in Quantum Information. 

From an electric point of view, the graphene is a special 
two-dimensional semi-conductor material possesses a 
zero-gap (semi-metal). The first theoretical investigation 
of the electronic band structures of the graphene has 
been done in 1947 by P.R. Wallace [8] who showed the 
unusual semi-metallic behavior in this material. 
 A pertinent remark is that, the electrons in graphene 

show a relativistic behavior. More precisely, electrons in 

graphene may be viewed as massless charged fermions 

living in two-dimensional space. This analogy makes the 

graphene as exciting bridge between condensed-matter 
and high energy physics. The essential conclusion is that, 

the behavior of electrons in graphene can be described 

solving a Dirac-like equation with an external potential [9-

11]. The resolution of such an equation gives precious 

informations on the electronic band structures and other 

properties of graphene. We note that, in the Dirac-

equation language, (i) the valence (VB) and conduction 
(CB) bands meet in two points in reciprocal space (Dirac 

points), (ii) the dispersion relation close to the Dirac 

points is linear and it has electronic-hole symmetry, and 

(iii) the VB is full and the CB is empty (the Fermi level is 

right at the Dirac points). 
 

 We emphasize that the Dirac equation has been 
exactly solved only for some class of the interaction 
potentials. In this work, however, we exactly solve this 
equation with arbitrary (periodic) potentials (for normal 
incident waves). In particular, we exactly determine the 
Dirac energy spectrum (at Dirac points) and give a general 
proof of the Bloch's theorem usually encountered in Solid 
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State Physics [12]. We also discuss the problem of 
graphene with gap and many parallel graphene-sheets. 
 The remaining of presentation proceeds as follows. In 
Section 2, we recall the useful basic equations. Exact 
analytic properties of the solution of Dirac-equation and 
the proof of the Bloch's theorem are presented in Section 
3. We exactly determine, in Section 4, the Dirac energy 
spectrum (at Dirac points). Finally, some concluding 
remarks are drawn in the last section. 
 
2. Basic equations 
 
The Hamiltonian based on the Dirac-equation, is the 
following 
 

 ̂    (         )   ( ) ̂ ,                                           (1) 

 
with the momentum operators 
 

   
 

 

 

  
 ,                           

 

 

 

  
  ,                                     (2) 

 
along the   and  -directions, respectively. In definition 

(1),  ̂ accounts for the     unit matrix and 
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/ ,     .
   
  

/                                           (2a) 

 
for the standard Pauli matrices. There      

     is the 
Fermi velocity. 
 
The above Hamiltonian acts on two-component 
pseudospins   (     )

 , where   (   ) and 
  (   ) are the wave-functions relatively to the two 
sublattices   and   in graphene. We denote by   the 

associated energy. Since the Hamiltonian  ̂ commutes 
with the momentum operator   , the wave-function, 

 (   ), must have the form :  (   )        (   )  

     (     )
 , where    is the  -component of the 

incident wave-vector,   (     ). Then, the basic 

equation to solve is 

 
  

  
  ( )   ,                                                                          (3) 

 
where  ( ) is the following     matrix 
 

 ( )  [
    ( )

  ( )    
]         ( )   ,                    (4) 

 
with the third Pauli matrix 
 

   .
  
   

/ .                                                                    (4a) 

 
We have used the notation 
 
 ( )  (   )

  ,   ( )- ,                                              (4b) 

where   is the energy and  ( ) is the interaction 
potential. It is assumed that such a potential is periodic in 
the  -variable. We denote by   its period, that 
is:  (   )   ( ), for all    .  
 
Mathematically speaking, Eq. (3) is a first-order linear 
differential system of (symmetric) matrix  ( ). The latter 
has the following trivial properties 
 

   , ( )-    
    ( ),    , ( )-    ,                      (5) 

 

   ( )  [  
    ( )]

  
 ( ) .                                       (6) 

 
Notice that the (stable) solution of differential system (3) 

is oscillatory if only if   ( )    
 , for all    . 

 
It will be convenient to introduce the Cauchy operator or 
matriciant we denote  (    ). The latter satisfies the 
following equation 
 
  

  
  ( )   ,                                                                         (7) 

 
with the initial condition 
 

 (    )   ̂ ,                                                                        (7a) 
 

where  ̂ is the     identity matrix. The formal solution 
of Eq. (7) is 
 
 ( )   (    )  (  ) .                                                      (8) 
 
Here,    is an arbitrary point. We note that the operator 
  can be related to the fundamental matrix,  ( ), by 
,  - 
 
 (    )   ( )  

  (  ) .                                                  (9) 
 
The fundamental matrix  ( ) then solves the same 
differential equation as the matriciant  (    ). We recall 
that the matrix  ( ) is constructed with two fundamental 
solutions of Eq. (7). We recall that, any other fundamental 
matrix   ( ) can be written as [13]:   ( )   ( )  , 
where   is a non-singular squared matrix. 
 
It follows from the formal solution of equation (7) that 
the matriciant  (    ) must satisfy the following 
properties 
 
   (    )   (    ) ,                                                   (10a) 

 
 (   ) (   )   (   ),(Multiplication property),     (10b)   
 

   , ( )-     , ( )-     {∫   , ( )-
 

 
  }.     (10c)              

 

Since  ( )   ̂ and    , ( )-   , the above equality 
becomes 
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   , ( )-    ,                                                                   (11) 
 
for all    . This relation is valid for all interaction 
potentials. 
 
Remark that the matriciant   plays the role of the 
evolution operator of Quantum Mechanics and the matrix 
  is the analog of Hamiltonian, with the substitution 
      , where   is time. 
 
3. Analytical properties of the solution and proof of the 
Bloch’s theorem 
 
Assume that the interaction potential  ( ) is periodic in 
the  -variable, with period  . Then, the matrix  ( ) of 
the differential system is also periodic with the same 
period, that is:   (   )   ( ). Without loss of 
generality, we shall set      and use the notation 
 (   )   ( ). We have the following properties: 
 
Property 1: The matriciants  (   ) and  ( ) are 
related by 
 
 (   )   ( )  .                                                          (12) 
 
Putting     into this periodicity relation and using the 

property  ( )   ̂ yields that the squared matrix   is 
simply     ( ). The latter is called monodromy matrix 
[13] that depends on electron energy  , the  -
component of the incidence wave-vector,   , and 

parameters of the potential, *  +. To show the above 
equality, we first note that the matriciant  (   )  is 
also solution to differential system (7). We write 
 

 (   )  
  (   )

  
    (   )  

  ( )

  
        ( )   ( ) .                                  (13) 

 
This ends the proof of property (12). 
 
Property 2: The matriciant  ( )  with a periodic 
differential system matrix  ( ), satisfies the Floquet’s 
theorem [13], according to which 
 
 ( )   ( )    ,                                               (14) 
 
where  ( ) is a periodic matrix, that is  (   )  
  ( ). Combining equalities (12) and (14) gives the 
relation:          ( ). We have used the identity 
  ( )   ( )   ̂. 
 

Property 3: There exists a (non-trivial) fundamental 
solution of differential system (3) such that 
 

 (   )    ( ) .                                              (15) 
 
This is the Bloch’s theorem. Here,   is an eigenvalue 
(multiplier) of the monodromy matrix     ( ). To 

show the above periodicity relation, we first apply Eq. (3) 
replacing   by     and setting     , and combine it 
with relationship (12), to find 
 
 (   )   ( )  ( ) .                                             (16) 
 
On the other hand, we can choose a fundamental solution 
 ( ) such that  ( ) is an eigenvector of monodromy 
matrix  , that is   ( )    ( ). 
 
This completes the proof of Bloch's theorem. 
 
Property 4: For a normal incidence, that is for     , we 

exactly solve the differential system (7) and find 
 

 ( )     {    ∫  ( )  
 

 
}                                            (17) 

 
This gives the exact pseudo-spinor 
 

 ( )     {    ∫  ( )  
 

 
} ( )                                    (18) 

 
where the function  ( ) is that defined in Eq. (4b). 
 
4. Exact Dirac energy spectrum 
 
Now, come back to the monodromy matrix    ( ) 
and denote by   and    (complex conjugate of  ) its 
eigenvalues. Then, we have 
 
                                                             (19) 
 
           .                                                                 (20) 
 
The last equality means that the eigenvalue   belongs to 
the unit circle. Equality (19) implies that 
 
                                                               (21) 
 
Inequalities           define the domain in space of 
parameters (     *  +), where electron energy   makes 

sense. Equalities 
 
                                                             (22) 
 
then give the frontiers or energy band structures. 
The monodromy matrix   is exactly given by 
 

   ( )     2    ∫  ( )  
 

 
3 .                               (23) 

 
This expression of   together with Eq. (22) yield the 
relation 
 

    .(   )
  ∫ ,   ( )-

 

 
  /                             (24) 

 
This implies the exact location of the Dirac-points of 
quantified energy 
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∫  ( )
 

 
   ,     ,                              (25) 

 
whatever is the expression of the interaction potential, 
 ( ), provided that it is a periodic function of period  . 
The contribution of this potential to the Dirac energy is 
just its mean-value along a period  . 
 
Remark that the difference between consecutive Dirac 
energies (gap) is 
 

              
 

 
                                 (26) 

 
independently of the value of the interaction potential. 
Let us compute the Dirac energy for some typical 
examples: 
 
Example 1: Periodic rectangular potential. 
 
In the interval ,   - of interest, it is defined by 
 

 ( )  {

            

                
                                 (27)                

 
For this case, the general Dirac energy expression 
becomes 
 

      
  

 
 

  

      
    

  

      
    ,      .           (28)         

 
For    , we recover the published result [14]. 
 
Example 2: Sawtooth potential 
 
Its expression, in the interval ,   -, is 
 

 ( )  .
  

 
/                                                           (29)                

 
where      is the maximal value of the potential. For 
this case, we find that the Dirac energy is given by 
 

      
  

 
 

  

  
 ,      .                                                (30) 

 
Example 3: Oscillatory potential. 
 
Its expression is 
 

 ( )       .
  

 
 /                                                            (31) 

 
where      is the potential amplitude. For such a 
potential, we find that 

 
      

  

 
 ,                                                                 (32) 

 
independently on the potential characteristics. 

Example 4: Periodic exponential potential. 
 
In the interval ,   -, its expression is 
 

 ( )  
  

      
(      )                                   (33) 

 
where the parameter   is positive. Here,      denotes 
the maximal value of the potential. For this case, we find 
 

      
  

 
 

  

      
0  

 

 
(      )1 ,     .             (34)       

 
5. Concluding remarks 
 
In the present work, attention is paid to a reexamination 
of the analytical properties of the solution of the Dirac-
like equation and its consequences on the electronic band 
structures. The originality of this investigation is that, the 
study was achieved for arbitrary periodic interaction 
potentials. 
 Firstly, we exactly studied all analytical properties of 
the wave-function. In particular, we determined the exact 
form of the solution for normal incident waves. 
 Secondly, we exactly determine the Dirac energy 
spectrum (at Dirac points). 
 Thirdly, we gave a general proof of the Bloch's 
theorem, usually encountered in Solid State Physics. 
We emphasize that the above basic formulae can be 
extended to     parallel graphene-sheets. In this case, 
the wave-function   is a generalized spinor of 
components    (     ) and the differential system 
matrix   is a squared matrix of order  . The coefficients 
of this matrix are constructed with the  -component of 
the incident wave-vector,   , the coupling constants 

between layers, {   }, and the interaction potential,  ( ) 

[15]. The latter is assumed to be periodic in the variable 
 , with period  . Then, the differential system matrix   is 
periodic, of period  . As main result, the above 
consequences (for a single graphene-sheet) remain the 
same in the case of many parallel graphene-sheets. 
 Also, the above obtained results can be extended, in a 
straightforward way, to the situation of graphene with 
gap (doped graphene). In this case, one must add to the 
Hamiltonian (1) some term,    , where    is nothing else 
but the gap energy. 
 Further questions in relation with the subject are 
under investigation. 
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