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Abstract

Let G be a simple connected graph of order n. Let D.(G, i) be the family of connected total dominating sets of G with
n
cardinality i. The polynomial D (G, x) = >
I ="Yct (G)
In this paper, we study some properties of connected total domination polynomials of the Triangular Ladder TL,. We
obtain a recursive formula for d.. (TL,, i). Using this recursive formula, we construct the connected total domination

d. (G, i) X is called the connected total domination polynomial of G.

2n )
polynomial D (TL, x) = Z d(TL,, i) X', of TL,, where d(TL,, i) is the number of connected total dominating sets of

I =n-1

TL, with cardinality i and some properties of this polynomial have been studied.

Keywords: Triangular Ladder, connected total dominating set, connected total domination number, connected total

domination polynomial.

1. Introduction

Let G =(V, E) be a simple connected graph of order n. For
any vertex veV, the open neighbourhood of v is the set
N(v) = {ueV/uveE} and the closed neighbourhood of v is
the set N[v] = N(v) U {v}. For a set S — V, the open
neighbourhood of Sis N(S) = [J N(v) and the closed

veS
neighbourhood of S is N[S] = N(S) U S. The maximum
degree of the graph G is denoted by A(G) and the
minimum degree is denoted by 5(G).

A set S of vertices in a graph G is said to be a total
dominating set if every vertex veV is adjacent to an
element of S.

A total dominating set S of G is called a connected
total dominating set if the induced subgraph (S)is
connected.

The minimum cardinality taken over all connected
total dominating sets S of G is called the connected total
domination number of G and is denoted by v (G).

A connected total dominating set with cardinality y (G) is
called y— set. We denote the set {1, 2,..., 2n -1, 2n}
by [2n], throughout this paper.

2. Connected total dominating sets of triangular ladders

Consider two paths [uqu,...u,] and [vyv,...v,]. Join each pair
of vertices u;,v; and uj,1 Vi, i = 1, 2,..., n. The resulting graph
is a Triangular Ladder.

Let TL, be a Triangular ladder with 2n vertices. Label
the vertices of TL, as given in Figure 1.

) [ ] [ ]
[ ) [ ] L]
2 4 6 3 2n-4 2n-2 2n
Figure 1

Triangular Ladder TL,

Then, V(TL,)={1,2,3,..,2n-3,2n-2,2n-1,2n} and
E(TL,) = {(1,3), (3,5), (5,7), ..., (2n=5, 2n-3), (2n-3, 2n-1),
(2, 4), (4, 6), (6, 8),..., (2n-4, 2n-2), (2n-2, 2n), (1, 2),
(3, 4), (5, 6), ..., (2n=3, 2n-2), (2n-1, 2n),(2, 3), (4, 5),
(6, 7),...,(2n-4, 2n-3),(2n-2, 2n-1)}.

For the construction of the connected total dominating

sets of the Triangular Ladders TL,, we need to investigate
the connected total dominating sets of TL, — {2n}. In this
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section, we investigate the connected total dominating
sets of TL, with cardinality i. We shall find the recursive
formula for d(TL,, i).

Lemma 2.1[7].

Y (Pn)=n—2.

ct

Lemma 2.2

For everyneNand n >4,

(i) Y, (TLy) =n-1.

(ii) Y, (TLh—{2n}) =n 2.

(iii) D, (TL,, i) =¢ifand onlyifi<n—1ori>2n.

(iv) D¢t (TLi—{2n}, i) = ¢ if and only if i < n =2 or
i>2n-1.

Proof

(i) Clearly {3,5,7,9,..,2n —1} is a minimum connected
total dominating set for TL,. If n is even or odd it
contains n — 1 elements. Hence, y«(TL,) =n —1.

(i) Clearly { 3,5,7,9,..., 2n =3} is a minimum connected
total dominating set for TL, —{2n}. If n is even or odd
it contains n — 2 elements. Hence, y (TL, —{2n}) = n
-2.

(iii) follows from (i) and the definition of connected total
dominating set.

(iv) follows from (ii) and the definition of connected total
dominating set.

Lemma 2.3

(i)If De (TLn—{Zn}, i—-1)= ¢, Det (TLy—1—{2n - 2}s i—-1)= (I)
and

Dt (TLy 2,1 —1) = ¢, then D (TLyy, i — 1) = ¢.

(”) If Dct (TLn—{Zn}, i— 1) * 4): Dct (TLn—l_ {2n _2}9 i— 1) * ¢
and
D¢ (TL, 5, i —1) # ¢, then D¢ (TLy_1, i — 1) # ¢.

(iii) If Dg (TLy—{2n},i — 1) = ¢ and Dy (TL, g, i
then

Det (TLn, 1) = ¢

(iv) If De (TLy —{2n}, i — 1) # ¢ and D¢ (TLyy, i
then

_1) = ¢l

_1) * ¢l

D¢t (TL,, i) # .

(v) If Det (TL—{2n},i — 1) # ¢, and Dy (TLyy, i
then

_1) = ¢l

D¢ (TLy, i) # &.

Proof

(i) Since, D (TL,—{2n},i—1)=¢,
D¢t (TLy 1—{2n—2},i—1)=¢ and
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D (TL, —p, i —1) = ¢, by Lemma 2.2 (iii) & (iv), we have,
i-l<n—-2ori—-1>2n-1,
i-l<n—-3ori—-1>2n-3and
i-l<n—-3ori-1>2n-4.
Therefore,i—-1<n—-3ori—1>2n-1.
Therefore,i—1<n—-2or i—1>2n-2 holds.

Hence, D (TLy 1, i — 1) = ¢.

(i) Since, D¢ (TL,—{2n}, i—1) = ¢,
D¢ (TL,;—{2n—2},i—1)# ¢ and
D¢ (TL, 5, i —1) # ¢, by Lemma 2.2 (iii) & (iv), we have,
nN—-2<i-1<2n-1,
n-3<i-1< 2n-3 and
n-3<i-1< 2n—-4.
Suppose, D¢t (TLyy, i— 1) = ¢.

Then, by Lemma 2.2 (iii), we have,i—1<n—-2ori—1>
2n —2.
If i —1< n —2, then Dy (TL,—{2n},i — 1) = ¢, a

contradiction.

Ifi—1>2n-2,then i—1>2n -3 holds, which implies
D¢ (TLy1— {2 n—2},i—1) = ¢, a contradiction.
Therefore, D¢ (TLy_q, i — 1) # ¢.

(iii) Since, D¢ (TL,—{2n},i—1)=¢ and D (TLy_1,i—-1) = ¢,
by Lemma 2.2 (iii) & (iv), we have,
i—-l<n—-2o0ri—1>2n-1and
i—-l<n-2o0ri—-1>2n-2.

Therefore,i—1<n—-2orl—-1>2n-1.

Therefore,i<n—1ori>2n.

Hence, D (TL,, i) = ¢.

(iv) Since, Dy (TL,—{2n}, i—1)# ¢ and D¢ (TL,_1, i —1) = ¢,
by Lemma 2.2 (iii) & (iv), we have,
n-2<i-1<2n-1and

n-2<i-1< 2n-2.

Suppose, D (TL,, i) = ¢, then, by Lemma 2.2 (iii),

we have i<n—1ori>2n.

Therefore, i—1<n—-2 or i—1>2n-1.

If i—1<n-2, then Dy (TL, 1, i—1)=¢, a contradiction.
If i—1> 2n —1, then Dy (TL,—{2n}, i -1) = ¢, a
contradiction.

Therefore, D (TL,, i) # 0.

(v) Since, Dy (TLi—{2n}, i —1) # ¢, by Lemma 2.2 (iv), we
have,
n-2<i—-1<2n-1.

Also, since, Dy (TL,1, i —1) = ¢, by Lemma 2.2 (iii), we
have,

i-l<n—-2ori—-1>2n-2.

If i-1<n —2, then Dy (TL,—{2n}, i -1) = ¢, a

contradiction.
Therefore,i—1>2n— 2.
Therefore,i—1>2n—1.
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Also,i— 1< 2n—1.
Therefore,i— 1= 2n—1.
Therefore, i= 2n.
Hence, D (TL,, i) # ¢.

Lemma 2.4
Suppose that D (TL,, i) # ¢, then for every neN,

(i) Dt (TLi—{2n},i—1)= ¢ and Dy (TLy—y, i —1) = ¢
if and only if i=2n.

(i) Det(TLi—{2n}, i—1) # ¢, Der (TLyey, i—1) = ¢ and
D(TLo—1—{2n—-2},i-1) = ¢, ifand only if i =2n — 1.
(iii)  Der (TLi—{2n}, i— 1) # ¢, Do (TLyy, 1 1) #= @,
D¢ (TLy1—{2n-2},i-1) # ¢ and
D (TL, 5,i—1) = ¢ ifand only if i=2n-2.

Proof
Assume that, D (TL,, i) # .
Therefore,n—1< i <2n.

(i) (=) since, D (TL,—{2n}, i 1) # ¢,by Lemma 2.2 (iv),
we have,
n—-2<i-1<2n-1.
Therefore,n—1< i<2n.
Also, since, D (TL,_1, i —=1) = ¢, by Lemma 2.2 (iii),
we have,
i-l<n—-2o0ri—1>2n-2.
If i—-1<n-2,theni <n—1 whichimplies
D¢ (TL,, i) = ¢, a contradiction.
Therefore,i—1>2n -2.
Therefore, i > 2n —1.
Therefore, i >2n.
Together we have, i = 2n.
(<) follows from Lemma 2.2 (iii) & (iv).

(ii) (=) Since, D (TL,—{2n}, i-1) # ¢, and D¢ (TL, _y, i
_1) * (1);

by Lemma 2.2 (iii) & (iv), we have,
n-2<i-1<2n-1 and
n-2<i-1< 2n-2.
Therefore,n 2<i—1< 2n-2.
Therefore,n—-1<i< 2n-1.
Also, since, D¢ (TLyy — {2n—2},i-1) = ¢,
by Lemma 2.2 (iv), we have,i—1 <n—3 or
i—1>2n-3.
Therefore,i<n—2or i>2n-2.
Ifi<n-2, thei<n—1 holds, which implies
D(TL,, i) = ¢, a contradiction.
Therefore, i >2n-2.
Therefore, i >2n—1.
Together we have, i=2n—1.

(<) follows from Lemma 2.2 (iii) & (iv).

Connected Total Dominating Sets and Connected Total Domination Polynomials of Triangular Ladders

(iii)( =) Since, D(TLy— {2n}, i — 1) # @, Dt (TLy—y, 1 —1) = ¢
and Dy (TL,_1—{ 2n-2}, i-1) # ¢, by Lemma 2.2 (iii) & (iv),
we have,
nN—-2<i-1<2n-1,
n-2<i-1<2n-2and
n-3<i-1<2n-3.
Therefore, n—-2<i-1< 2n-3.
Therefore, n—1<i < 2n-2.
Also, since, Dy (TLyp, i —1) = ¢, by Lemma 2.2 (iii), we
have, i—1<n—-3,o0r i-1>2n-4.
Ifi—-1<n-3,then i<n-2.
Therefore, i<n—1 holds, which implies D (TL,, i)=¢, a
contradiction.
Therefore, i —1>2n — 4.
Therefore, i>2n — 3.
Therefore, i>2n —2.
Together we have i =2n—2.
(<) follows from Lemma 2.2 (iii) & (iv).

Theorem 2.5

For everyn >4,

(i) D (TLi—{2n},i—1)#dand Dy (TLyy, i—1) =0,
then D (TL,, i) ={X U {2n}/ XeD¢ (TL, —{2n },i—1)}.
(i) If Dt (TL—{2n}, i — 1) # ¢ and D¢ (TL,y, i — 1) # ¢,

then

Du(TL,, i) ={X;u {2n =1}, if 2n — 3 € X3/ X;€ D¢ (TL,—{2n},
i—1)}u {X;u{2n}, if 2n —2 or 2n-1 € X; / X;€ Dy (TL,—
{2n},i—-1)} u{X;u{2n- 2},if2n—40r2n—-3 € X,/ X,
De (TLoy, i— D} U X, u {2n— 1}, if 2n =2 € X,/ X;€ Dy
(TLo.g, i— 1)}

Proof

(i) Since, D(TL,—{2n},i-1)# ¢ and D¢ (TLyq, i —1) = &,
by Theorem 2.4 (i), i = 2n.

Therefore, D (TL,,i) = D« (TL,, 2n) = {[2n]} and
Det (TLa—{2n}, i — 1) = D (TL, —{2,}, 2n=1) ={[2n - 1]},
we have the result.
(i) Let Y, = {X;u {2n—1}, if 2n =3 € X4/ X;€ Dg (TL,—{2n}, i— 1)}
U {X;u{2n},if2n—=2o0r2n-1 € X;/ X;€ Dy (TL,—{2n},i—1)}

andY, = {X, U {2n =2}, if 2n — 4 or 2n-3e X,/ X,e
Da (Tlhai— 1} U XU {2n =1}, if2n =2 € X, / X,e
D (TL,., i— 1)}
Obviously, Y; U Y, < D (TL,,i) (1)

Now, let Y € D (TL,, i).

If 2n € Y, then atleast one of the vertices labeled 2n -2 or
2n—1isinY. In either cases, Y = {X; U {2n}} for some X; €
D¢ (TLy— {2n},i-1).

Therefore, Y € Y;.
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Suppose that, 2n —1 € Y, 2n ¢ Y, then atleast one of the

vertices labeled 2n—3 or 2n—2isinY.

If2n—-3 €Y, then Y ={X; U {2n — 1}} for some

X1 € Dg (TL,—{2n }, i—=1).

If2n-2 €Y, then Y ={X, U {2n - 1}} for some

X, € D¢t (TLp.g, i —1).

Therefore, Y € Y;orY €Y,.

Now, Suppose that,

2n—-2e€Y,2n—-1¢ Y, 2n ¢ Y, then atleast one of the
vertices labeled 2n—4 or 2n—-3isinY.

In either cases, Y ={X, U {2n — 2}} for some

X3 € D¢t (TLp.g,i-1).

Therefore, Y € Y,.

Hence, D (TL,, i) Y, U Y, (2)
From (1) and (2) , we have,

D (TLy i) = Xy u {2n = 1}, if 2n — 3 € Xy/ X;€
D¢ (TLy—{2n}, i—-1)}u {X;u{2n},if 2n -2 or 2n-1 € X,/
Xi€ D (TLy—{2n}, i— 1)} u X, u {2n - 2}, if 2n -4 or
2n -3 € X/ X3€ D (TLyy, i = 1)} U {X; U {2n = 1}, if
2n—2 € X3/ X D¢t (TLny, i — 1)}

Theorem 2.6

If D(TL,,i) be the family of connected total dominating
sets of TL, with cardinality i, where i > n — 1, then
dct (TLn:i) = dct (TLn_ {Zn}l i- 1) +dct (TLn-lr |_1)

Proof
We consider the two cases given in Theorem 2.5.
By Theorem 2.5 (i), we have,
D¢t (TLy, i) = {XU{2n} / X € D¢ (TL,—{2n},i—1)}
Since, Dy (TL,4, i—1) = ¢, we have,

dct (TL,4,i—1)=0.

Therefore, de; (TL,,i) = dt(TL, —{2n}, i — 1).

By Theorem 2.5 (ii), we have,

De(TLy, i) ={X1u {2n =1}, if 2n =3 € X,/ X, €

D (TL,—{2n},i—-1)} U {X;u{2n},if2n—-20r

2n—1e Xy/ X; € Dt (TLi—{2n}, i - 1)} U {X%,U {2n -2},
if2n—4o0r2n—3e X,/ X, € Dt (TLy.g, i—1)} U
X,u{2n—1},if 2n—2 € X,/ Xy € Dt (TLya, i— 1)}
Therefore,

de(TLy, §) = dee (TLy,— {20}, i = 1) + do(TL, 4, 1 —1).
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3. Connected total domination polynomials of triangular
ladders

Definition 3.1

Let D (TL,, i) be the family of connected total dominating
sets of TL, with cardinality i and let d; (TL,, i) = | D¢ (TL,, i)].
Then the connected total
D (TL,, x) of TL, is defined as,

2n
Det (TLox) = 2
=7y (TLn)

Theorem 3.2

domination Ploynomial

de (TL,, i) X.

For every n >4,

D (TL, , x) = X[D¢t (TL, — {2n}, x) + D¢ (TL, .1, x)], with
initial values,

Du(TL, — {4}, x) = 3x% +x°.

DeTLy, X) = 5%° + 4%+ x™.

Det(TL3— {6}, X) = 5x* + 8x> + 5x" + x".

Da(TL3, X) = 3x° + 10x° + 12 X" + 6x° + x°.

Det (TLa— {8}, x) = Xx* + 8+ 18x" + 17x° + 7x°+ x.

Proof
We have, di(TL,, i) = da(TL,—{2n}, i— 1) + d (TL,.g, i — 1).
Therefore,  du(TL,, i) X = do(TL,—{2n}, i—1)x +
dee(TLig, i—1) X'

2de(TLy, ) X = Zdo(TLy = {2n},i-1) X +Zdg
(TLog, i = 1) x'.

Sde(TLy, i) X' = XZde (TLi— {20}, i-1) X" +xZ
dee (TLyg, 1= 1)X

D¢t (TL,, X) = x Dt (TL,— {2n}, X) + x Det(TL,-1, X).

Therefore, Dy (TL,, X) = X[Dg (TL, — {2n}, X) + De(TLy1, X)]
with initial values,
Da(TL, — {4}, x) =3x° +x°.
Du(TL,, x) = 5% + 4%+ x".
Dee(TL3— {6}, x) = 5x°+ 8’ + 5x° + X°.
Du(TL3, x) = 3x> + 10x° + 12 X" + 6x° + x°.
Det (TLg— {8}, ) = x* + 8x° + 18x" + 17, + 7x°+ X

Example 3.3
Dut(TLa, x) = 4x> +18x" +30x° + 23x° +8x +x°.

Det(TLs- {10}, x) =x* + 12x* + 36 x* + 47 x° + 30x" + 9x® + X°.
By Theorem 3.2, we have,
Det(TLs, X) = x [ 4x> + 18x* + 30x°+ 23 x° + 8x" + x°* + x°
+12x % +36° +47x°+ 30X + 9 x°+ xg].
= 5x" +30x° + 66x° + 70x” + 38x"+ 10x” + x™°.

We obtain d.(TL,, i) and d.(TL,— {2n}, i) for2<n <9 as
shown in Table 1.
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Table 1
i
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
TL-{4} 3 1
TL, 5 4 1
TLs-{6} 5 8 5 1
TLs 3 10 12 6 1
TL-{8} 1 8 18 17 7 1
TLy 0 4 18 30 23 8 1
TLs-{10} 0 1 12 36 47 30 9 1
TLs 0 0 5 30 66 70 38 10 1
TLe-{12} 0 0 1 17 66 113 100 47 11 1
Tle 0 0 0 6 47 132 183 138 57 12 1
TL-{14} 0 0 0 1 23 113 245 283 185 68 13 1
TL; 0 0 0 0 7 70 245 428 421 242 80 14 1
TLe-{16} 0 0 0 0 1 30 183 490 711 606 310 93 15 1
Tlg 0 0 0 0 0 8 37 428 918 1132 848 390 107 16 1
TLo-{18} 0 0 0 0 0 1 38 220 918 1629 1738 1158 483 122 17 1
Tl 0 0 0 0 0 0 9 75 648 1836 2761 2586 1548 590 138 18 1

In the following Theorem we obtain some properties of
dct(TLnl I)

Theorem 3.4

The following properties hold for the coefficients of
D(TL,, x) for all n.

(i) det (TLy, 2n) = 1, for every n > 2.

(i) det (TL,, 2n =1) = 2n, for every n > 2.

(iii)) det (TLn, 2n =2) = 2n°—=3n + 3, for everyn>2.
(iv) det (TLy n—1) = n, for every n > 3.

Proof
Proof is obvious.
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