Available at: http://ijmcr.com

Connected Total Dominating Sets and Connected Total Domination Polynomials of Triangular Ladders

A. Vijayan¹ and T. Anitha Baby²

¹Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India

Accepted 18 June 2016, Available online 21 June 2016, Vol.4 (May/June 2016 issue)

Abstract

Let G be a simple connected graph of order n. Let $D_{ct}(G, i)$ be the family of connected total dominating sets of G with cardinality i. The polynomial $D_{ct}(G, x) = \sum_{i=\gamma_{Ct}(G)}^{n} d_{ct}(G, i) x^{i}$ is called the connected total domination polynomial of G.

In this paper, we study some properties of connected total domination polynomials of the Triangular Ladder TL_n . We obtain a recursive formula for d_{ct} (TL_{nr} i). Using this recursive formula, we construct the connected total domination

polynomial $D_{ct}(TL_n, x) = \sum_{i=n-1}^{2n} d_{ct}(TL_n, i) x^i$, of TL_n , where $d_{ct}(TL_n, i)$ is the number of connected total dominating sets of

 TL_n with cardinality i and some properties of this polynomial have been studied.

Keywords: Triangular Ladder, connected total dominating set, connected total domination number, connected total domination polynomial.

1. Introduction

Let G=(V,E) be a simple connected graph of order n. For any vertex $v{\in}V$, the open neighbourhood of v is the set $N(v)=\{u{\in}V/uv{\in}E\}$ and the closed neighbourhood of v is the set $N[v]=N(v)\cup\{v\}$. For a set $S\subseteq V$, the open neighbourhood of v is $v\in V$.

neighbourhood of S is N[S] = N(S) \cup S. The maximum degree of the graph G is denoted by $\Delta(G)$ and the minimum degree is denoted by $\delta(G)$.

A set S of vertices in a graph G is said to be a total dominating set if every vertex $v \in V$ is adjacent to an element of S.

A total dominating set S of G is called a connected total dominating set if the induced subgraph $\quad \langle \ S \ \rangle$ is connected.

The minimum cardinality taken over all connected total dominating sets S of G is called the connected total domination number of G and is denoted by $\gamma_{ct}(G)$.

A connected total dominating set with cardinality γ_{ct} (G) is called γ_{ct} – set. We denote the set $\{1, 2, \ldots, 2n-1, 2n\}$ by [2n], throughout this paper.

2. Connected total dominating sets of triangular ladders

Consider two paths $[u_1u_2...u_n]$ and $[v_1v_2...v_n]$. Join each pair of vertices u_i,v_i and $u_{i+1,}v_i$, i=1,2,..., n. The resulting graph is a Triangular Ladder.

Let TL_n be a Triangular ladder with 2n vertices. Label the vertices of TL_n as given in Figure 1.

Figure 1

Triangular Ladder TL_n

Then, $V(TL_n) = \{1,2,3,...,2n-3,2n-2,2n-1,2n\}$ and $E(TL_n) = \{(1,3),(3,5),(5,7),...,(2n-5,2n-3),(2n-3,2n-1),(2,4),(4,6),(6,8),...,(2n-4,2n-2),(2n-2,2n),(1,2),(3,4),(5,6),...,(2n-3,2n-2),(2n-1,2n),(2,3),(4,5),(6,7),...,(2n-4,2n-3),(2n-2,2n-1)\}.$

For the construction of the connected total dominating sets of the Triangular Ladders TL_n , we need to investigate the connected total dominating sets of $TL_n - \{2n\}$. In this

²Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India

section, we investigate the connected total dominating sets of TL_n with cardinality i. We shall find the recursive formula for $d_{ct}(TL_n, i)$.

Lemma 2.1[7].

$$\gamma_{\perp}(P_n) = n - 2$$
.

Lemma 2.2

For every $n \in \mathbb{N}$ and $n \ge 4$,

- (i) $\gamma_{ct} (TL_n) = n 1$.
- (ii) $\gamma_{ct} (TL_n \{2n\}) = n 2.$
- (iii) $D_{ct}(TL_n, i) = \phi$ if and only if i < n-1 or i > 2n.
- (iv) D_{ct} (TL_n-{2n}, i) = ϕ if and only if i < n -2 or i > 2n -1.

Proof

- (i) Clearly $\{3,5,7,9,...,2n-1\}$ is a minimum connected total dominating set for TL_n . If n is even or odd it contains n-1 elements. Hence, $\gamma_{ct}(TL_n) = n-1$.
- (ii) Clearly { 3,5,7,9,..., 2n-3} is a minimum connected total dominating set for $TL_n-\{2n\}$. If n is even or odd it contains n-2 elements. Hence, γ_{ct} ($TL_n-\{2n\}$) = n-2
- (iii) follows from (i) and the definition of connected total dominating set.
- (iv) follows from (ii) and the definition of connected total dominating set.

Lemma 2.3

(i) If
$$D_{ct}$$
 (TL_n-{2n}, i - 1) = ϕ , D_{ct} (TL_{n-l}-{2n - 2}, i - 1) = ϕ and

$$D_{ct}(TL_{n-2}, i-1) = \phi$$
, then $D_{ct}(TL_{n-1}, i-1) = \phi$.

(ii) If D_{ct} (TL_n-{2n}, i - 1) $\neq \phi$, D_{ct} (TL_{n-l}-{2n - 2}, i - 1) $\neq \phi$ and

$$D_{ct}$$
 (TL_{n-2}, i-1) $\neq \phi$, then D_{ct} (TL_{n-1}, i-1) $\neq \phi$.

(iii) If D_{ct} (TL_n – {2n}, i – 1) = ϕ and D_{ct} (TL_{n-1}, i –1) = ϕ , then

$$D_{ct}$$
 (TL_n, i) = ϕ .

(iv) If D_{ct} (TL_n -{2n}, i - 1) $\neq \varphi$ and D_{ct} (TL_{n-1}, i -1) $\neq \varphi$, then

$$D_{ct}$$
 (TL_n, i) $\neq \phi$.

(v) If D_{ct} (TL_n- {2n}, i - 1) $\neq \phi$, and D_{ct} (TL_{n-1}, i -1) = ϕ , then

$$D_{ct}$$
 (TL_n, i) $\neq \phi$.

Proof

(i) Since, $D_{ct} (TL_n - \{2n\}, i - 1) = \phi$, $D_{ct} (TL_{n-l} - \{2n - 2\}, i - 1) = \phi$ and

 D_{ct} (TL_{n-2}, i-1) = ϕ , by Lemma 2.2 (iii) & (iv), we have,

i-1 < n-2 or i-1 > 2n-1,

i-1 < n-3 or i-1 > 2n-3 and

i-1 < n-3 or i-1 > 2n-4.

Therefore, i - 1 < n - 3 or i - 1 > 2n - 1.

Therefore, i-1 < n-2 or i-1 > 2n-2 holds.

Hence, D_{ct} (TL_{n-1} , i - 1) = ϕ .

(ii) Since, D_{ct} (TL_n-{2n}, i - 1) $\neq \varphi$,

 $D_{ct} (TL_{n-1} - \{2n-2\}, i-1) \neq \phi$ and

 D_{ct} (TL_{n-2}, i -1) $\neq \varphi$, by Lemma 2.2 (iii) & (iv), we have,

 $n-2 \le i-1 \le 2n-1$,

 $n-3 \le i-1 \le 2n-3$ and

 $n-3 \leq i-1 \leq \ 2n-4.$

Suppose, D_{ct} (TL_{n-1}, i – 1) = ϕ .

Then, by Lemma 2.2 (iii), we have, i - 1 < n - 2 or i - 1 > 2n - 2.

If i-1 < n-2, then D_{ct} (TL_n-{2n}, i-1) = φ , a contradiction.

If i-1>2n-2, then i-1>2n-3 holds, which implies

 $D_{ct} (TL_{n-1} - \{2 n - 2\}, i - 1) = \phi$, a contradiction.

Therefore, D_{ct} (TL_{n-1} , i-1) $\neq \phi$.

(iii) Since, $D_{ct}(TL_n - \{2n\}, i-1) = \phi$ and $D_{ct}(TL_{n-1}, i-1) = \phi$,

by Lemma 2.2 (iii) & (iv), we have,

i - 1 < n - 2 or i - 1 > 2n - 1 and

i-1 < n-2 or i-1 > 2n-2.

Therefore, i - 1 < n - 2 or I - 1 > 2n - 1.

Therefore, i < n - 1 or i > 2n.

Hence, D_{ct} (TL_n, i) = ϕ .

(iv) Since, D_{ct} ($TL_n - \{2n\}$, i - 1) $\neq \phi$ and D_{ct} (TL_{n-1} , i - 1) $\neq \phi$, by Lemma 2.2 (iii) & (iv), we have,

 $n-2 \leq i-1 \leq \ 2n-1 \ \text{and}$

 $n-2 \leq i-1 \leq \ 2n-2.$

Suppose, D_{ct} (TL_n, i) = ϕ , then, by Lemma 2.2 (iii),

we have i < n - 1 or i > 2n.

Therefore , i - 1 < n - 2 or i - 1 > 2n - 1.

If i - 1 < n - 2, then $D_{ct}(TL_{n-1}, i - 1) = \phi$, a contradiction.

If i-1>2n-1, then D_{ct} (TL_n-{2n}, i -1) = φ , a contradiction.

Therefore, D_{ct} (TL_n, i) $\neq \phi$.

(v) Since, D_{ct} (TL_n-{2n}, i – 1) $\neq \varphi$, by Lemma 2.2 (iv), we have,

 $n-2 \leq i-1 \leq \ 2n-1.$

Also, since, D_{ct} (TL_{n-1}, i -1) = ϕ , by Lemma 2.2 (iii), we have.

i-1 < n-2 or i-1 > 2n-2.

If i-1 < n-2, then D_{ct} (TL_n-{2n}, i-1) = φ , a contradiction.

Therefore, i - 1 > 2n - 2.

Therefore, $i - 1 \ge 2n - 1$.

Also, $i - 1 \le 2n - 1$.

Therefore, i - 1 = 2n - 1.

Therefore, i = 2n.

Hence, D_{ct} (TL_n, i) $\neq \phi$.

Lemma 2.4

Suppose that D_{ct} (TL_n, i) $\neq \phi$, then for every $n \in N$,

- (i) D_{ct} (TL_n-{2n}, i 1) $\neq \varphi$ and D_{ct} (TL_{n-1}, i -1) = φ if and only if i = 2n.
- (ii) $D_{ct} (TL_n \{2n\}, i-1) \neq \phi, D_{ct} (TL_{n-1}, i-1) \neq \phi \text{ and}$ $D_{ct} (TL_{n-1} \{2n-2\}, i-1) = \phi, \text{ if and only if } i = 2n-1.$
- (iii) $D_{ct} (TL_n \{2n\}, i-1) \neq \phi, D_{ct} (TL_{n-1}, i-1) \neq \phi,$ $D_{ct} (TL_{n-1} \{2n-2\}, i-1) \neq \phi$ and $D_{ct} (TL_{n-2}, i-1) = \phi$ if and only if i = 2n 2.

Proof

Assume that, D_{ct} (TL_n, i) $\neq \phi$.

Therefore, $n-1 \le i \le 2n$.

(i) (\Rightarrow) since, D_{ct} (TL_n- {2n}, i -1) \neq ϕ ,by Lemma 2.2 (iv), we have,

 $n-2 \le i-1 \le 2n-1$.

Therefore, $n - 1 \le i \le 2n$.

Also, since, D_{ct} (TL_{n-1} , i-1) = ϕ , by Lemma 2.2 (iii), we have,

i-1 < n-2 or i-1 > 2n-2.

If i-1 < n-2, then i < n-1 which implies

 D_{ct} (TL_n, i) = ϕ , a contradiction.

Therefore, i - 1 > 2n - 2.

Therefore, i > 2n - 1.

Therefore, $i \ge 2n$.

Together we have, i = 2n.

(⇐) follows from Lemma 2.2 (iii) & (iv).

(ii) (\Rightarrow) Since, D_{ct} ($TL_n - \{2n\}$, i-1) $\neq \phi$, and D_{ct} (TL_{n-1} , i-1) $\neq \phi$,

by Lemma 2.2 (iii) & (iv), we have,

$$n-2 \leq i-1 \leq \ 2n-1 \ \ \text{and}$$

$$n-2 \leq i-1 \leq \ 2n-2.$$

Therefore, $n-2 \le i-1 \le 2n-2$.

Therefore, $n-1 \le i \le 2n-1$.

Also, since, D_{ct} ($TL_{n-1} - \{2n-2\}$, i-1) = ϕ ,

by Lemma 2.2 (iv), we have, i-1 < n-3 or

i −1> 2n-3.

Therefore, i < n-2 or i > 2n-2.

If i < n-2, the i < n-1 holds, which implies

 $D_{ct}(TL_n, i) = \phi$, a contradiction.

Therefore, i > 2n - 2.

Therefore, $i \ge 2n - 1$.

Together we have, i = 2n - 1.

(⇐) follows from Lemma 2.2 (iii) & (iv).

(iii)(\Rightarrow) Since, $D_{ct}(TL_n-\{2n\},\,i-1)\neq \varphi$, $D_{ct}(TL_{n-1},\,i-1)\neq \varphi$ and $D_{ct}(TL_{n-1}-\{2n-2\},\,i-1)\neq \varphi$, by Lemma 2.2 (iii) & (iv), we have,

$$n-2\leq i-1\leq \ 2n-1,$$

$$n-2 \leq i-1 \leq \ 2n-2 \ and$$

$$n-3 \le i-1 \le 2n-3$$
.

Therefore, $n-2 \le i-1 \le 2n-3$.

Therefore, $n-1 \le i \le 2n-2$.

Also, since, D_{ct} (TL_{n-2}, i -1) = ϕ , by Lemma 2.2 (iii), we have, i - 1 < n - 3 , or i -1 > 2n - 4.

If i - 1 < n - 3, then i < n - 2.

Therefore, i < n-1 holds, which implies D_{ct} (TL_n, i) = ϕ , a contradiction.

Therefore, i-1 > 2n-4.

Therefore, i > 2n - 3.

Therefore, $i \ge 2n - 2$.

Together we have i = 2n - 2.

(⇐) follows from Lemma 2.2 (iii) & (iv).

Theorem 2.5

For every $n \ge 4$,

(i) If D_{ct} ($TL_n - \{2n\}$, i - 1) $\neq \phi$ and D_{ct} (TL_{n-1} , i - 1) = ϕ , then D_{ct} (TL_n , i) ={ $X \cup \{2n\}/X \in D_{ct}$ ($TL_n - \{2n\}, i - 1$)}.

(ii) If D_{ct} (TL_n-{2n}, $i-1)\neq \varphi$ and D_{ct} (TL_n-1, $i-1)\neq \varphi,$ then

 $\begin{array}{l} D_{ct}(TL_n,\,i)=&\{X_1\cup\{2n-1\},\,if\,2n-3\in X_1/\,X_1\in \,D_{ct}\,(TL_n-\{2n\},\,i-1)\}\,\cup\,\{X_1\cup\{2n\},\,if\,2n-2\,\,or\,\,2n-1\in X_1/\,X_1\in \,D_{ct}\,(TL_n-\{2n\},\,i-1)\}\,\cup\,\{X_2\cup\{2n-2\},\,if\,2n-4\,\,or\,\,2n-3\in X_2/\,X_2\in \,D_{ct}\,(TL_{n-1},\,i-1)\}\,\cup\,\{X_2\cup\{2n-1\},\,if\,\,2n-2\in X_2/\,X_2\in \,D_{ct}\,(TL_{n-1},\,i-1)\}. \end{array}$

Proof

(i) Since, $D_{ct}(TL_n - \{2n\}, i-1) \neq \phi$ and $D_{ct}(TL_{n-1}, i-1) = \phi$, by Theorem 2.4 (i), i = 2n.

Therefore, D_{ct} (TL_n,i) = D_{ct} (TL_n, 2n) = { [2n]} and D_{ct} (TL_n - {2n}, i - 1) = D_{ct} (TL_n - {2_n}, 2n - 1) = { [2n - 1]}, we have the result.

$$\begin{split} \text{(ii) Let } Y_1 = & \{X_1 \cup \{2n-1\}, \text{ if } 2n-3 \in X_1/X_1 \in D_{ct}\left(TL_n - \{2n\}, i-1\}\right) \\ & \cup \{X_1 \cup \{2n\}, \text{ if } 2n-2 \text{ or } 2n-1 \in X_1/X_1 \in D_{ct}\left(TL_n - \{2n\}, i-1\}\right) \\ & \text{ and } Y_2 = \{X_2 \cup \{2n-2\}, \text{ if } 2n-4 \text{ or } 2n-3 \in X_2/X_2 \in D_{ct}\left(TL_{n-1}, i-1\right)\} \ \cup \ \{X_2 \cup \{2n-1\}, \text{ if } 2n-2 \in X_2/X_2 \in D_{ct}\left(TL_{n-1}, i-1\right)\}. \end{split}$$

Obviously,
$$Y_1 \cup Y_2 \subseteq D_{ct} (TL_n, i)$$
 (1)

Now, let $Y \in D_{ct}(TL_n, i)$.

If $2n \in Y$, then atleast one of the vertices labeled 2n-2 or 2n-1 is in Y. In either cases, $Y = \{X_1 \cup \{2n\}\}$ for some $X_1 \in D_{ct}$ ($TL_n - \{2n\}$,i-1).

Therefore, $Y \in Y_1$.

Suppose that, $2n - 1 \in Y$, $2n \notin Y$, then at least one of the vertices labeled 2n - 3 or 2n - 2 is in Y.

If $2n-3 \in Y$, then $Y = \{X_1 \cup \{2n-1\}\}\$ for some

 $X_1\in D_{ct}\ (TL_n-\{2n\ \},\,i-1).$

If $2n - 2 \in Y$, then $Y = \{X_2 \cup \{2n - 1\}\}\$ for some

 $X_2 \in D_{ct} (TL_{n-1}, i-1).$

Therefore, $Y \in Y_1$ or $Y \in Y_2$.

Now, Suppose that,

 $2n - 2 \in Y$, $2n - 1 \notin Y$, $2n \notin Y$, then at least one of the vertices labeled 2n - 4 or 2n - 3 is in Y.

In either cases, $Y = \{X_2 \cup \{2n - 2\}\}\$ for some

 $X_2 \in D_{ct} (TL_{n-1}, i-1).$

Therefore, $Y \in Y_2$.

Hence,
$$D_{ct}(TL_n, i) \subseteq Y_1 \cup Y_2$$
 (2)

From (1) and (2), we have,

$$\begin{array}{lll} D_{ct} \ (TL_n, \ i) & = & \{X_1 \ \cup \ \{2n-1\}, \ if \ 2n-3 \ \in \ X_1/ \ X_1 \in \\ D_{ct} \ (TL_n-\{2n\}, \ i-1)\} \ \cup \ \{X_1 \cup \{2n\}, \ if \ 2n-2 \ or \ 2n-1 \ \in \ X_1/ \\ X_1 \in \ D_{ct} \ (TL_n-\{2n\}, \ i-1)\} \ \cup \ \{X_2 \cup \{2n-2\}, \ if \ 2n-4 \ or \ 2n-3 \ \in \ X_2 \ / \ X_2 \in \ D_{ct} \ (TL_{n-1}, \ i-1)\} \ \cup \ \{X_2 \cup \{2n-1\}, \ if \ 2n-2 \ \in \ X_2/ \ X_2 \in \ D_{ct} \ (TL_{n-1}, \ i-1)\}. \end{array}$$

Theorem 2.6

If $D_{ct}(TL_n,i)$ be the family of connected total dominating sets of TL_n with cardinality i, where $i \geq n-1$, then $d_{ct}(TL_n,i) = d_{ct}(TL_n-\{2n\},i-1) + dct(TL_{n-1},i-1)$.

Proof

We consider the two cases given in Theorem 2.5. By Theorem 2.5 (i), we have,

$$\begin{split} &D_{ct}\left(TL_{n},\,i\right)=\{X{\cup}\{2n\}\,/\,X\in D_{ct}\left(TL_{n}{-}\{2n\},\,i-1\,\right)\}.\\ &\text{Since, } D_{ct}\left(TL_{n{-}1},\,i-1\right)=\varphi\,\text{, we have,} \end{split}$$

 $dct (TL_{n-1}, i-1) = 0$.

Therefore, $d_{ct}(TL_n,i) = d_{ct}(TL_n - \{2n\}, i-1)$.

By Theorem 2.5 (ii), we have,

$$D_{ct}(TL_{n}\text{, i})=\{X_{1}\cup\{2n-1\}\text{, if }2n-3\in X_{1}\text{/ }X_{1}\text{\in }$$

$$D_{ct}$$
 (TL_n – {2n}, i – 1)} \cup {X₁ \cup {2n}, if 2n – 2 or

$$2\;n-1\!\in X_1\!/\;X_1\!\in D_{ct}\;(TL_n\!-\!\{2n\},i-1)\!\} \cup\;\{X_2\!\cup \{2n-2\},$$

if
$$2n - 4$$
 or $2n - 3 \in X_2 / X_2 \in D_{ct} (TL_{n-1}, i - 1) \} \cup$

 ${X_2 \cup \{2n-1\}, if \ 2n-2 \in X_2 / X_2 \in D_{ct} (TL_{n-1}, i-1)\}.}$

Therefore,

$$d_{ct}(TL_n, i) = d_{ct}(TL_n - \{2n\}, i - 1) + d_{ct}(TL_{n-1}, i - 1).$$

3. Connected total domination polynomials of triangular ladders

Definition 3.1

Let D_{ct} (TL_n , i) be the family of connected total dominating sets of TL_n with cardinality i and let d_{ct} (TL_n , i) = $|D_{ct}$ (TL_n , i)|. Then the connected total domination Ploynomial D_{ct} (TL_n , x) of TL_n is defined as,

$$D_{ct}(\mathsf{TL}_n, x) = \sum_{i = \gamma_{ct}(\mathsf{TL}_n)}^{2n} \mathsf{d}_{ct}(\mathsf{TL}_n, i) x^{i}.$$

Theorem 3.2

For every $n \ge 4$,

 D_{ct} (TL_n, x) = $x[D_{ct}$ (TL_n - {2n}, x) + D_{ct} (TL_{n-1}, x)], with initial values,

$$D_{ct}(TL_2 - \{4\}, x) = 3x^2 + x^3.$$

$$D_{ct}(TL_2, x) = 5x^2 + 4x^3 + x^4$$
.

$$D_{ct}(TL_3 - \{6\}, x) = 5x^2 + 8x^3 + 5x^4 + x^5.$$

$$D_{ct}(TL_3, x) = 3x^2 + 10x^3 + 12x^4 + 6x^5 + x^6.$$

$$D_{ct} (TL_4 - \{8\}, x) = x^2 + 8x^3 + 18x^4 + 17x^5 + 7x^6 + x^7.$$

Proof

We have, $d_{ct}(TL_n, i) = d_{ct}(TL_n - \{2n\}, i - 1) + d_{ct}(TL_{n-1}, i - 1)$.

Therefore, $d_{ct}(TL_n, i) x^i = d_{ct}(TL_n - \{2n\}, i - 1) x^i + d_{ct}(TL_{n-1}, i - 1) x^i$.

$$\Sigma d_{ct}(TL_n, i) x^i = \Sigma d_{ct}(TL_n - \{2n\}, i-1) x^i + \Sigma d_{ct}(TL_{n-1}, i-1) x^i.$$

$$\Sigma d_{ct}(\mathsf{TL}_n, i) x^i = x \Sigma d_{ct}(\mathsf{TL}_n - \{2n\}, i-1) x^{i-1} + x \Sigma$$

$$d_{ct}(TL_{n-1}, i-1)x^{-1}$$
.
 $D_{ct}(TL_n, x) = x D_{ct}(TL_n - \{2n\}, x) + x D_{ct}(TL_{n-1}, x)$.

Therefore, D_{ct} (TL_n, x) = $x[D_{ct}$ (TL_n – {2n}, x) + D_{ct} (TL_{n-1}, x)] with initial values,

$$D_{ct}(TL_2 - \{4\}, x) = 3x^2 + x^3.$$

$$D_{ct}(TL_2, x) = 5x^2 + 4x^3 + x^4$$
.

$$D_{ct}(TL_3 - \{6\}, x) = 5x^2 + 8x^3 + 5x^2 + x^5.$$

$$D_{ct}(TL_3, x) = 3x^2 + 10x^3 + 12x^4 + 6x^5 + x^6.$$

$$D_{ct}(TL_4 - \{8\}, x) = x^2 + 8x^3 + 18x^4 + 17x^5 + 7x^6 + x^7.$$

Example 3.3

$$D_{ct}(TL_4, x) = 4x^3 + 18x^4 + 30x^5 + 23x^6 + 8x^7 + x^8$$
.

$$D_{ct}(TL_5 - \{10\}, x) = x^3 + 12x^4 + 36x^5 + 47x^6 + 30x^7 + 9x^8 + x^9.$$

By Theorem 3.2, we have,

$$D_{ct}(TL_5, x) = x [4x^3 + 18x^4 + 30x^5 + 23x^6 + 8x^7 + x^8 + x^3 + 12x^4 + 36x^5 + 47x^6 + 30x^7 + 9x^8 + x^9].$$

$$= 5x^4 + 30x^5 + 66x^6 + 70x^7 + 38x^8 + 10x^9 + x^{10}.$$

We obtain $d_{ct}(TL_n, i)$ and $d_{ct}(TL_n - \{2n\}, i)$ for $2 \le n \le 9$ as shown in Table 1.

Table 1

i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
TL ₂ -{4}	3	1															
TL ₂	5	4	1														
TL ₃ -{6}	5	8	5	1													
TL ₃	3	10	12	6	1												
TL ₄ -{8}	1	8	18	17	7	1											
TL ₄	0	4	18	30	23	8	1										
TL ₅ -{10}	0	1	12	36	47	30	9	1									
TL ₅	0	0	5	30	66	70	38	10	1								
TL ₆ -{12}	0	0	1	17	66	113	100	47	11	1							
TL ₆	0	0	0	6	47	132	183	138	57	12	1						
TL ₇ -{14}	0	0	0	1	23	113	245	283	185	68	13	1					
TL ₇	0	0	0	0	7	70	245	428	421	242	80	14	1				
TL ₈ -{16}	0	0	0	0	1	30	183	490	711	606	310	93	15	1			
TL ₈	0	0	0	0	0	8	37	428	918	1132	848	390	107	16	1		
TL ₉ -{18}	0	0	0	0	0	1	38	220	918	1629	1738	1158	483	122	17	1	
TL ₉	0	0	0	0	0	0	9	75	648	1836	2761	2586	1548	590	138	18	1

In the following Theorem we obtain some properties of $d_{ct}(TL_n, i)$.

Theorem 3.4

The following properties hold for the coefficients of $D_{ct}(TL_n, x)$ for all n.

(i) d_{ct} (TL_n, 2n) = 1, for every $n \ge 2$.

(ii) $d_{ct}(TL_n, 2n-1) = 2n$, for every $n \ge 2$.

(iii) $d_{ct} (TL_n, 2n - 2) = 2n^2 - 3n + 3$, for every $n \ge 2$.

(iv) d_{ct} (TL_n n – 1) = n, for every $n \ge 3$.

Proof

Proof is obvious.

References

[1] S. Alikhani and Y.H. Peng,(2008), "Domination sets and Domination polynomials of cycles", Global Journal of pure and Applied Mathematics.

- [2] S. Alikhani and Y.H. Peng, (2009), "Dominating sets and Domination polynomials of paths", International journal of Mathematics and mathematical sciences.
- [3] S. Alikhani and Y.H. Peng, (2009), "Introduction to Domination polynomial of a graph", arXiv: 0905.225 [v] [math.co].
- [4] G. Chartrand and P. Zhang, (2005), "Introduction to Graph theory", McGraw-Hill, Boston, Mass, USA.
- [5] A. Vijayan and K. Vijila Dafini, (2012), "on Geodetic Polynomial of Graphs with Extreme vertices", International Journal of Mathematical Archieve.
- [6] A. Vijayan and S. Sanal Kumar, (2012), "On Total Domination Sets and Polynomials of Paths", International Journal of Mathematics Research, Vol.4, no.4, pp. 339-348.
- [7] A. Vijayan and T.Anitha Baby, (2014), "Connected Total Domination Polynomials of Graphs", International Journal of Mathematical Archieve, 5(11).
- [8] A. Vijayan and T.Anitha Baby, (2014), "Connected Total Dominating sets and Connected Total Domination Polynomials of square of paths", International Journal of Mathematics Trends and Technology, Vol.11, No. 1.