Connected Total Dominating Sets and Connected Total Domination Polynomials of Triangular Ladders

A. Vijayan ${ }^{1}$ and T. Anitha Baby ${ }^{2}$

${ }^{1}$ Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
${ }^{2}$ Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil, Tamil Nadu, India

Accepted 18 June 2016, Available online 21 June 2016, Vol. 4 (May/June 2016 issue)

Abstract

Let G be a simple connected graph of order n. Let $D_{c t}(G, i)$ be the family of connected total dominating sets of G with cardinality i. The polynomial $D_{c t}(G, x)=\sum_{\mathrm{i}=\gamma_{c t}(G)}^{\mathrm{n}} d_{c t}(G, i) x^{i}$ is called the connected total domination polynomial of G. In this paper, we study some properties of connected total domination polynomials of the Triangular Ladder $T L_{n}$. We obtain a recursive formula for $d_{c t}\left(T L_{n}, i\right)$. Using this recursive formula, we construct the connected total domination polynomial $\quad D_{c t}\left(T L_{n}, x\right)=\sum_{i=n-1}^{2 n} d_{c t}\left(T L_{n}, i\right) x^{i}$, of $T L_{n}$, where $d_{c t}\left(T L_{n}, i\right)$ is the number of connected total dominating sets of $T L_{n}$ with cardinality i and some properties of this polynomial have been studied.

Keywords: Triangular Ladder, connected total dominating set, connected total domination number, connected total domination polynomial.

1. Introduction

Let $G=(V, E)$ be a simple connected graph of order n. For any vertex $v \in \mathrm{~V}$, the open neighbourhood of v is the set $N(v)=\{u \in V / u v \in E\}$ and the closed neighbourhood of v is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S]=N(S) \cup S$. The maximum degree of the graph G is denoted by $\Delta(G)$ and the minimum degree is denoted by $\delta(\mathrm{G})$.

A set S of vertices in a graph G is said to be a total dominating set if every vertex $\mathrm{v} \in \mathrm{V}$ is adjacent to an element of S.

A total dominating set S of G is called a connected total dominating set if the induced subgraph $\langle S\rangle$ is connected.

The minimum cardinality taken over all connected total dominating sets S of G is called the connected total domination number of G and is denoted by $\gamma_{\mathrm{ct}}(\mathrm{G})$.

A connected total dominating set with cardinality $\gamma_{c t}(G)$ is called $\gamma_{\mathrm{ct}}-$ set. We denote the set $\{1,2, \ldots, 2 n-1,2 n\}$ by [2n], throughout this paper.

2. Connected total dominating sets of triangular ladders

Consider two paths [$u_{1} u_{2} \ldots u_{n}$] and [$v_{1} v_{2} \ldots v_{n}$]. Join each pair of vertices u_{i}, v_{i} and $u_{i+1}, v_{i}, i=1,2, \ldots, n$. The resulting graph is a Triangular Ladder.

Let $T L_{n}$ be a Triangular ladder with $2 n$ vertices. Label the vertices of T_{n} as given in Figure 1.

Figure 1
Triangular Ladder TL_{n}

Then, $V\left(L_{n}\right)=\{1,2,3, \ldots, 2 n-3,2 n-2,2 n-1,2 n\}$ and $E\left(T L_{n}\right)=\{(1,3),(3,5),(5,7), \ldots,(2 n-5,2 n-3),(2 n-3,2 n-1)$, $(2,4),(4,6),(6,8), \ldots,(2 n-4,2 n-2),(2 n-2,2 n),(1,2)$, $(3,4),(5,6), \ldots,(2 n-3,2 n-2),(2 n-1,2 n),(2,3),(4,5)$, $(6,7), \ldots,(2 n-4,2 n-3),(2 n-2,2 n-1)\}$.

For the construction of the connected total dominating sets of the Triangular Ladders TL_{n}, we need to investigate the connected total dominating sets of $\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}$. In this
section, we investigate the connected total dominating sets of $T L_{n}$ with cardinality i . We shall find the recursive formula for $d_{c t}\left(T L_{n}, i\right)$.

Lemma 2.1[7].

$\gamma_{c t}\left(P_{n}\right)=n-2$.

Lemma 2.2

For every $\mathrm{n} \in \mathrm{N}$ and $\mathrm{n} \geq 4$,
(i) $\quad \gamma_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}\right)=\mathrm{n}-1$.
(ii) $\quad \gamma_{c t}\left(T L_{n}-\{2 n\}\right)=n-2$.
(iii) $\quad D_{c t}\left(T L_{n}, i\right)=\phi$ if and only if $i<n-1$ or $i>2 n$.
(iv) $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}\right)=\phi$ if and only if $\mathrm{i}<\mathrm{n}-2$ or $\mathrm{i}>2 \mathrm{n}-1$.

Proof

(i) Clearly $\{3,5,7,9, \ldots, 2 n-1\}$ is a minimum connected total dominating set for $T L_{n}$. If n is even or odd it contains $n-1$ elements. Hence, $\gamma_{c t}\left(T L_{n}\right)=n-1$.
(ii) Clearly $\{3,5,7,9, \ldots, 2 n-3\}$ is a minimum connected total dominating set for $\mathrm{TL}_{n}-\{2 n\}$. If n is even or odd it contains $n-2$ elements. Hence, $\gamma_{c t}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}\right)=\mathrm{n}$ -2.
(iii) follows from (i) and the definition of connected total dominating set.
(iv) follows from (ii) and the definition of connected total dominating set.

Lemma 2.3

(i)If $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi, \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}-\{2 \mathrm{n}-2\}, \mathrm{i}-1\right)=\phi$ and $D_{c t}\left(T L_{n-2}, i-1\right)=\phi$, then $D_{c t}\left(T L_{n-1}, i-1\right)=\phi$.
(ii) If $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi, \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}-\{2 \mathrm{n}-2\}, \mathrm{i}-1\right) \neq \phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{n-2}, \mathrm{i}-1\right) \neq \phi$, then $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n-1}, \mathrm{i}-1\right) \neq \phi$.
(iii) If $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$, then
$D_{c t}\left(L_{n}, i\right)=\phi$.
(iv) If $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n-1}, \mathrm{i}-1\right) \neq \phi$, then

$$
D_{c t}\left(T L_{n}, i\right) \neq \phi
$$

(v) If $D_{c t}\left(T L_{n}-\{2 n\}, i-1\right) \neq \phi$, and $D_{c t}\left(T L_{n-1}, i-1\right)=\phi$, then
$D_{c t}\left(\mathrm{TL}_{n}, \mathrm{i}\right) \neq \phi$.

Proof

(i) Since, $\mathrm{D}_{\mathrm{ct}}\left(T \mathrm{~L}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi$, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}-\{2 \mathrm{n}-2\}, \mathrm{i}-1\right)=\phi$ and
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-2}, \mathrm{i}-1\right)=\phi$, by Lemma 2.2 (iii) \& (iv), we have,
$\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-1$,
$\mathrm{i}-1<\mathrm{n}-3$ or $\mathrm{i}-1>2 \mathrm{n}-3$ and
$\mathrm{i}-1<\mathrm{n}-3$ or $\mathrm{i}-1>2 \mathrm{n}-4$.
Therefore, $\mathrm{i}-1<\mathrm{n}-3$ or $\mathrm{i}-1>2 \mathrm{n}-1$.
Therefore, $\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-2$ holds.
Hence, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$.
(ii) Since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$,
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}-\{2 \mathrm{n}-2\}, \mathrm{i}-1\right) \neq \phi$ and
$D_{c t}\left(T L_{n-2}, i-1\right) \neq \phi$, by Lemma 2.2 (iii) \& (iv), we have,
$\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-1$,
$\mathrm{n}-3 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-3$ and
$n-3 \leq i-1 \leq 2 n-4$.
Suppose, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$.
Then, by Lemma 2.2 (iii), we have, $\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1\rangle$ $2 n-2$.
If $\mathrm{i}-1<\mathrm{n}-2$, then $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi$, a contradiction.
If $\mathrm{i}-1>2 \mathrm{n}-2$, then $\mathrm{i}-1>2 \mathrm{n}-3$ holds, which implies $D_{c t}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=\phi$, a contradiction.
Therefore, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right) \neq \phi$.
(iii) Since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi$ and $\mathrm{D}_{\mathrm{ct}}\left(T \mathrm{~L}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$, by Lemma 2.2 (iii) \& (iv), we have,
$\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-1$ and
$\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-2$.
Therefore, $\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{I}-1>2 \mathrm{n}-1$.
Therefore, $\mathrm{i}<\mathrm{n}-1$ or $\mathrm{i}>2 \mathrm{n}$.
Hence, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, \mathrm{i}\right)=\phi$.
(iv) Since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T}_{\mathrm{n}-1}, \mathrm{i}-1\right) \neq \phi$, by Lemma 2.2 (iii) \& (iv), we have,
$\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-1$ and $\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-2$.
Suppose, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, \mathrm{i}\right)=\phi$, then, by Lemma 2.2 (iii),
we have $\mathrm{i}<\mathrm{n}-1$ or $\mathrm{i}>2 \mathrm{n}$.
Therefore, $\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-1$.
If $\mathrm{i}-1<\mathrm{n}-2$, then $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$, a contradiction.
If $\mathrm{i}-1>2 \mathrm{n}-1$, then $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi$, a contradiction.
Therefore, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, \mathrm{i}\right) \neq \phi$.
(v) Since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$, by Lemma 2.2 (iv), we have,
$\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-1$.
Also, since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$, by Lemma 2.2 (iii), we have,
$\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-2$.
If $\mathrm{i}-1<\mathrm{n}-2$, then $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL} \mathrm{m}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)=\phi, \mathrm{a}$ contradiction.
Therefore, $\mathrm{i}-1>2 \mathrm{n}-2$.
Therefore, $\mathrm{i}-1 \geq 2 \mathrm{n}-1$.

Also, $\mathrm{i}-1 \leq 2 \mathrm{n}-1$.
Therefore, $\mathrm{i}-1=2 \mathrm{n}-1$.
Therefore, $\mathrm{i}=2 \mathrm{n}$.
Hence, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, \mathrm{i}\right) \neq \phi$.

Lemma 2.4

Suppose that $D_{c t}\left(T L_{n}, i\right) \neq \phi$, then for every $n \in N$,
(i) $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$ if and only if $\mathrm{i}=2 \mathrm{n}$.
(ii) $\quad \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi, \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right) \neq \phi$ and $D_{c t}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=\phi$, if and only if $i=2 n-1$.
(iii) $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi, \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right) \neq \phi$,
$D_{c t}\left(T L_{n-1}-\{2 n-2\}, i-1\right) \neq \phi$ and
$D_{c t}\left(T L_{n-2}, i-1\right)=\phi$ if and only if $i=2 n-2$.

Proof

Assume that, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}}, \mathrm{i}\right) \neq \phi$.
Therefore, $\mathrm{n}-1 \leq \mathrm{i} \leq 2 \mathrm{n}$.
(i) (\Rightarrow) since, $D_{c t}\left(\mathrm{TL}_{n}-\{2 n\}, i-1\right) \neq \phi$, by Lemma 2.2 (iv), we have,

$$
\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-1 .
$$

Therefore, $\mathrm{n}-1 \leq \mathrm{i} \leq 2 \mathrm{n}$.
Also, since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$, by Lemma 2.2 (iii), we have,
$\mathrm{i}-1<\mathrm{n}-2$ or $\mathrm{i}-1>2 \mathrm{n}-2$.
If $\mathrm{i}-1<\mathrm{n}-2$, then $\mathrm{i}<\mathrm{n}-1$ which implies
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n}, \mathrm{i}\right)=\phi$, a contradiction.
Therefore, $\mathrm{i}-1>2 \mathrm{n}-2$.
Therefore, $\mathrm{i}>2 \mathrm{n}-1$.
Therefore, $i \geq 2 n$.
Together we have, $\mathrm{i}=2 \mathrm{n}$.
(\Leftrightarrow) follows from Lemma 2.2 (iii) \& (iv).
(ii) $\quad \Rightarrow$ Since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$, and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}\right.$ $-1) \neq \phi$,
by Lemma 2.2 (iii) \& (iv), we have,

$$
\begin{aligned}
& \mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-1 \text { and } \\
& \mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-2 .
\end{aligned}
$$

Therefore, $\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-2$.
Therefore, $\mathrm{n}-1 \leq \mathrm{i} \leq 2 \mathrm{n}-1$.
Also, since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL} \mathrm{L}_{\mathrm{n}-1}-\{2 \mathrm{n}-2\}, \mathrm{i}-1\right)=\phi$,
by Lemma 2.2 (iv), we have, $\mathrm{i}-1<\mathrm{n}-3$ or $i-1>2 n-3$.
Therefore, $\mathrm{i}<\mathrm{n}-2$ or $\mathrm{i}>2 \mathrm{n}-2$.
If $\mathrm{i}<\mathrm{n}-2$, the $\mathrm{i}<\mathrm{n}-1$ holds, which implies
$D_{c t}\left(T L_{n}, i\right)=\phi$, a contradiction.
Therefore, $\mathrm{i}>2 \mathrm{n}-2$.
Therefore, $\mathrm{i} \geq 2 \mathrm{n}-1$.
Together we have, $\mathrm{i}=2 \mathrm{n}-1$.
(\Leftarrow) follows from Lemma 2.2 (iii) \& (iv).
(iii) \Rightarrow) Since, $D_{c t}\left(\mathrm{TL}_{n}-\{2 n\}, \mathrm{i}-1\right) \neq \phi, \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right) \neq \phi$ and $D_{c t}\left(T L_{n-1}-\{2 n-2\}, i-1\right) \neq \phi$, by Lemma 2.2 (iii) \& (iv), we have,

$$
\begin{aligned}
& n-2 \leq i-1 \leq 2 n-1, \\
& n-2 \leq i-1 \leq 2 n-2 \text { and } \\
& n-3 \leq i-1 \leq 2 n-3 .
\end{aligned}
$$

Therefore, $\mathrm{n}-2 \leq \mathrm{i}-1 \leq 2 \mathrm{n}-3$.
Therefore, $\mathrm{n}-1 \leq \mathrm{i} \leq 2 \mathrm{n}-2$.
Also, since, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-2}, \mathrm{i}-1\right)=\phi$, by Lemma 2.2 (iii), we have, $\mathrm{i}-1<\mathrm{n}-3$, or $\mathrm{i}-1>2 \mathrm{n}-4$.
If $\mathrm{i}-1<\mathrm{n}-3$, then $\mathrm{i}<\mathrm{n}-2$.
Therefore, $\mathrm{i}<\mathrm{n}-1$ holds, which implies $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}}, \mathrm{i}\right)=\phi$, a contradiction.

Therefore, $\mathrm{i}-1>2 \mathrm{n}-4$.
Therefore, $\mathrm{i}>2 \mathrm{n}-3$.
Therefore, $i \geq 2 n-2$.
Together we have $\mathrm{i}=2 \mathrm{n}-2$.
(\Leftrightarrow) follows from Lemma 2.2 (iii) \& (iv).

Theorem 2.5

For every $\mathrm{n} \geq 4$,
(i) If $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right)=\phi$,
then $D_{c t}\left(T L_{n}, i\right)=\left\{X \cup\{2 n\} / X \in D_{c t}\left(\mathrm{TL}_{n}-\{2 n\}, i-1\right)\right\}$.
(ii) If $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) \neq \phi$ and $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1\right) \neq \phi$, then
$D_{c t}\left(T L_{n}, i\right)=\left\{X_{1} \cup\{2 n-1\}\right.$, if $2 n-3 \in X_{1} / X_{1} \in D_{c t}\left(T L_{n}-\{2 n\}\right.$, $i-1)\} \cup\left\{X_{1} \cup\{2 n\}\right.$, if $2 n-2$ or $2 n-1 \in X_{1} / X_{1} \in D_{c t}\left(T L_{n}-\right.$ $\{2 n\}, i-1)\} \cup\left\{X_{2} \cup\{2 n-2\}\right.$, if $2 n-4$ or $2 n-3 \in X_{2} / X_{2} \in$ $\left.D_{c t}\left(T L_{n-1}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-1\}\right.$, if $2 n-2 \in X_{2} / X_{2} \in D_{c t}$ ($\mathrm{TL}_{\mathrm{n}-1}, \mathrm{i}-1$) \}.

Proof

(i) Since, $D_{c t}\left(T L_{n}-\{2 n\}, i-1\right) \neq \phi$ and $D_{c t}\left(T L_{n-1}, i-1\right)=\phi$, by Theorem $2.4(\mathrm{i}), \mathrm{i}=2 \mathrm{n}$.
Therefore, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n}, i\right)=\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{\mathrm{n}}, 2 \mathrm{n}\right)=\{[2 \mathrm{n}]\}$ and
$D_{c t}\left(L_{n}-\{2 n\}, i-1\right)=D_{c t}\left(T L_{n}-\left\{2_{n}\right\}, 2 n-1\right)=\{[2 n-1]\}$, we have the result.
(ii) Let $\mathrm{Y}_{1}=\left\{X_{1} \cup\{2 n-1\}\right.$, if $\left.2 n-3 \in X_{1} / X_{1} \in D_{c t}\left(T L_{n}-\{2 n\}, i-1\right)\right\}$
$\cup\left\{X_{1} \cup\{2 n\}\right.$, if $2 n-2$ or $\left.2 n-1 \in X_{1} / X_{1} \in D_{c t}\left(\mathrm{TL}_{n}-\{2 n\}, i-1\right)\right\}$
and $Y_{2}=\left\{X_{2} \cup\{2 n-2\}\right.$, if $2 n-4$ or $2 n-3 \in X_{2} / X_{2} \in$
$\left.D_{c t}\left(T L_{n-1}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-1\}\right.$, if $2 n-2 \in X_{2} / X_{2} \in$
$\left.D_{c t}\left(T L_{n-1}, i-1\right)\right\}$.
Obviously, $\mathrm{Y}_{1} \cup \mathrm{Y}_{2} \subseteq \mathrm{D}_{\mathrm{ct}}\left(T \mathrm{~L}_{\mathrm{n}}, \mathrm{i}\right)$
Now, let $Y \in D_{c t}\left(T L_{n}, i\right)$.
If $2 n \in Y$, then atleast one of the vertices labeled $2 n-2$ or $2 n-1$ is in Y. In either cases, $Y=\left\{X_{1} \cup\{2 n\}\right\}$ for some $X_{1} \in$ $D_{c t}\left(T L_{n}-\{2 n\}, i-1\right)$.
Therefore, $Y \in Y_{1}$.

Suppose that, $2 n-1 \in Y, 2 n \notin Y$, then atleast one of the vertices labeled $2 n-3$ or $2 n-2$ is in Y.

If $2 n-3 \in Y$, then $Y=\left\{X_{1} \cup\{2 n-1\}\right\}$ for some
$X_{1} \in D_{c t}\left(T L_{n}-\{2 n\}, i-1\right)$.
If $2 n-2 \in Y$, then $Y=\left\{X_{2} \cup\{2 n-1\}\right\}$ for some
$X_{2} \in D_{c t}\left(T L_{n-1}, i-1\right)$.
Therefore, $\mathrm{Y} \in \mathrm{Y}_{1}$ or $\mathrm{Y} \in \mathrm{Y}_{2}$.
Now, Suppose that,
$2 n-2 \in Y, 2 n-1 \notin Y, 2 n \notin Y$, then atleast one of the vertices labeled $2 n-4$ or $2 n-3$ is in Y.

In either cases, $Y=\left\{X_{2} \cup\{2 n-2\}\right\}$ for some
$X_{2} \in D_{c t}\left(T L_{n-1}, i-1\right)$.
Therefore, $Y \in Y_{2}$.
Hence, $D_{c t}\left(T L_{n}, i\right) \subseteq Y_{1} \cup Y_{2}$
From (1) and (2) , we have,
$D_{c t}\left(T L_{n}, i\right)=\left\{X_{1} \cup\{2 n-1\}\right.$, if $2 n-3 \in X_{1} / X_{1} \in$
$\left.D_{c t}\left(\operatorname{LL}_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{1} \cup\{2 n\}\right.$, if $2 n-2$ or $2 n-1 \in X_{1} /$
$\left.X_{1} \in D_{c t}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-2\}\right.$, if $2 n-4$ or
$\left.2 n-3 \in X_{2} / X_{2} \in D_{c t}\left(T_{n-1}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-1\}\right.$, if
$\left.2 n-2 \in X_{2} / X_{2} \in D_{c t}\left(T L_{n-1}, i-1\right)\right\}$.

Theorem 2.6

If $D_{c t}\left(T L_{n}, i\right)$ be the family of connected total dominating sets of TL_{n} with cardinality i , where $\mathrm{i} \geq \mathrm{n}-1$, then $d_{c t}\left(T L_{n}, i\right)=d_{c t}\left(T L_{n}-\{2 n\}, i-1\right)+\operatorname{dct}\left(T L_{n-1}, i-1\right)$.

Proof

We consider the two cases given in Theorem 2.5.
By Theorem 2.5 (i), we have,
$D_{c t}\left(L_{n}, i\right)=\left\{X \cup\{2 n\} / X \in D_{c t}\left(T_{n}-\{2 n\}, i-1\right)\right\}$.
Since, $D_{c t}\left(T L_{n-1}, i-1\right)=\phi$, we have,
$\operatorname{dct}\left(T L_{n-1}, i-1\right)=0$.
Therefore, $\mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{n}, \mathrm{i}\right)=\mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right)$.

By Theorem 2.5 (ii), we have,
$D_{c t}\left(T L_{n}, i\right)=\left\{X_{1} \cup\{2 n-1\}\right.$, if $2 n-3 \in X_{1} / X_{1} \in$
$\left.D_{c t}\left(\operatorname{LL}_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{1} \cup\{2 n\}\right.$, if $2 n-2$ or
$\left.2 n-1 \in X_{1} / X_{1} \in D_{c t}\left(\mathrm{TL}_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-2\}\right.$,
if $2 n-4$ or $\left.2 n-3 \in X_{2} / X_{2} \in D_{c t}\left(T L_{n-1}, i-1\right)\right\} \cup$
$\left\{X_{2} \cup\{2 n-1\}\right.$, if $\left.2 n-2 \in X_{2} / X_{2} \in D_{c t}\left(T L_{n-1}, i-1\right)\right\}$.
Therefore,
$d_{c t}\left(T L_{n}, i\right)=d_{c t}\left(T L_{n}-\{2 n\}, i-1\right)+d_{c t}\left(T L_{n-1}, i-1\right)$.

3. Connected total domination polynomials of triangular ladders

Definition 3.1

Let $D_{c t}\left(T L_{n}, i\right)$ be the family of connected total dominating sets of $T L_{n}$ with cardinality i and let $d_{c t}\left(T L_{n}, i\right)=\left|D_{c t}\left(T L_{n}, i\right)\right|$. Then the connected total domination Ploynomial $D_{c t}\left(T L_{n}, x\right)$ of $T L_{n}$ is defined as,
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, x\right)=\sum_{\mathrm{i}=\gamma_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}\right)}^{2 \mathrm{n}} \mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, \mathrm{i}\right) x^{\mathrm{i}}$.

Theorem 3.2

For every $\mathrm{n} \geq 4$,
$D_{c t}\left(T L_{n}, x\right)=x\left[D_{c t}\left(T L_{n}-\{2 n\}, x\right)+D_{c t}\left(T L_{n-1}, x\right)\right]$, with initial values,
$D_{c t}\left(\mathrm{TL}_{2}-\{4\}, x\right)=3 x^{2}+x^{3}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{2}, x\right)=5 x^{2}+4 x^{3}+x^{4}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{3}-\{6\}, x\right)=5 x^{2}+8 x^{3}+5 x^{4}+x^{5}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{3}, x\right)=3 x^{2}+10 x^{3}+12 x^{4}+6 x^{5}+x^{6}$.
$\mathrm{D}_{\mathrm{ct}}\left(\operatorname{TL}_{4}-\{8\}, x\right)=x^{2}+8 x^{3}+18 x^{4}+17 x^{5}+7 x^{6}+x^{7}$.

Proof

We have, $d_{c t}\left(T L_{n}, i\right)=d_{c t}\left(L_{n}-\{2 n\}, i-1\right)+d_{c t}\left(T L_{n-1}, i-1\right)$.
Therefore, $\quad \mathrm{d}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{n}, \mathrm{i}\right) x^{\mathrm{i}}=\mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) x^{\mathrm{i}}+$ $\mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{n-1}, \mathrm{i}-1\right) x^{\mathrm{i}}$.

$$
\sum \mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{n}, \mathrm{i}\right) x^{\mathrm{i}}=\Sigma \mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{n}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) x^{\mathrm{i}}+\sum \mathrm{d}_{\mathrm{ct}}
$$ $\left(T \mathrm{~L}_{n-1}, i-1\right) x^{i}$.

$$
\Sigma \mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{n}, \mathrm{i}\right) x^{\mathrm{i}}=x \Sigma \mathrm{~d}_{\mathrm{ct}}\left(\mathrm{~T} \mathrm{~L}_{\mathrm{n}}-\{2 \mathrm{n}\}, \mathrm{i}-1\right) x^{\mathrm{i}-1}+x \Sigma
$$ $\mathrm{d}_{\mathrm{ct}}\left(\mathrm{T}_{\mathrm{n}-1}, \mathrm{i}-1\right) \mathrm{X}^{\mathrm{i}-1}$.

$$
\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n}, x\right)=x \mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{n}-\{2 n\}, x\right)+x \mathrm{D}_{\mathrm{ct}}\left(T \mathrm{~L}_{n-1}, x\right) .
$$

Therefore, $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, x\right)=x\left[\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL} \mathrm{L}_{\mathrm{n}}-\{2 \mathrm{n}\}, x\right)+\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}-1}, x\right)\right]$ with initial values,
$D_{c t}\left(\mathrm{TL}_{2}-\{4\}, x\right)=3 x^{2}+x^{3}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{2}, x\right)=5 x^{2}+4 x^{3}+x^{4}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{3}-\{6\}, x\right)=5 x^{2}+8 x^{3}+5 x^{2}+x^{5}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{3}, x\right)=3 x^{2}+10 x^{3}+12 x^{4}+6 x^{5}+x^{6}$.
$\mathrm{D}_{\text {ct }}\left(\mathrm{TL}_{4}-\{8\}, x\right)=x^{2}+8 x^{3}+18 x^{4}+17 x^{5}+7 x^{6}+x^{7}$.

Example 3.3

$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{4}, x\right)=4 x^{3}+18 x^{4}+30 x^{5}+23 x^{6}+8 x^{7}+x^{8}$.
$\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{5}-\{10\}, \mathrm{x}\right)=x^{3}+12 x^{4}+36 x^{5}+47 x^{6}+30 x^{7}+9 x^{8}+x^{9}$.
By Theorem 3.2, we have,

$$
\begin{aligned}
\mathrm{D}_{\mathrm{ct}}\left(\mathrm{TL}_{5}, x\right)= & x\left[4 x^{3}+18 x^{4}+30 x^{5}+23 x^{6}+8 x^{7}+x^{8}+x^{3}\right. \\
& \left.+12 x^{4}+36 x^{5}+47 x^{6}+30 x^{7}+9 x^{8}+x^{9}\right] . \\
= & 5 x^{4}+30 x^{5}+66 x^{6}+70 x^{7}+38 x^{8}+10 x^{9}+x^{10} .
\end{aligned}
$$

We obtain $\mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}, \mathrm{i}\right)$ and $\mathrm{d}_{\mathrm{ct}}\left(\mathrm{TL}_{\mathrm{n}}-\{2 \mathrm{n}\}\right.$, i) for $2 \leq \mathrm{n} \leq 9$ as shown in Table 1.

Table 1

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
TL ${ }_{2}$ - 44$\}$	3	1															
TL_{2}	5	4	1														
$\mathrm{TL}_{3}-\{6\}$	5	8	5	1													
TL_{3}	3	10	12	6	1												
$\mathrm{TL}_{4}-\{8\}$	1	8	18	17	7	1											
TL_{4}	0	4	18	30	23	8	1										
TL 5 - 10$\}$	0	1	12	36	47	30	9	1									
TL	0	0	5	30	66	70	38	10	1								
TL_{6} - 12$\}$	0	0	1	17	66	113	100	47	11	1							
TL_{6}	0	0	0	6	47	132	183	138	57	12	1						
TL T_{7} \{14\}	0	0	0	1	23	113	245	283	185	68	13	1					
TL_{7}	0	0	0	0	7	70	245	428	421	242	80	14	1				
TL_{8} - 116$\}$	0	0	0	0	1	30	183	490	711	606	310	93	15	1			
TL_{8}	0	0	0	0	0	8	37	428	918	1132	848	390	107	16	1		
TL ${ }_{9}$ \{18\}	0	0	0	0	0	1	38	220	918	1629	1738	1158	483	122	17	1	
TL9	0	0	0	0	0	0	9	75	648	1836	2761	2586	1548	590	138	18	1

In the following Theorem we obtain some properties of $d_{c t}\left(T L_{n}, i\right)$.

Theorem 3.4

The following properties hold for the coefficients of $\mathrm{D}_{\mathrm{ct}}\left(\mathrm{T} \mathrm{L}_{n}, x\right)$ for all n .
(i) $d_{c t}\left(T L_{n}, 2 n\right)=1$, for every $n \geq 2$.
(ii) $d_{c t}\left(T_{n}, 2 n-1\right)=2 n$, for every $n \geq 2$.
(iii) $d_{c t}\left(T L_{n}, 2 n-2\right)=2 n^{2}-3 n+3$, for every $n \geq 2$.
(iv) $d_{c t}\left(T L_{n} n-1\right)=n$, for every $n \geq 3$.

Proof

Proof is obvious.

References

[1] S. Alikhani and Y.H. Peng,(2008), "Domination sets and Domination polynomials of cycles", Global Journal of pure and Applied Mathematics.
[2] S. Alikhani and Y.H. Peng, (2009), "Dominating sets and Domination polynomials of paths", International journal of Mathematics and mathematical sciences.
[3] S. Alikhani and Y.H. Peng, (2009), "Introduction to Domination polynomial of a graph", arXiv : 0905.225 [v] [math.co].
[4] G. Chartrand and P. Zhang, (2005), "Introduction to Graph theory", McGraw-Hill, Boston, Mass, USA.
[5] A. Vijayan and K. Vijila Dafini, (2012), "on Geodetic Polynomial of Graphs with Extreme vertices", International Journal of Mathematical Archieve.
[6] A. Vijayan and S. Sanal Kumar, (2012), "On Total Domination Sets and Polynomials of Paths", International Journal of Mathematics Research, Vol.4, no.4, pp. 339-348.
[7] A. Vijayan and T.Anitha Baby, (2014), "Connected Total Domination Polynomials of Graphs", International Journal of Mathematical Archieve, 5(11).
[8] A. Vijayan and T.Anitha Baby, (2014), "Connected Total Dominating sets and Connected Total Domination Polynomials of square of paths", International Journal of Mathematics Trends and Technology, Vol.11, No. 1.

