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Abstract  
   
Let G be a simple connected graph of order n. Let Dct(G, i) be the family of connected total dominating sets of G with 

cardinality i. The polynomial Dct (G, x) = 
n

i  (G)ct 
 dct (G, i) x

i
 is called the connected total domination polynomial of G. 

In this paper, we study some properties of connected total domination polynomials of the Triangular Ladder TLn. We 
obtain a recursive formula for dct (TLn, i). Using this recursive formula, we construct the connected total domination 

polynomial    Dct (TLn, x) = 
2n

i n 1 
 dct(TLn, i) x

i 
, of TLn, where dct(TLn, i) is the number of connected  total dominating sets of 

TLn with cardinality i and some properties of this polynomial have been studied. 
 
Keywords: Triangular Ladder, connected total dominating set, connected total domination number, connected total 
domination polynomial. 
 
 
1. Introduction 

 
Let  G = (V, E) be a simple connected graph of order n. For 

any vertex vV, the open neighbourhood of v is the set 

N(v) = {uV/uvE} and the closed neighbourhood of v is 

the set N[v] = N(v)  {v}. For a set  S  V, the open 

neighbourhood of S is  N(S) = 
v S

 N(v) and the closed 

neighbourhood of S is N[S] = N(S)  S. The maximum 

degree of the graph G is denoted by (G) and the 

minimum degree is denoted by (G).  

 A set S of vertices in a graph G is said to be a total 

dominating set if every vertex vV is adjacent to an 

element of S. 

 A total dominating set S of G is called a connected 

total dominating set if the induced subgraph     S  is 

connected. 

 The minimum cardinality taken over all connected 

total dominating sets S of G is called the connected total 

domination number of G and is denoted by ct (G). 

 A connected total dominating set with cardinality ct (G) is 

called ct –  set. We denote the set   {1, 2, . . ., 2n 1, 2n} 

by [2n], throughout this paper. 

2. Connected total dominating sets of triangular ladders 
 
Consider two paths [u1u2…un] and [v1v2…vn]. Join each pair 
of vertices ui,vi and ui+1,vi, i = 1, 2,…, n. The resulting graph 
is a Triangular Ladder. 
 Let  TLn be a Triangular ladder with 2n vertices. Label 
the vertices of TLn as given in Figure 1. 
 

 
Figure 1 

 

Triangular Ladder TLn 

 
Then,   V(TLn) = {1,2, 3, …, 2n  3, 2n2, 2n  1, 2n}   and  

E(TLn) = {(1,3), (3,5), (5,7), …, (2n5, 2n3),  (2n3, 2n1), 

(2, 4),   (4, 6), (6, 8),..., (2n4, 2n2),  (2n2, 2n), (1, 2),  

(3, 4), (5, 6), ..., (2n3, 2n2), (2n1, 2n),(2, 3), (4, 5),  

(6, 7),...,(2n4, 2n3),(2n2, 2n1)}. 
   

For the construction of the connected total dominating 
sets of the Triangular Ladders TLn, we need to investigate 

the connected total dominating sets of TLn  {2n}. In this 
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section, we investigate the connected total dominating 
sets of TLn with cardinality i. We shall find the recursive 
formula for dct(TLn, i). 
 
Lemma 2.1[7]. 
 


ct

(Pn) = n  2. 

 
Lemma 2.2 
 

For every nN and n  4, 

(i) 
ct

 (TLn) = n 1. 

(ii) 
ct

 (TLn {2n}) = n 2. 

(iii) D
ct (TLn, i) =  if and only if i < n 1 or i > 2n.  

(iv) Dct (TLn{2n}, i) =  if and only if i < n 2  or  

 i > 2n 1. 
Proof 
 

(i) Clearly {3,5,7,9,…,2n 1} is a minimum connected 
total dominating set for TLn. If n is even or odd it 

contains n  1 elements. Hence, ct(TLn) = n  1. 

(ii) Clearly { 3,5,7,9,…, 2n 3} is a minimum connected 

total dominating set for TLn {2n}. If n is even or odd 

it contains n  2 elements. Hence, ct (TLn {2n}) = n 

2. 
(iii) follows from (i) and the definition of connected total 

dominating set. 
(iv) follows from (ii) and the definition of connected total 

dominating set. 
 

Lemma 2.3 
 

(i) If Dct (TLn{2ni  1) = , Dct (TLn {2n  i  1) =  
and                     

 Dct (TLn i 1) = , then Dct (TLni  1) =  . 

(ii) If Dct (TLn{2ni  1)  , Dct (TLn {2n  i  1)   
and                     

 Dct (TLn  i 1)  , then Dct (TLni  1)   . 

(iii)  If Dct (TLn{2ni  1) =  and Dct (TLn, i 1) = , 
then  

 Dct (TLni) = . 

(iv)  If Dct (TLn {2ni  1)   and  Dct (TLn, i 1)  , 
then  

 Dct (TLni)  . 

(v) If Dct (TLn{2ni  1)   , and Dct (TLn-1, i 1) = , 
then  

Dct (TLni)   . 

 

Proof  

(i)   Since, Dct (TLn{2ni  1) = ,  

Dct (TLn {2n  i  1) =  and                     

Dct (TLn  i 1) = , by Lemma 2.2 (iii) & (iv), we have,  

i n or  i n 1 

i n or  i n 3and 

i n or  i n 4. 

Therefore, i n or in 1. 

Therefore, i n or  i n 2 holds. 

Hence, Dct (TLni  1) = . 
 

(ii)  Since, Dct (TLn{2ni  1)  ,  

Dct (TLn {2n  i  1)    and                     

Dct (TLn  i 1)  , by Lemma 2.2 (iii) & (iv), we have,  

n i  n 1 

n i  n 3 and 

n i  n  

Suppose, Dct (TLni  1) = . 

Then, by Lemma 2.2 (iii), we have, i  n 2 or i  

n 2.  

If  i  n 2, then Dct (TLn{2ni  1) = , a 
contradiction. 

If i  n 2, then  i  n 3 holds, which implies  

Dct (TLn{2 n i  1) = , a contradiction. 

Therefore, Dct (TLni  1)  . 
 

(iii)  Since, Dct (TLn {2ni  1) =  and Dct (TLn i 1) =  ,  

by Lemma 2.2 (iii) & (iv), we have ,  

i  n 2 or i  2n 1 and 

i  n 2 or i  2n 2. 

ThereforeinorI n
 

Therefore, i n 1 or i  2n. 

Hence, Dct (TLni) = . 

(iv)  Since, Dct (TLn {2ni  1)   and Dct (TLn, i 1)  ,  
by  Lemma 2.2 (iii) & (iv), we have,  

n i  n and  

n i  n 2 

Suppose, Dct (TLni) = , then, by Lemma 2.2 (iii),  

we have i n  or i n. 

Therefore , i n   or  i 2n 

If  i n ,  then Dct (TLn, i 1) = , a contradiction. 

If i 2n ,  then Dct (TLn{2n}, i 1) = , a 
contradiction. 

Therefore, Dct (TLni)  . 

 
(v)   Since, Dct (TLn{2ni  1)  ,  by Lemma 2.2 (iv), we 
have,  

n  i n  

Also, since, Dct (TLn, i 1) = , by Lemma 2.2 (iii), we 
have, 

i n   or  i 2n 2.  

If  i n ,  then Dct (TLn{2n}, i 1) = , a 
contradiction. 

Therefore, i 2n 2. 

Therefore, i 2n 1. 
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Also, i n  

Therefore, i n 

Therefore, i n 

Hence, Dct (TLni)  . 
 

 

Lemma 2.4 

Suppose that Dct (TLni)  , then for every nN, 

(i) Dct (TLn{2ni  1)   and Dct (TLn, i 1) =    
if and only if  i = 2n. 

(ii) Dct (TLn{2ni  1)  , Dct (TLn, i 1)    and  

 Dct(TLn  {2n  i 1) = , if and only if i = 2n . 

(iii)  Dct (TLn{2ni  1)  , Dct (TLn, i 1)   ,  

 Dct (TLn  {2n  i 1)   and  

 Dct (TLn  i 1) =   if and only if  i = 2n . 

 

Proof  

Assume that, Dct (TLni)  . 

Therefore, n  i n. 

(i) () since, Dct (TLn{2n}, i 1)  ,by Lemma 2.2 (iv), 
we have, 

  n  i n . 

  Therefore, n  i n. 

Also, since, Dct (TLni 1) =  ,  by Lemma 2.2 (iii),  
we have,    

i n or  i n 2. 

    If  i n then i n which implies   

  Dct (TLn, i) =  , a contradiction. 

 Therefore, i n 2. 

 Therefore, in 1. 

 Therefore, in . 
 Together we have, i = 2n. 

 () follows from Lemma 2.2 (iii) & (iv). 

(ii) () Since, Dct (TLn {2n}, i)  , and Dct (TLn  i 

1)  ,  

 by Lemma 2.2 (iii) & (iv), we have,  

   n i   2n  and 

   n i   2n . 

 Therefore, n i   2n  

 Therefore, n i   2n    

Also, since, Dct (TLn-1 2n }, i 1) = ,  

by Lemma 2.2 (iv), we have, i n or 

i 1 2n-3. 

Therefore, i n ori  2n 2. 

If i n  the i n holds, which implies

Dct(TLn, i) = , a contradiction.   

Therefore, in  

Therefore,  i n     

Together we have, i = 2n   

() follows from Lemma 2.2 (iii) & (iv). 

(iii)( ) Since, Dct(TLn {2n}, i )  , Dct (TLn  i 1)   

and Dct (TLn { 2n i)   ,  by Lemma 2.2 (iii) & (iv), 

we have,  

   n i   2n  

   n i   2n  and 

   n i   2n  

Therefore,  n i   2n  

Therefore,  n i   2n     

Also, since, Dct (TLn-2, i 1) = , by Lemma 2.2 (iii), we 

have,  i n , or i 1  2n 

If i n , then i  n 

Therefore i  n holdswhich implies Dct (TLn, i) = , a 

contradiction. 

 Therefore, i 1  2n  

  Therefore,  i  n   

  Therefore,  i  n   

 Together we have i n    

 () follows from Lemma 2.2 (iii) & (iv). 

 

Theorem 2.5   

 

For every n  4, 

(i)    If Dct (TLn{2ni  1)   and Dct (TLn, i 1) = ,  

     then  Dct (TLni) ={X  {2n}/ XDct (TLn  {2n  i 1)}. 

(ii)   If Dct (TLn{2ni  1)   and Dct (TLn, i 1)  , 
then                         

Dct(TLni) ={X1  {2n – 1}, if 2n – 3  X1/ X1 Dct (TLn – {2n}, 

i – 1)}  {X1  {2n}, if 2n – 2 or 2n–1  X1 / X1 Dct (TLn – 

{2n}, i – 1)}   {X2  {2n –  2}, if 2n – 4 or 2n – 3  X2 / X2 

Dct (TLn-1, i – 1)}  {X2  {2n –  1}, if 2n – 2  X2 / X2 Dct 
(TLn-1, i – 1)}. 
 

Proof  

 

(i) Since, Dct(TLn  {2n}, i-1)   and Dct (TLn-1, i 1) = ,   

by  Theorem 2.4 (i), i = 2n. 

Therefore, Dct (TLn,i) = Dct (TLn, 2n) = { [2n]} and  

Dct (TLn – {2n}, i  1) = Dct (TLn  – {2n}, 2n – 1) = { [2n  – 1]},  

we have the result.  

(ii) Let Y1 = {X1  {2n – 1}, if 2n – 3  X1/ X1 Dct (TLn – {2n}, i – 1)}  

 {X1  {2n}, if 2n – 2 or 2n–1  X1 / X1 Dct (TLn – {2n}, i – 1)} 

     and Y2 = {X2  {2n  – 2}, if 2n – 4 or 2n–3 X2/ X2  

Dct (TLn-1,i – 1)}  {X2  {2n – 1}, if 2n – 2  X2 / X2  

Dct (TLn-1, i – 1)}. 

Obviously, Y1  Y2  Dct (TLn,i)         (1) 
 

Now, let Y  Dct (TLn, i). 

If 2n  Y, then atleast one of the vertices labeled 2n – 2 or 

2n – 1 is in Y. In either cases, Y = {X1  {2n}} for some X1  

Dct (TLn – {2n},i-1). 

Therefore, Y  Y1. 
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Suppose that, 2n – 1  Y, 2n  Y, then atleast one of the 

vertices labeled 2n – 3 or 2n – 2 is in Y.  

If 2n – 3  Y, then  Y = {X1  {2n – 1}} for some   

X1  Dct (TLn – {2n }, i – 1). 

If 2n – 2  Y, then  Y = {X2  {2n – 1}} for some   

X2  Dct (TLn-1, i – 1). 

Therefore, Y  Y1 or Y  Y2. 

Now, Suppose that,  

2n – 2  Y, 2n – 1  Y, 2n  Y,  then atleast one of the 

vertices labeled 2n – 4 or 2n – 3 is in Y. 

In either cases, Y ={X2  {2n – 2}} for some  

X2  Dct (TLn-1,i–1). 

Therefore, Y  Y2. 

Hence, Dct (TLn, i)  Y1  Y2           (2) 

From (1) and (2) , we have,  

Dct (TLn, i)  =   {X1  {2n – 1}, if 2n – 3  X1/ X1  

Dct (TLn – {2n}, i – 1)}   {X1  {2n}, if 2n – 2 or 2n–1  X1 / 

X1 Dct (TLn – {2n}, i – 1)}  {X2  {2n –  2}, if 2n – 4 or  

2n – 3  X2 / X2 Dct (TLn-1, i – 1)}  {X2  {2n –  1}, if  

2n – 2  X2 / X2 Dct (TLn-1, i – 1)}. 

 

Theorem 2.6 

 

If Dct(TLn,i) be the family of connected total dominating 

sets of TLn with cardinality i, where i  n – 1, then  

dct (TLn,i) = dct (TLn – {2n}, i – 1) + dct (TLn-1, i–1). 

 

Proof  

We consider the two cases given in Theorem 2.5.  

By Theorem 2.5 (i), we have,  

Dct (TLn, i) = {X{2n} / X  Dct (TLn – {2n}, i – 1 )}. 

Since, Dct (TLn-1, i – 1) =  , we have,  

dct (TLn-1, i – 1) = 0 .        

Therefore, dct (TLn,i) = dct(TLn  – {2n}, i – 1). 

 

By Theorem 2.5 (ii), we have,  

Dct(TLn, i) = {X1  {2n – 1}, if 2n – 3  X1/ X1  

Dct (TLn – {2n}, i – 1)}  {X1  {2n}, if 2n – 2 or  

2 n – 1 X1/ X1  Dct (TLn – {2n}, i – 1)}   {X2  {2n – 2},  

if 2n – 4 or 2 n – 3 X2 / X2  Dct (TLn-1,  i – 1)}  

{X2  {2n – 1}, if  2n – 2  X2 / X2  Dct (TLn-1,  i – 1)}. 

Therefore,  

dct(TLn, i) = dct (TLn – {2n}, i – 1) + dct(TLn-1, i – 1). 

3. Connected total domination polynomials of triangular 

ladders 

 

Definition 3.1 

 

Let Dct (TLn, i) be the family of connected total dominating 

sets of TLn with cardinality i and let dct (TLn, i) = |Dct (TLn, i)|. 

Then the connected total domination Ploynomial  

Dct (TLn, x) of TLn is defined as,  

Dct (TLn, x) =  
ct n(TL )

2n

i   
 dct (TLn, i) x

i
.  

Theorem 3.2 

 

For every n  4,   

Dct (TLn , x) = x[Dct (TLn  – {2n}, x) + Dct (TLn -1, x)], with 

initial values,  

Dct(TL2  – {4},  x) = 3x
2  

+ x
3
. 

Dct(TL2, x)  =  5x
2
 + 4x

3 
+ x

4
. 

Dct(TL 3 – {6}, x) = 5x
2 

+ 8x
3 

+ 5x
4
 + x

5
. 

Dct(TL 3 , x) = 3x
2
 + 10x

3 
+ 12 x

4 
+ 6x

5 
+ x

6
. 

Dct (TL 4 – {8}, x) = x
2
 + 8x

3 
+ 18x

4 
+ 17x

5 
+ 7x

6
+ x

7
. 

 

Proof  

We have, dct(TLn, i) = dct(TLn – {2n}, i – 1) + dct (TLn-1, i – 1). 

Therefore,   dct(TLn, i) x
i
   =  dct(TLn – {2n},  i – 1) x

i
  +  

dct(TLn-1, i – 1) x
i
 .

 
 

     dct(TLn, i) x
i
  =   dct(TLn  –  {2n}, i – 1) x

i
  + dct 

(TLn-1, i  – 1) x
i
 . 

                     dct(TLn, i) x
i
 =  xdct (TLn – {2n}, i – 1) x

i – 1 
 + x 

dct (TLn-1, i – 1)x
i-1

 . 
                  Dct (TLn, x) = x Dct (TLn – {2n}, x) + x Dct(TLn-1, x). 

Therefore, Dct (TLn, x) =  x[Dct (TLn – {2n}, x) + Dct(TLn-1, x)]   

with initial values,  

Dct(TL2  – {4},  x) = 3x
2  

+ x
3
. 

Dct(TL2, x)  =  5x
2
 + 4x

3 
+ x

4
. 

Dct(TL 3 – {6}, x) = 5x
2 

+ 8x
3 

+ 5x
2
 + x

5
. 

Dct(TL 3 , x) = 3x
2
 + 10x

3 
+ 12 x

4 
+ 6x

5 
+ x

6
. 

Dct (TL 4 – {8}, x) = x
2
 + 8x

3 
+ 18x

4 
+ 17x

5 
+ 7x

6
+ x

7
. 

 

Example 3.3 

Dct(TL4 , x) = 4x
3
  + 18x

4  
+ 30 x

5
 +  23x

6
  + 8 x

7  
+ x

8
. 

Dct(TL5 - {10}, x) = x
3 

+ 12x
4 

+ 36 x
5 

+ 47 x
6
 + 30x

7 
+ 9x

8  
+  x

9
. 

By Theorem 3.2, we have,   

Dct(TL5, x) = x [ 4x
3 

+ 18x
4 

+ 30x
5
+ 23 x

6
 + 8x

7 
+ x

8 
+  x

3
  

+ 12x 
4 

 + 36x
5 

+ 47x
6 

+ 30x
7 

+ 9 x
8 

+  x
9
]. 

       =  5x
4  

+ 30x
5 

+ 66x
6
 + 70x

7 
+ 38x

8 
+ 10x

9 
+ x

10
.
 

 

We obtain dct(TLn, i) and dct(TLn – {2n}, i) for 2  n  9 as 

shown in Table 1. 
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Table 1 
 

 i 
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

  
TL2-{4} 3 1                               

TL2 5 4 1                             

TL3-{6} 5 8 5 1                           

TL3 3 10 12 6 1                         

TL4-{8} 1 8 18 17 7 1                       

TL4 0 4 18 30 23 8 1                     

TL5-{10} 0 1 12 36 47 30 9 1                   

TL5 0 0 5 30 66 70 38 10 1                 

TL6-{12} 0 0 1 17 66 113 100 47 11 1               

TL6 0 0 0 6 47 132 183 138 57 12 1             

TL7-{14} 0 0 0 1 23 113 245 283 185 68 13 1           

TL7 0 0 0 0 7 70 245 428 421 242 80 14 1         

TL8-{16} 0 0 0 0 1 30 183 490 711 606 310 93 15 1       

TL8 0 0 0 0 0 8 37 428 918 1132 848 390 107 16 1     

TL9-{18} 0 0 0 0 0 1 38 220 918 1629 1738 1158 483 122 17 1   

TL9 0 0 0 0 0 0 9 75 648 1836 2761 2586 1548 590 138 18 1 

 
In the following Theorem we obtain some properties of 
dct(TLn, i). 
 
Theorem 3.4 
 
The following properties hold for the coefficients of 
Dct(TLn, x) for all n. 
 

(i) dct (TLn, 2n) = 1, for every n  2. 

(ii) dct (TLn, 2n –1) = 2n, for every n  2. 

(iii) dct (TLn, 2n –2) = 2n
2 

– 3n + 3, for every n  2. 

 (iv) dct (TLn n – 1) = n, for every n  3.  
 

Proof  
 
Proof  is obvious. 
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