Available at: http://ijmcr.com

ISSN: 2321-3124

Horizontal Milling Machine Arbor Optimization by Parametric Iterative Technique

Y.G. Nadargi¹ and R.S. Jamgekar²

Research Article

¹Department of Mechanical Engineering, NBN Sinhgad School of Engineering, Pune, India ²Department of Mechanical Engineering, Bharat-Ratna Indira Gandhi College of Engineering, Solapur, India

Accepted 03 Aug 2016, Available online 07 Aug 2016, Vol.4 (July/Aug 2016 issue)

Abstract

Milling arbor is may be considered as an extension of the machine spindle on which milling cutter are securely mounted and rotated. The arbor is subjected to complex stress conditions such as combine's axial loads, bending and twisting moments and cyclic or dynamic loads [8]. So it is necessary to analyze the behavior of the spindle under different loading conditions and with the use of different theories of failure. In this research paper milling arbor is analyzed using ANSYS software and the different stresses such as bending stress, torsional shear stress, principal stress and von-misses stress are determined [6]. The results are validated against analytical solution and the errors are within the allowable limits, and shape optimization using iterative technique is done based on the stress valve obtained; an iterative process was carried out. A new Shape was formulated whose stress valve well within the limits.

Keywords: Arbor, optimization, iterative technique, theories of failure

1. Introduction

A milling machine shaft is often used on horizontal milling machine for mounting cutters. More than one cutter may be mounted on the same arbor according to requirements of surface to be machined.

In this research milling arbor is analyzed using ANSYS software and the different stresses such as bending stress, torsional shear stress, principal stress and vonmisses stress are determined [9].

The results are validated against analytical solution [2] and the errors are within the allowable limits. And shape optimization using iterative technique is done based on the stress valve obtained; an iterative process was carried out. A new Shape was formulated whose stress value well within the limits.

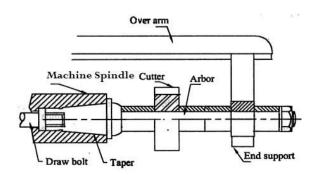


Fig. 1 Arbor & its Support

2. Analytical/Mathematical Formulation

=> For Shaft Stress System Subjected to Loading

Milling Machine Specification Total motor power =5H.P = 3730 Watt High Speed Cutter = 12dp Cutting Speed = N = 60 rpm No. of teeth on cutter =12 Shaft diameter (Milling Machine Shafts) = d_A = 25mm Diameter of cutter = $3d_A$ =75mm Shearing Strength of work material = σ_s = 40 N/mm² Job width = B = 25mm Length of shaft = 90mm Job (cutting) material= C.I.

Assumptions

Self weight of shaft = 4 kg = 39.24NDepth of cut = t = 5mm (from data book) Feed = f ×z = 0.3 mm/rev for the cutter having 12 teeth.

I have considered the weakest cross-section for analysis purpose.

The self-weight of the shaft acting vertically downwards and the cutting force due to tool on the job acts horizontally [3] so that we have taken resultant of these two forces.

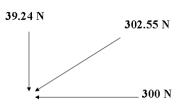


Fig. (c) Resultant dig

Calculation for cutting force

Cutting force = $Fc_1 + Fc_2[7]$

Since $Fc_1 = 0$, because at the initial No. of teeth in contact is 1 [5] Therefore, $Fc_2 = 2 \times \sigma_s \times f \times z \times \sin \psi_2$ [8] But $\psi_2 = \delta = \cos^{-1} (D/2-t) / (D/2)$ $= \cos^{-1} (32.5/37.5) = 29.920$ Now $Fc_2 = 2 \times 40 \times 0.3 \times 25 \times 0.4987 = 299.22 \approx 300 \text{ N}$

Calculations for Bending moment

Bending moment to be calculated for simply supported beam with point load at mid –point.

But, Load

$$w = \sqrt{(self weight)^2 + (Fc_2)^2} = \sqrt{(39.24)^2 + (300)^2}$$

= 302.55N
Calculation of Torque or Twisting Moment

$$\mathsf{P} = \frac{(2\pi\mathsf{N}\mathsf{T})}{60} \qquad \qquad T = \left(\frac{(\mathsf{P}(60))}{(2\pi\mathsf{N})}\right)$$

T = 593.6479×103 N-mm

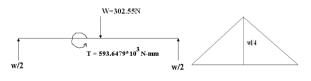


Fig. (a) Loading Dia.

Fig. (b) Bending Moment Dia.

Now, Bending Moment = $\frac{WL}{4} = \frac{((302.55)90)}{4} = 6807.37$ N-mm Calculation of Bending stress from Bending moment

$$M = \frac{\pi}{32} (\sigma_b) (d)^3 \qquad 6807.37 = \frac{\pi}{32} (\sigma_b) (25)^3$$
$$\sigma_b = 4.4377 \text{ N/mm}^2$$

Calculating of equivalent bending stress and equivalent shear stress

According to maximum shear stress theory, shear stress due to combined effect of Bending and Torsional Moment.

Horizontal Milling Machine Arbor Optimization by Parametric Iterative Technique

Calculation of Torsional Shear Stress

$$T = \left(\left(\frac{\pi}{16} \right) \left(\tau \right) (\mathrm{d}^3) \right)$$

 $593.6479 \times 10^3 = (\prod/16) \times \tau \times (25^3)$

 $\tau = 193.49 \text{ N/mm}^2$

Analysis by ANSYS

Types: Structural analysis Element Type: PIPE 16 Real Constant: OD=25mm, Thickness=12.5mm Material: Alloy Steel E=200 x 10^3 N/mm² μ =0.3 Load: Apply Torque UY= 0, UZ= 0 Bending Load ROTX, UY, UZ=0

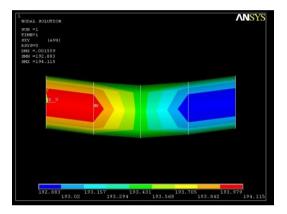


Fig.2 Result showing Torsional shear stress [9]

Solution for Torsional Shear Stress by ANSYS General Post Proc. -> Plot result -> Contour Plot -> Nodal sol -> XY Shear Stress

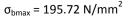
Calculation of equivalent bending stress and equivalent shear stress

According to maximum shear stress theory, shear stress due to combined effect of bending and torsional moment,

$$\tau_{\text{max}} = \frac{1}{2} \sqrt{\sigma_b^2 + 4\tau^2}$$
$$= \frac{1}{2} \times \sqrt{(4.4377^2 + 4 \times 193.49^2)}$$
$$\tau_{\text{max}} = 193.5027 \text{ N/mm}^2$$

According to Principal stress theory, bending stress due to combined effect of bending and torsional moment,

$$\sigma_{b_{\text{max}}} = \frac{\sigma_{b}}{2} + \frac{1}{2}\sqrt{\left(\sigma_{b}^{2} + 4\tau^{2}\right)}$$
$$= \frac{4.4377}{2} + \frac{1}{2} \times \sqrt{\left(4.4377^{2} + 4 \times 193.49^{2}\right)}$$



684 | Int. J. of Multidisciplinary and Current research, Vol.4 (July/Aug 2016)

Y.G. Nadargi et al

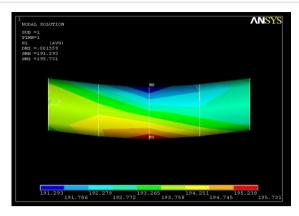


Fig.3 Result showing Principal Stress

Solution for Principal Stress by ANSYS General Post Proc. -> Plot result -> Contour Plot -> Nodal sol -> 1st Principal Stress

Calculation of VON-MISES stress

$$\sigma_{vonnises} = \sqrt{\sigma_b^2 + 3\tau^2}$$
$$= \sqrt{(4.4377^2 + 3 \times 193.49^2)}$$

 $\sigma_{vonmises} = 335.1638 \text{ N/mm}^2$

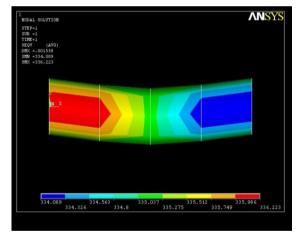


Fig.4 Result showing Von Mises Stress

Solution for VON-MISES Stress by ANSYS

General Post Proc. -> Plot result -> Contour Plot -> Nodal sol -> VON MISES Stress

Now, % Error= (<u>ANSYS result – Analytical result</u>) x 100 Analytical result

Table 2 Comparison of result of arbor shaft by analytically and ANSYS

Type of stress	Analytical method N/mm ²	Using ANSYS N/mm2	% error
maximum bending stress	195.72	195.734	0.00715
maximum shear stress	193.5027	194.119	0.31885
von-mises stress	335.1638	336.223	0.31602

3. Geometrical Optimization of a Shaft by Parametric Iterative Technique

Calculation for the Milling Machine Shaft diameter of 22mm.

Bending moment to be calculated for simply supported beam with point load at mid-point.

Now, Bending Moment = $\frac{WL}{4} = \frac{((302.55)90)}{4} = 6807.37$ N-mm

Calculation of Bending stress from Bending moment

$$M = \frac{\pi}{32} (\sigma_b) (d)^3$$

$$6807.37 = \frac{\pi}{32} \times \sigma_b \times (22)^3$$

 $\sigma_{\rm b} = 6.5119 \text{ N/mm}^2$

Calculation of Torque or Twisting Moment

$$\mathsf{P} = \frac{(2\pi \mathrm{NT})}{60} \qquad T = \left(\frac{(\mathsf{P}(60))}{(2\pi \mathrm{N})}\right)$$

 $T = 593.6479 \times 10^3 \text{ N-mm}$

Calculation of Torsional Shear Stress

$$T = \left(\left(\frac{\pi}{16} \right) \left(\tau \right) \left(d^3 \right) \right)$$

$$593.6479 \times 10^3 = \frac{\pi}{16} \times \tau \times (22)^3$$

$$\tau = 283.942 \text{ N/mm}^2$$

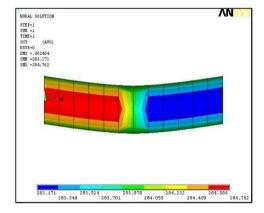


Fig.5 Result showing Torsional Shear Stress

Solution for Torsional Shear Stress by ANSYS General Post Proc. -> Plot result -> Contour Plot -> Nodal sol -> XY Shear Stress

Calculation of equivalent bending stress and equivalent shear stress

According to maximum shear stress theory, shear stress due to combined effect of bending and torsional moment,

$$\tau_{\max} = \frac{1}{2} \sqrt{\sigma_b^2 + 4\tau^2}$$
$$= \frac{1}{2} \times \sqrt{(6.5119^2 + 4 \times 283.942^2)}$$
$$\tau_{\max} = 283.961 \text{ N/mm}^2$$

According to Principal stress theory, bending stress due to combined effect of bending and torsional moment,

$$\sigma_{b\max} = \frac{\sigma_b}{2} + \frac{1}{2}\sqrt{(\sigma_b^2 + 4\tau^2)}$$
$$= \frac{6.5119}{2} + \frac{1}{2} \times \sqrt{(6.5119^2 + 4 \times 283.942^2)}$$

$$\sigma_{max} = 287.2174 \text{ N/mm}^2$$

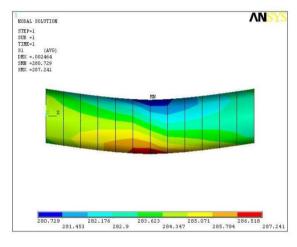


Fig.6 Result showing Bending Stress

Solution for Principal Stress by ANSYS

General Post Proc. -> Plot result -> Contour Plot -> Nodal sol -> 1st Principal Stress

Calculation of VON-MISES stress

 σ

$$v_{vonmises} = \sqrt{\sigma_b^2 + 3\tau^2}$$

= $\sqrt{(6.5119^2 + 3 \times 283.942^2)}$

 $\sigma_{vonmises}$ = 490.954 N/mm²

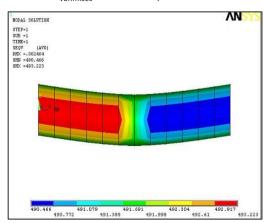


Fig.7 Result showing Von-mises Stress

Solution for VON-MISES Stress by ANSYS General Post Proc. -> Plot result -> Contour Plot -> Nodal sol -> VON MISES Stress

Table 2 Stress induced in shaft by analytically and ANSYS

Type of Stress	Using Analytical Method (N/mm ²)	Using ANSYS (N/mm ²)
Maximum Bending Stress	287.2174	287.241
Maximum Shear Stress	283.9614	284.762
Von-Mises Stress	490.9548	493.223

From the result obtained for the milling machine shaft of 22mm diameter, clearly shown that the stress induced in the arbour shaft are maximum than the shaft of 25mm diameter [3]. So it can't be optimized shape, further we will do iteration by changing the diameter of the Milling Machine Shafts shaft until we get an optimized shape of the.

Table 3 Stress induced in arbor shaft by analytically andANSYS

			r	
lteration	Dia. of Arbor (mm)	Type Of Stress	Using Analytical Method (N/mm²)	Using ANSYS (N/mm ²)
		Maximum Bending Stress	287.2174	287.241
1 2	22.0	Maximum Shear Stress	283.9614	284.762
		Von-Mises Stress	490.9548	493.223
		Maximum Bending Stress	268.4920	268.514
2	22.5	Maximum Shear Stress	265.4483	266.214
		Von-Mises Stress	459.7801	461.096
		Maximum Bending Stress	251.3594	251.380
3 23.0	23.0	Maximum Shear Stress	248.5100	249.243
		Von-Mises Stress	430.4414	431.701
		Maximum Bending Stress	235.6542	235.674
4	23.5	Maximum Shear Stress	232.9828	233.685
		Von-Mises Stress	403.5469	404.754
		Maximum Bending Stress	221.2305	221.249
5	24.0	Maximum Shear Stress	218.7226	219.395
		Von-Mises Stress	378.8470	380.004
		Maximum Bending Stress	207.9603	207.978
6 24	24.5	Maximum Shear Stress	205.6029	206.248
		Von-Mises Stress	356.1224	357.233
7	25.0	Maximum Bending Stress	195.7200	195.734
		Maximum Shear Stress	193.5027	194.119
		Von-Mises Stress	335.1638	336.223
		Maximum Bending Stress	184.4413	184.457
8 25.	25.5	Maximum Shear Stress	182.3504	182.946
		Von-Mise Stress	315.8472	316.872

From the result obtained for the arbor shaft of 25.5mm diameter, clearly shown that the stress induced in the arbor shaft, are less than the arbor of 25mm diameter. Hence it holds good the analytical as well as FEA method [6] so an optimized geometry of component is achieved.

Conclusions

For The Arbor Shaft Diameter = 25mm		For The Arbor Shaft Diameter = 25.5mm			
Type of Stress	Using Analytical Method (N/mm²)	Using Ansys (N/mm²)	Type Of Stress	Using Analytical Method (N/mm²)	Using Ansys (N/mm ²)
Max.			Max.		
Bending Stress	195.72	195.734	Bending Stress	184.441	184.457
Max.			Max.		
Shear	193.502	194.119	Shear	182.350	182.946
Stress	133.302	15115	Stress	102.550	102.540
Von-			Von-		
Mises	335.163	336.223	Mises	315.847	316.872
Stress	333.103 330.223	Stress	515.047	510.072	

From the result obtained for the arbor shaft of 25.5mm diameter, clearly shown that the stress induced i.e. torsional shear stress, principal stress, von misses stress in the arbor shaft are lesser than the predicted values for an arbor of 25mm diameter. Hence the analytical as well as FEA method so an optimized geometry of component is achieved, as shown in Fig 7.

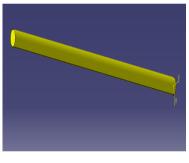


Fig.8 Optimized geometry

References

- Jaroslav Mackerle, "Finite element analysis and simulation of machining: a bibliography (1976–1996)", Journal of material processing technology, Volume 86, Issues 1–3, 15 February 1998, Pages 17–44.
- [2]. XUE Guang wu, "The Fracture Analysis and Improvement of Milling Arbor of Butt Mill of 45 # Steel", Journal of *Jiaozuo University*.
- [3]. C. Kendal Clarke, "Analysis of failed saw arbor", *American society for testing and materials.*
- [4]. Ellen Macinterney, "Cound Arbour Bridge", Finite Element Analysis In Structural Mechanics.
- [5]. V. Gagnol, B.C. Bouzgarrou, P. Ray, C. Barra, "Model-based chatter stability prediction for high- speed spindles", *International Journal of Machine Tools and Manufacture*; Volume 47, Issues 7–8, June 2007, Pages 1176–1186.
- [6]. Nand K. Jha, Kathryn Hornik, "Integrated computer-aided optimal design and finite element analysis of a plain milling cutter", *Applied Mathematical Modelling*; Volume 19, Issue 6, June 1995, Pages 343–353.
- [7]. H. Chandrasekaran, T.A. Janardhan Reddy, V.C. Venkatesh, "On the Nature of Cyclic Stresses in the Tool Tip in Peripheral Milling and Their Implications on Tool Fracture", *CIRP Annals - Manufacturing Technology*; Volume 31, Issue 1, 1982, Pages 85–89.
- [8]. G. Droubi, M.M. Sadek, S.A. Tobias, "Determination of the dynamic cutting coefficients for milling", International Journal of Machine Tool Design and Research; Volume 13, Issue 2, June 1973, Pages 77–85.
- [9]. Matti Rantatalo, Jan-Olov Aidanpää, Bo Göransson , Peter Norman, "Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement", *International Journal of Machine Tools and Manufacture*; Volume 47, Issues 7–8, June 2007, Pages 1034–1045.