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Abstract  
   
In this paper, we investigate perihelion precession in the solar system, which is one of the most interesting aspects of 
astrophysics including both aspects of General Relativity and classical mechanics. The phenomenon, where the 
perihelion of the elliptical orbital path of a planet seems to rotate around a central body (the Sun in this case), is referred 
to as the precession of the orbital path. Astronomers discovered this natural phenomenon years ago where they failed 
to explain many strange observatory data. This paper addresses the derivation of the motion equation and the 
corresponding approximate solution, which results in the perihelion advance formula. We are, therefore, aiming 
primarily at obtaining solutions to equations of motion and deriving a general formula by taking the General Relativity 
concepts and Classical Mechanics into account. 
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1. Introduction 
 

The anomalous precession of the perihelion of Mercury 
was among the first phenomena that Einstein’s General 
Theory of Relativity explained [1],[2]. The theory owes its 
success to the numerical value provided by Einstein for 
the perihelion precession of Mercury, which was greatly 
similar to the observation value [3],[4]. This resulted in 
changes in the apprehension of astronomers and 
physicists about the concepts of space and time and a 
different way of viewing the problems [5]. Precession has 
been defined as a change in the orientation of a 
rotational planet around the Sun or a central body, as 
illustrated in Fig. (1), where the semi-major axis rotates 
around the central body [6].  
 

 
 

Fig.1 Exaggerated view of the perihelion precession of a 
planet 

Four elliptical orbits shifting with respect to one another 
are displayed in the figure [7]. This shifting or advance is 
referred to as the advance of the perihelion of the planet 
or the perihelion precession of the planet. Moreover, the 
aphelion being the opposite point of the perihelion, the 
longest distance between the planets and the Sun, 
advancing at the same angular rate as the perihelion, is 
shown in Figure (1). 

 
2. Literature Review 

 
When Urbain Jean Joseph Le Verrier (1811-1877), a 
French mathematician, reported the perihelion 
precession for the first time in 1859, investigation of the 
solar system appealed to astronomers and theorists more 
than ever. What attracted Le Verrier’s attention to the 
advance of the perihelion of Mercury was its unusual 
orbital motion [8]. This was associated with an unknown 
planet that was never found, which he referred to as 
Vulcan. The value he obtained for the precession of the 
perihelion using Newtonian mechanics was 38 arc 
seconds per century [9]. The results obtained by Le 
Verrier were advertently corrected in 1895 by Simon 
Newcomb (1835-1909), a Canadian-American astronomer 
and mathematician [10], whose theory confirmed Le 
Varrier’s finding about the advance of the perihelion of 
Mercury. Also following the Newtonian method with a 
few slight changes in the planetary masses, Newcomb 
obtained the astounding value of 42.95 arc seconds per 
century for the advance of Mercury, unbelievably close to 
the actual value. 
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An important point is that based on Newton’s law, the 
planets cannot advance when only the gravitational force 
between the planet and the Sun is taken into account 
[11]. 90% of the mass of the solar system, however, 
concerns the Sun, which demonstrates that the masses of 
the other planets are negligible as compared to that of 
the Sun. Furthermore, as the light planets move in the 
static gravitational field of the Sun, their static 
gravitational potential can also be neglected.  
 Albert Einstein’s General Theory of Relativity finally 
provided explanation for the above natural phenomenon 
and, therefore, acceptable responses to some inquiries 
later in 1915 [12]. 
 On November 25, 1915, a paper was published by 
Einstein based on vacuum field equations [13]. His 
derivation in the paper was actually mathematically 
interesting, since the equation of motion was obtained 
there from the vacuum field equation regardless of 
Schwarzschild metrics. To obtain the solution to the 
vacuum field equation, Einstein used an approximation to 
the spherically symmetric metric, used instead of the 
Cartesian coordinate system. The approximate metric can 
be expressed in Polar coordinates 
 

      (  
  

 
)       (  

  

 
)               

                               (1) 
 
where m and r denote the mass of the central body and 
the distance between the planet ant the Sun, 
respectively. Einstein’s approximation for the coefficient 
of       was related to the real one, expressed soon after 
that by Schwarzchild, as follows 
 
                                                              (2) 
 
where 
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By estimating the Christoffel symbol as well as using his 
approximate metric for spherical symmetry, Einstein 
defined the geodesic equations of motion as 
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where      ,   is the angular coordinate in the orbital 
plane, and A, proportional angular momentum, and B, 
concerning energy, are the constants of integration. The 
precise value of   is 1 based on the Schwarzschild metric 
but          according to Einstein’s approximation, 
which he finally decided to change to one after some 
calculation. The angular difference    was obtained by 
integrating from Eq. (4). The angular difference was 
calculated by just accurate and necessary values, and two 
points were considered as limitation, from the aphelion 
point to the perihelion point. Einstein obtained the arc 
length from the perihelion to the aphelion and, 

equivalently, that from the aphelion to the next 
perihelion after he solved the polynomial, just as in Eq. 
(4). Therefore, the total    for one orbit from one 
perihelion to the next obtains through multiplication of 
the value by two, and precession per orbit obtains 
through subtraction of this amount by   . The result was, 
therefore, obtained as  
 

       
   

 
                (5) 

 
where L and m denote the semi-latus rectum of the 
elliptical orbit (55.4430 million km for Mercury) and the 
Sun’s mass in geometrical units (1.475 km), respectively. 
Substitution of the values in Eq. (5) will obtain 0.1034 arc 
seconds per revolution. As Mercury has 414.9378 
revolutions per century, the final result is 42.9195 arc 
seconds per century, close to the observed value. It 
should also be noted that Einstein’s result applies not 
only to circular orbits but actually to any eccentricity. 
 Eight years after he began to work on his gravitational 
theory in 1907, he managed to make it help him to obtain 
the perihelion precession of Mercury. 
 A few months after Einstein published his paper (on 
December 22), Karl Schwarzschild (1873-1916), a German 
physicist and astronomer, successfully found the precise 
solution to Einstein’s field equation of General Relativity 
for non-rotating gravitational fields. He first changed 
Einstein’s first order approximation, to which he found a 
precise solution, and then introduced only one line 
element, satisfying four conditions of Einstein. 
Furthermore, Schwarzschild considered a spherical 
symmetry around the center by postulating a body 
exactly at the origin of the coordinate system and 
assuming the isotropy of space and a static solution 
(where there is no dependence on time). His line element 
thus best demonstrated the spherical coordinate as 
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where          ,        and   is Newton’s 
gravitational constant. Schwarzschild’s equation of orbit 
remained the same as Einstein’s equation, however. He 
passed away the next year (on May 11) during World War 
I, and the Astroied 837 Schwarzchilda was named in his 
honor. It is not really the case that the planets in the solar 
system other than Mercury do not have precession. Even 
planets like the Earth or Venus with almost circular orbits 
or small eccentricity can display precession. It might 
appear hard to obtain the precession of such orbits, but 
this has been made possible and more accurate by 
modern techniques of measurement and computerized 
analysis of the values. 
 Several investigations have been conducted in this 
regard to obtain a more precise value, and the present 
paper aims to explore more to provide an exact solution 
to the second and higher order corrections. See Section 2 
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for details about all the steps.  The geodesic equations 
given by the Schwarzschild gravitational metric constitute 
the first issue. The motion of the planets is assumed to be 
a time-like geodesic in the Schwarzschild metric rotating 
around the Sun. As clear from the computations for 
obtaining the perihelion precession equation, both 
important aspects of physics, i.e., the General Relativity 
Theory and classical mechanics, are taken into account in 
all the steps.  
 A table is provided at the end of Section 2 based on 
some data and the perihelion precession equation 
displaying the results for eight solar system planets. The 
table contains a conversion obtaining two different values 
for the perihelion advance, expressed as             and 
             , related to one another through 
 The sidereal period for a planet is defined as its orbital 
period per year. The orbital period for Mercury, say, is 
87.969 days, and every year contains 365 days, 5 hours, 
48 minutes, and 46 seconds. The values of sidereal period 
in a year are obtained through division of the two 
numbers Following the same rule for each planet, we will 
obtain the data in Table (1). 
 

Table 1   Sidereal Periods of the Planets in the Solar 
System 
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3. Finding of Planet Motion Equation  
 

Nearly spherically symmetric, the Sun has a very small 
radius as compared to the position of the planets. The 
spacetime around it may thus be considered to be in the 
form of the solution to Einstein’s vacuum equations, quite 
famous as the Schwarzschild spacetime with the line 
element  
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                       (8) 

 

where    is the mass of the Sun,   is the speed of light, 
and     is Newton’s gravitational constant. The 
individual effect of the planets in the solar system on the 
spacetime is assumed to be negligible for their motion, so 
every planet moves as a test particle. The following 
Lagrangian can thus be used for the motion of each 
planet 
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  ̇                 (9) 

 
where m denotes the planet mass. It should be noted that 

        [ (  
   

 
)  

 

(  
   

 
)
           ]            (10) 

 
is the metric tensor for the Schwarzschild spacetime. If 
the metric tensor in now applied in the Lagrangian, the 
following is obtained 
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where dot denotes taking derivative with respect to the 
proper time  , which is assumed to be measured by an 
observer located on the particle. The basic equations of 
motion are consequently obtained by the Euler-Lagrange 
equations 
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               (12) 

 
It should be noted before giving the explicit form of the 
equations that the angular momentum of the test particle 
in a preferable direction   remains constant, because the 
spacetime is spherically symmetric. The motion is thus 
known from the very beginning to be in a 2-dimensional 
plane. Setting the proper system of coordinates can help 

choose   
 

 
, where the equatorial plane is, on which 

basis, the three Euler-Lagrange equations are obtained by 
the following equations 
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As implied by (13) and (15),  
 

(  
   

 
)  ̇                     (16) 

 

and 
 
   ̇                   (17)  
 

where   and   are two integration constants concerning 
the energy and angular momentum of the test particle. 
The four-velocity of the planets must satisfy the following 
equation as they are moving on a timelike worldline  
 

                     (18) 
 

where    
   

  
. The explicit form of Eq. (18) is 
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where  
 

 
.  ̇ and  ̇ are obtained from Eqs. (16) and (17). 

The proper equation for the radial coordinate is obtained 
through substitution in Eq. (19) 



Sara Kanzi and Hamed Ghasemian                                                         Perihelion Precession in the Solar System                                                                                                                                                                                

 

1128 | Int. J. of Multidisciplinary and Current research, Vol.4 (Nov/Dec 2016) 

 

 ̇  (  
   

 
) (  

  

  
)                    (20) 

 

Next, we use the chain rule to obtain a differential 
equation for r with respect to  , which gives the 
following equation from (20). 
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or, more conveniently, 
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We now introduce a new variable   
 

 
 as in the Kepler 

problem. Rewriting the last differential equation obtains 
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         (23) 

 
The above equation is the master first order differential 
equation that should be solved for       Taking the 
derivative of this equation with respect to   to get closer 
to it followed by a rearrangement obtains 
 
   

   
   

  

  
     

                   (24) 

 
As compared to the Newtonian planet motion equation, 
the term added here to the Classical Mechanics as a 
result of General Relativity (GR) is     

 . The following 
equation obtains the straightforward solution without GR 
correction 
 

  
 

 
 

  

  
                      (25) 

                           (25) 
where   denotes the eccentricity of the elliptic orbit of 
the planet, and the initial phase    is an arbitrary 
constant that can be set to zero without loss of 
generality, as the coordinate system can rotate about the 
symmetry axis. It is unfortunately impossible to 
analytically solve the master Eq. (23) with the GR 
correction. The correction to the classical motion is very 
small, though, as suggested by the nature of the 
additional term, so a proper method of approximation 
might yield significantly acceptable results. The GR term, 
therefore, can be considered as a small perturbation to 
the classical path of the planets. For this purpose, we 

consider 
    

  
     and thus expand the planet orbits 

in terms of  ; i.e., 
 
  ∑    

                         (26) 
and  
 
   ∑    

                       (27) 
 
where the prime stands for taking derivative with respect 
to  , and    is the orbit without the GR correction; i.e., 
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Substituting the above in the master Eq. (2.16) obtains 
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The Newtonian equation of motion obtained by the 
following is evaluated in the zeroth order 
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The solution has already been provided in Eq. (28). 

Generally, the     order equation (where      is 
obtained as follows 
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The first order equation, say, turns into another second 
order differential equation: 
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Since     is there at the right hand side, the above 
equation is nonhomogeneous. Listed below are some of 
the higher order corrections one can extract from the 
master Eq.(23), where       and 4, respectively, as 
admitted by Eq. (31) 
 

  
     

  

  
                         (33) 

 

  
     

  

  
          

                 (34) 

 

  
     

  

  
                        (35) 

 
Next, we will solve the equation of the first order 
correction with the following explicit form 
 
    

        
  

  
                    (36) 

 

The above nonhomogeneous second order ordinary 
differential equation, which has a constant coefficient, is 
solved in two distinct parts, including the solution to its 
homogenous form and the particular solution, both to be 
discussed in the sequel. The homogenous equation is 
obtained by 
 

    

   
                   (37) 

 

the solution to which reads 
 
                               (38) 
 
where    and   are both integration constants. In order 
to estimate the particular solution to Eq. (36), we can 
expand the right-hand side as 
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where the settings   
  

  
 and                 

  hold. The following is considered as the ansatz of the 
nonhomogeneous second order differential equation with 
constant coefficients according to the standard solution 
method 
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where the left and right sides of Eq. (39) are matched to 
obtain all the constants. Applying the ansatz in Eq. (37) 
yields 
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where we obtain       
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particular solution thus reads 
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The full solution is finally calculated by summing the 
homogenous solution and the particular one as follows 
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We can write the homogeneous solution as 
 
                           (44) 
 
As in the case of     the initial phase    can be set to 
zero. 

 
The following equation is used for expression of the orbit 
of a planet around the Sun up to the first order 
correction: 
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where the term       has been absorbed into the other 
similar term in     That is, it is not the homogeneous 
solution that we are actually seeking. The correction that 
should be considered is rather the particular solution. 
Therefore, the following settings are considered for the 
next step 
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As for the second order correction 
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The following is obtained using the standard solution 
method of the particular solution of second order 
nonhomogeneous differential equation 
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The particular solution to     equation, obtained as 
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4. Perihelion Precession of the Planets 
 
Theoretically, we can continue to any order of 
corrections; however, it is hardly the case that this goes 
beyond the first order for the solar system. 
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The expression that contains        where   is large 
becomes significant even though      and it can, 
therefore, be simplified even more to obtain 
 
                                      (52) 
 
As 𝜑 increases,        can still be considered. This 
in turn implies            and            
Considering the above point, we can apply this into Eq. 
(51) to obtain 
 
                                                 (53) 
 
which yields the following relation using              
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It is obviously understood from the above that the motion 
period is no longer   , and is obtained instead by 
 
                          (55) 
 
where 𝛥 is the motion period. Consequently,  
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Applying  
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   , as      we obtain 

 
                                              (57) 
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in the first order, which demonstrates a perihelion 
precession per orbit for Mercury because of the GR term 
equal to            , where       is the period 
of the orbit of the planet predicted by Newton’s gravity. 

Since both    and   are in natural units,   
   

 

  
 is also 

obtained in natural units, so it has to be converted into 
geometrized units as follows 
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Furthermore, the proper coefficients must be used for 
conversion of mass and angular momentum per unit mass 
from natural units to geometrized units. Here,        
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     , which obtains 

      
 

 
     , and in SI units, 
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where    is the mass of the Sun in kg,   is Newton’s 

gravitational constant,   
 

 
, where   and m are the 

angular momentum and mass of the planet, respectively, 
and c is the speed of light in m/s. The following more 
precise relation, therefore, obtains 
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Back to the classical Newtonian gravity and the popular 
Kepler’s law, according to the first law, the planets orbit 
the Sun on an ellipse with the semi-major and semi-
minor,   and  , respectively, and it should be noted that 
the Sun is located on one of the foci of the ellipse. Based 
on the second law, a line from the Sun to the planets 
sweeps out an equal area in equal time. Finally, the third 
law suggests that the square of the planet period is 
proportional to the cube of the semi-major axis. Based on 
the second and the third laws, 
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And 
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which can be approximated as follows, as      for all 
the planets in our solar system: 
 

   
     

   
               (63) 

 
After substituting in E 
 

   
      

          
             (64) 

 
Perihelion precession    is provided in Table 2 for all the 
planets in the solar system. 

Table 2 Perihelion precession of the solar system as 
affected by general relativity 

 

Planets 
    
      

       
   

   

     
 

      

   
   

       
  

Mercury 0.57909 87.969 0.205630 0.5018545204 42.980 

Venus 1.08208 224.70 0.006773 0.2571130671 8.6247 

Earth 1.49597 365.25 0.016710 0.1859498484 3.8374 

Mars 2.27936 686.98 0.093412 0.1230815591 1.3504 

Jupiter 7.78412 4332.5 0.048392 0.0358103619 0.0623 

Saturn 14.2672 10759. 0.054150 0.0195494684 0.0136 

Uranus 28.7097 30685 0.047167 0.0098226489 0.0024 

Neptune 44.9825 60189 0.008585 0.0061828420 0.0008 

 
Conclusion 
 

We have investigated “Perihelion Precession in the Solar 
System” in this paper. It is presented a review from the 
initial idea of the issue to the final correction made to the 
equations for obtaining the best values. It was explained 
that the idea was initially suggested by the Newtonian 
law, and some astronomers and mathematicians 
attempted to provide methods with results closest to the 
observed value. Perihelion precession was among the 
phenomena solved by the theory. Beginning with 
Schwarzschild space time equation in the second section, 
we assumed for the motion of the planets in the solar 
system that every planet moves as a test particle. Solving 
the Euler-Lagrangian equations provides the best way for 
deriving the equation of motion for planets. The line 
element is given here in Schwarzschild coordinates. We 
obtained the two conserved quantities energy and 
angular momentum of the test particle. We obtained a 
general equation in order to get the higher order.  
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