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Abstract  
   
In this paper, the Thermoelastic damping vibration with voids of beam resonator is analyzed by dual-phase-lagging 
generalized thermoelasticity theory. The basic equations and the boundary-value problems are formulated. The Q-factor 
for thermoelastic damping has been derived and the effects of voids have been discussed. Analytical expressions for 
deflection, temperature change, frequency shifts and Thermoelastic damping in the beam have been derived. 
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Introduction 

 
Micro-and nanomechanical beam resonators are a very 
important issue for physical applications (1-4). Also, a lot 
of scientists have interest with Micro- or 
nanoelectromechanical in recent years. Quality factor or 
Q factor is an important parameter of a micro-resonator. 
Higher Q indicates a lower rate of energy loss relative to 
the stored energy of the resonator. Resonators with high-
quality factors have low damping so that they ring or 
vibrate longer. Therefore, the study of energy dissipation 
mechanism is of great importance for development and 
improvement of the planning of micro/ 
nanoelectromechanical resonators (5). 
 Sharma and Grover (6) studied Thermoelastic 
vibrations in micro-/nano-scale beam resonators with 
voids. Sun and Saka (7) inspected the thermoelastic 
damping vibration in circular resonators. Their formula of 
Thermoelastic damping for microplate resonators is 
different from that of Lifshitz and Roukes (8) by a factor 

K (1 ) (1 2 )    , in which   is Poisson's ratio. 

Sharma and Sharma (9) studied thermoelastic damping in 
micro-scale circular plate resonators. They employed the 
generalized theory of thermoelasticity of Lord and 
Shulman's model. Some searches compute the magnitude 
of TED in the beam (6), plates (10, 11) and ring (12). Sun 
and Tohmyoh (13) studied thermoelastic damping of the 
axisymmetric vibration in circular beams.  
 The dual-phase-lagging (DPL) model has been used for 
studying the lagging response in conductive heat transfer 
at the microscale (14, 15). Various heat transfer problems 
have been described with the DPL model. The physical 
meanings of the DPL model are shown by the 
experimental results (15).  Xu (16) studied a heat transfer 

problems. Also, Guo et al. (17) analyzed thermoelastic 
damping in micro- and nanomechanical resonators based 
on dual-phase-lagging generalized thermoelasticity 
theory. Tzuo (14) had introduced another modification to 
Fourier law, he proposed a form of the energy equations, 
he introduced the two lags, the heat flux time lag, and the 
temperature gradient time lag. Therefore he had used the 
dual phase lag heat convection equation with the energy 
conservation law to obtain the dual phase lag model for 
heat convection. 
 Al-Nimr and Al-Huniti (18)  studied thermal stresses of 
thin plate induced by a rapid heating. Ho et al. 
(19) analyzed the heat transfer and the transmission–
reflection phenomenon on the surface of a two-layered 
structure.  
 The theory of elastic materials with voids is concerned 
with the elastic materials consisting of a distribution of 
small pores (voids) containing nothing of mechanical or 
energetic significance and is one of the most recent 
generalizations of the classical theory of elasticity.  
 Nunziato and Cowin (20) presented a nonlinear theory 
of elastic materials with voids. Cowin and Nunziato (21) 
presented a linear theory of elastic materials with voids. 
Puri and Cowin (22) studied the behavior of plane 
harmonic waves in linear theory of elastic materials with 
voids. Now this theory has been extended and applied in 
various types of materials such as viscoelastic, micropolar 
and thermoelastic to solve problems of interest. Iesan 
(23) developed a linear theory of thermoelastic materials 
with voids. Sharma and Kaur (24) studied the plane 
harmonic waves in generalized thermoelastic materials 
with voids. Sharma et al. (25) carried out an exact free 
vibration analysis of simply supported, homogenous 
isotropic, cylindrical panel in the three-dimensional 
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generalized thermoelasticity with voids. Sharma and 
Grover (6)  studied thermoelastic vibrations in 
micro/nano-scale beam resonators with voids. 
 The purpose of the present work is to study the voids 
and thermal relaxation time, based on the dual phase lag 
modification of Non – Fourier beam resonators. The 
problem is formulated in the dimensionless form and 
then solved analytically. The displacement and the 
temperature solutions are obtained. An exact free 
vibration analysis of simply supported, homogeneous 
isotropic are presented.  
 

Mathematical equations 
 

We consider small flexural deflection of a thin 
thermoelastic beam with voids of length L and a 

rectangular cross-section of dimensions h a . Take x-

axis along the axis of the beam, y-axis along the thickness 
and z-axis along the width direction. In equilibrium, the 
beam is unstrained, unstressed and also kept at uniform 

temperature 0T and volume fraction 0 . 
 

Thus, the displacements, strains and stresses as:  
 

x

w(x, t)
u y

x


 


, 

yu 0 ,     
zu w(x, t) ,                        (1)  

2

xx yy zz 2

w(x, t)
e e e e y

x


    


,                                     (2) 

 

  ij ij kk ij ije 2 e b T ,          i, j, k 1, 2,3 ,         (3) 

where w, t are the deflection of the beam and the time 
respectively.

 
 ,  are the Lame's parameters; 

T(3 3 )      , T  is 

the linear thermal expansion. The flexural moment of the 
cross-section is given as follows: 

 
h 2 2

xx T2

h 2

w
M(x, t) a ydy I 2 bM M

x





       


,       (4) 

where 
3ah

I
12

 is a moment of inertia of the beam and 

h 2

h 2

M a ydy


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        and        

h 2

T

h 2

M a Tydy


   ,                 (5)                

are the moment of the beam due to the presence of voids 
and thermal effects, respectively. 
 

For this case, the equation of motion with Thermoelastic 
coupling for the beam is given by 
 

2 2

2 2

M w
A P

x t

 
  

 
,                                                             (6)                    

 

where  is the density; A h a   is the area of cross-

section and 
1 2P P P   . Here 1P and 2P  the pressures on 

the upper and lower surface of the beam. Using equation 
(4) in equation (6) we obtain 
 

 
2 24 2

T

4 2 2 2

M Mw w
2 I b A P

x x x t

  
       

     
(7)   

The equation of balance of equilibrated force is given 
by(24) 

.. .
2

1 2b .u mT        ,                            (8) 

where 
x y zu(x, y, z) (u ,u ,u )



  is a displacement vector 

and  , b , 1 , 2 , m and  are the material 

constants due to voids. 
 
We can write Eqn. (8) as: 
 

 
2 2 2

1

2 2 2

by w m
T 0

x y x

     
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(9)   

where  2

1


 


. 

The heat conduction equation for a Thermoelastic 
isotropic body in the context of dual-phase-lagging model 
with voids is given as (24): 
 

 
. .. . ..

2

q 0 q 0 qK T C T T T .u .u mT

   
               

      

(10) 

We can rewrite the above equation in the form 
 

     
2 2 2 3 3
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q q q T2 2 2 2 2

C mT TT T T T
T T y w w 0
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
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                                                                                            (11)                                                                                                                                                             

where K  is the thermal conductivity of the material, 

and C are the density and specific heat at constant 

strain, respectively, 
q and T are the heat flux and the 

phase lags of the temperature gradient vector, 
respectively.  
 Here the system of Eqs. (7, 9, 11) governs the 
transverse vibrations in a Thermoelastic beam with voids. 
In order to solve the last system, we can assume that: 
 

i tw(x, t) W(x)e  ,   
i t(x, y, t) (x, y)e   

i tT(x, y, t) (x, y)e    
                                   (12)  
Using equation (12) in system of equations (7, 9, 11), we 
obtain 

  0 0

2 24
T 2

4 2 2

d M d Md W
I 2 b A W(x) 0

dx dx dx


        ,       (13) 
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by d W m
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where we considered P 0  , m 0 , 
2

1


 



,  

0 1 i    , 
T T1 i    , 

q q1  
 

and 

0

h 2

h 2
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
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,   

0

h 2

T

h 2
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

 
  .                            (16)

 
It is assumed that the boundary of the beam are 
adiabatic, so that  
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0
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   .                                           (17)                    

 
In case equation (14-15) are uncoupled to each other in 

respect of volume fraction  and temperature  so that 
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Differentiating solutions (18-19) w.r.t. y  twice and then 

substituting for 
2

2y
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
 and 

2
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
  in equations (14-15), we 

get 
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Differentiating equation (16) w.r.t. x  twice and then 

substituting for equations (20-21) into 0
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Using equations (22-23) in equation (13), we get 
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Also, using equations (18-19) in (16), then differentiate 
w.r.t. x  twice we get 
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The comparison of equations (22-23) with (28-29), we get 
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Using equation (30-31) in equation (25), we get 
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where 

  and T are the elasto-voids and 

thermomechanical coupling constants of the beam, 
respectively. In usual, the thermal gradients in the plane 
of the cross-section along the thickness direction of the 
beam are much larger than those along the perpendicular 

to it (7), so that 2 2x 0    . On the same analogy, we 

assume that the gradient of volume-fraction field is 
negligible small along perpendicular to the thickness 
direction of the beam and hence we may take 

2 2x 0    . Under these assumptions, we have 
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The solution is given by eq. (18) and (19) with modified 
values of p and q given by Eqns. (34-35). Thus Eqns. (18), 

(19) and (32) constitute a complete set of the governing 
equations for the homogeneous isotropic thin 
Thermoelastic beam with voids, when there is no 
pressure difference at the surface occurs. In addition, 
theses equations can also be supplemented with 
appropriate initial and boundary conditions of the 
relevant problem to be modeled. 
 Now, we consider the case of a micro-beam and nano-
beam whose edges are clamped, so that we have the 
following set of boundary conditions: 
 

W 0,  dW
0

dx
   at  x 0, L  .                                                 (36) 

Sense W W(x) , so Eq. (32) becomes as 
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The solution of Eq. (37) can be written as 
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
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Deferent Eq. (38) four times and using boundary 
condition in Eq. (36), we have 

cos Lcosh L 1   ,                                                               (39) 

where roots of Eq. (39) as 
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Then the deflection can be written with the help of Eq. 
(12) as 
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where the vibration frequency of the beam with voids is 
given by 
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
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The volume fraction and temperature distributions in the 
beam are given by: 
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Now, we can write Eq. (42) as 
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where 
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0 2

4k h 2

L 2 3

   
 



. (46) 

For most of the materials, we can replace f ( )  and 

g( ) with 0f ( ) and 0g( ) , respectively, and expand 

Eq.(45) up to first order to obtain 

   2 T
k 0 0 0 0

1

1 1 1 g( ) 1 f ( )
2 2


    

            
  

.   (47) 

Clearly the quantity q and p given by Eq. (34-35) are 

complex, therefore using Euler theorem and replacing 

k with 0  we obtain 

1 2 1 2
0p 2p cos isin

2 2

        
     

    

,                        (48) 

3 3
0q 2q cos isin

2 2

      
     

    

,                                   (49) 

where 
0, 0, 1 2p q ,  and 3 are defined in Appendix. 

Using Eqs. (A.1)- (A.3) and (A.8) in Eq. (47) and 
simplifying, we obtain 

R I

k k ki ,     (50) 

 where 

I 20
k 0 3 T 4

1

1 H H
2



   
         

  

 .                   (51)  

where 
*

1 2 3 4
ˆ ˆH ,H ,H ,H , , , , ,T     and 

*T̂ are 

defined in Appendix in Eqs. (A.4)- (A.9). 

The Thermoelastic damping (TED) and frequency shift are 
given by 

I
1 2k

0 3 T 4R

k 1

Q 2 1 H H



  
      

  

 ,                           (52) 

 

and 

R
2k 0 T
0 1 2

0 1

1 H H
2 2

    
       

  

 .            (53) 
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Numerical results and discussion 
 

The theoretical results obtained in the previous section of 
this article are employed in this part to the discussion of 
the damping factor 1Q and frequency shift    on the 

beam dimensions, boundary conditions, vibration modes, 
environmental temperature, thermal relaxation time and 
voids for magnesium. The physical constant of 
magnesium is given in Table 1. The dimensions of the 
beam and parameters of resonance frequencies of 
fundamental mode (thickness-shear mode) have been 
taken in the prescribe limits [9] for micro-scale beam 
resonators.  
 In figures 1-4, we represent the variation of 
thermoelastic damping (scaled by the relaxation strength

E ) with varying thickness  9 410 h 10   and fixed 

length L 500 m  , for the set I and set II. And varying the 

thickness and fixed length L 100 m  , for the set I and 

set II, respectively. It is observed that the damping factor 
increases first then decreases in the considered range of 
thickness (h). Also, It is observed the value of damping 
factor in curve 2 is greatest value than curve 1 and 3, 
that’s mean a lower rate of energy loss relative to the 
stored energy of the resonator in curve 2, this Resonator 
with high-quality factors have low damping so that they 
ring or vibrate longer.  
 

 
 

Figure1: The thermoelastic damping of clamped beam 

with length L 500 m  for set I 

 

 
 

Figure 2: The thermoelastic damping of clamped beam 

with length L 500 m  for set II 

 
 

Figure 3: The thermoelastic damping of clamped beam 

with length L 100 m  for set I 
 

 
 

Figure 4: The thermoelastic damping of clamped beam 

with length L 100 m  for set II 

 
In Figures 5-8, we represent the variation of frequency 
shift with varying thickness  9 410 h 10   and fixed 

length L 500 m  , for the set I and set II. It is observed 

that the frequency shift increases with decreasing 
thickness and then it becomes stable for some values of 
thickness, then it decreases rapidly in the considered 
range of thickness (h). 

 

 

 
Figure 5: The frequency shift of clamped beam with 

length L 500 m  for set I 
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Figure 6: The frequency shift of clamped beam with 

length L 500 m  for set II 

 

 
 

Figure 7: The frequency shift of clamped beam with 

length L 100 m  for set I 
 

 
 

Figure 8: The frequency shift of clamped beam with 

length L 100 m  for set II 

 
It is observed in Figs. 7, 8 the variation of the 
thermoelastic frequency shift has not any peak points in 

the cases of 
T q 0     and 

q T10    while it has 

two peak points in the case of 
T q10    for set I and set 

II and the position of that peak points have been shifted 
through h length.  
 In Figures 9-12, we represent the variation of 
thermoelastic damping (scaled by the relaxation strength 

E ) and the variation of frequency shift, respectively, 

with varying length and fixed h 5 m  , for the set I and 

set II.  

 
 

Figure 9: The thermoelastic damping of clamped beam 

with length h 5 m  for set I 

 
 

Figure 10: The thermoelastic damping of clamped 

beam with length h 5 m  for set II 
 

 

 
Figure 11: The frequency shift of clamped beam with 

length h 5 m  for set I 



N. A. Alghamdi         Dual-Phase-Lagging Thermoelastic Damping Vibration in Micro- Nano Scale Beam Resonators with Voids                                                                                                                                                                                 

 

77 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017) 

 

 
 

Figure 12: The frequency shift of clamped beam with 

length h 5 m  for set II 

 
It is observed that damping factor increases first then 
decreases in the considered range of length (L). Also, It is 
observed the value of damping factor in curve 2 is 
greatest value than curve 1 and 3. Also, we observed in 
Fig(11, 12) that the frequency shift increases rapidly with 
decreasing thickness until it attains to a maximum value 
and then it becomes stable for small values of length.    
 
Conclusion 
 
It is observed that magnitude of the peak value of 

damping increases with adding part of voids and thermal 

relaxation time. In addition to decreasing the thickness 

and length of the beam, it is observed that thickness and 

length of the beam decrease with increasing values of 

modes in three models beam resonators. It is observed 

that the frequency shift increases with decreasing 

thickness and then it becomes stable for some values of 

thickness, then it decreases rapidly in the considered 

range of thickness.  

 
Appendix 
 
The quantities 

0 0 1 2p ,q , ,   and 
3 in eqs. (48-49) are 

defined as 
 

0 1 2
0

C r r
p ,

2K

 
        2 2

1 0 0r R S ,       

 
2

2

2 q T 0r 1 ,                           (A.1)  

1 0
1

0

S
tan ,

R

  
   

 

    

 
1

2

q T 0

1
tan

 
   
   
 

    (A.2) 
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 

2
2 2 2 2

0 1 0 1 0 2

0 2
2 2 2

0 1 0 2

mb
R ,

       


     
  

  

   
 

2

0 2 0 1

0 2
2 2 2
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  

 

0
0 3

m T1
q 1 r ,

2 b C

 
  

  

     
2

2 2 2

3 0 1 0 2r ,           

1 0 2
3 2

0 1

tan   
   

  

              (A.3) 

The quantities 
1 2 3 4H ,H ,H ,H  in eqs.(51-52) are given by 

    3 3

1 32 3

ˆˆ ˆ6 2 cos 3 2 sin tan 3 2 sinh T6
H 1 cos

ˆˆ ˆ ˆ ˆcos cosh T





      
     

       

 

               (A.4) 
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                    (A.6) 
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