
 International Journal of Multidisciplinary and Current Research ISSN: 2321-3124

 Research Article Available at: http://ijmcr.com

17|Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

A Translation from XSD into ORM using Mappings

Mustapha Machkour

#,!
, Karim Afdel

#,!
, Said Aminzou

$
, El Hassan Megeder

*

#Department of Mathematics and Computer Sciences, Faculty of Sciences, Agadir, Morocco
!Laboratory of the Computing Systems and Vision, Faculty of Sciences, Agadir, Morocco
$Laboratory of Energy Engineering, Materials and Systems, ENSA, Agadir, Morocco
*Laboratory of Image and Form Recognition - Intelligent and Communicative Systems Faculty of Sciences, Agadir, Morocco

Accepted 01 Jan 2017, Available online 07 Jan 2017, Vol.5 (Jan/Feb 2017 issue)

Abstract

The XML Schema Definition (XSD) describes with high precision, better than the Document Type Definition (DTD), the
structure and semantics of XML data. To translate the XSD schemas into database schemas as has been done for the
DTD, the translation methodologies are needed. The object of this article is to present a method that makes it possible
the translation of an XSD schema into an object-relational database schema (ORS). To preserve the integrity constraints
defined in XSD such as type constraints, value constraints, and structure constraints during the process of translation,
the extended DTD (XDTD) schema is defined. The XDTD helps to represent the XML element in DTD with XSD constraints.
In this method, we introduce new specifications for XML, ORM and define the mapping from XSD into XDTD and XDTD
into ORS. These mappings allow an automated translation without human intervention.

Keywords: XML, XSD, XDTD, Integrity Constraint, Object-Relational schema, Translation, Mapping.

Introduction

XSD [28] is used to describe XML [6] data in an improved
way which is adequate for many areas such as platform
configurations, communication protocols, programming
environments, and data exchange. This improvement
concerns mainly the structure and semantics of data
which are, in general, expressed via the attributes and the
facets [29].
 The database users especially those using the
relational model [10,27] and the object-relational model
(ORM) [8,9,12,26,30] are faced with the problem of
manipulating these XML data. One solution to this issue is
to translate XSD data into database models.
 This paper proposes a methodology to convert an XSD
data into the ORM. One increasingly uses this latter due
to its many advantages. On the one hand, it preserves the
qualities of the relational model and introduces concepts
used in the object model [10,16,27] such as user-defined
type (UDT) or object type, collections (limited and
unlimited), inheritance,… On the other hand, it reduces
even eliminates the impedance mismatch between
object-oriented languages and relational databases [10,
11].
 To have our aim, we extend the DTD to XDTD, define
two mappings and a composition between them. The first
mapping relates XSD to XDTD, and the second is between
XDTD and ORM. The extension is needed to preserve
constraints defined in XSD, and the mappings allow
possible an automated translation.

Although our methodology focuses on XSD, it applies to
any XML schema based on elements composed of
attributes and other nested subelements. To implement
and test our method, we have used the Oracle Database
which supports many features of SQL-2003, especially
those, which employ in this paper.
 This article is structured as follows. In next section, we
cite some related works on model translation. In section
3, we present the terminology used in the paper. Section
4 describes the extension from XSD into XDTD. Section 5
details the mapping between XDTD and ORM. Sections 6
and 7 give the algorithms that create the ORM schema.
Section 8 provides an example of translations and Section
9 presents conclusions.

Related works

Many works have dealt with the conversions between
data models. For instance, we cite the conversion
between relational and object-relational models
[3,13,14], between ER and OO models [5], and between
UML and XML models [2,4,18].
 To access XML data with database systems, one
designed and developed schema translation methods
[7,19-21]. Nowadays, despite the support of databases
for XML, the need to translate XML into a database model
continues to impose itself. That is because there are few
databases supporting XML[17]. Moreover, there is no
standard for accessing XML stored in databases.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

18 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

Some of these methods translate XML documents that
conform to DTD into corresponding relational data [9].
Algorithms have been designed and implemented in this
direction. On the other side, have been developed
translation methods from a relational schema into its
corresponding XML[15,19,20].
 But, due to its shortcoming, the relational model is
increasingly replaced by the object model or extended to
the object-relational model. Consequently, current
relational database systems have included concepts of
object-oriented paradigm to allow data modeling and
their relationships in a high level of abstraction and thus
became object-relational database systems.
 Meanwhile, to better describe XML data, several
schema languages have been developed. We will be
interested in the XSD language.

Terminologies

In this section, we give the vocabularies that we use
throughout the paper. These cover the DTD, XSD, XDTD
and object-relational model and are based on those
employed in works previously published [22-25].

Specification for DTD

The notations that we use in this subsection relates to
attribute and element in DTD. An attribute has a
description and a type. The description is specified by

description ::= #REQUIRED | #IMPLIED | #FIXED value |
value

Fig.1 Specification of description

and the type is defined by
type ::= ID|CDATA|IDREF |IDREFS |NMTOKEN
|NMTOKENS |Enumerated Attribute list
Then, if attri is an XML attribute, its specification denoted
by attri (attri underscored) is given by

attri ::= <attri; type; description>

Fig.2 Specification of the attribute attr according to its
DTD

Let E be an element in DTD, attrs=(attri)1≤i≤n its attributes
(we suppose that E has n attributes), and D its model of
content [6]. The specification of E denoted by E (E
underscored) is given by:

E ::= <E; attrs; D>

Fig.3 Specification of the element E according to its DTD

Items of this specification comprise the name of the
element E, the specification of its list of attributes (attrs)
and the specification of its content model (D). The value
of attrs is given by a list of attribute specifications (see
Fig.2), i.e. we can write the following expression:

attrs :: = (attri) 1≤i≤n.

Fig.4 Specification of the attribute list in DTD

Therefore, the specification denoted by "_" can be
regarded as a map

1
 function applied to each attribute in

the list.
Second, the content model D of an element E in DTD can
be:
- List of symbols between "<! ELEMENT ElementName

(" and ")>",
- EMPTY,
- ANY.
Elements of D are connected by sequence, alternative,
Kleene closure, transitive closure, and an optional value.
The following grammar that we call G describes these
connections:

a) E :: = ANY
b) E :: = EMPTY,
c) E :: = E, E for the sequence,
d) E :: = E + E for the alternative,
e) E :: = {E} for the Kleene closure (replaces *),
f) E :: = {E},E for the transitive closure (replaces +),
g) E :: = [E] for an optional value(replaces ?),
h) E :: = #PCDATA for a simple type.

Fig.5 Elements of the G Grammar

To have the specification of each item in the grammar G,
we associate to it the following grammar that uses the
symbol "_" (underscore). We call this grammar G (G
underlined).
 Recall that E (E highlighted, see
Fig.3) gives the specification of the element E. The
productions order in the two grammars, G and G, is
preserved.

a) E::= ANY=ANY
b) E::= EMPTY=EMPTY
c) E::= E, E
d) E::= E1+E2
e) E::= {E}
f) E::= {E}, E
g) E::= [E]
h) E::=#PCDATA=#PCDATA

Fig.6 Elements of the Grammar G

Here, the symbol of specification "_" is also a map
function applied to each element or value to the left of
the symbol "::=".

Examples

Before proceeding further, it will be convenient to give
some examples of the specifications. These examples
repose on the following listing.

1 A function that transforms a list by applying another function to each
of its elements.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

19 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

<!ELEMENT journal (volume+)>
<!ATTLIST journal id ID #REQUIRED category CDATA
#IMPLIED >
<!ELEMENT volume (issue+)>
<!ELEMENT issue (paper+)>
<!ELEMENT paper (title, author)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
Listing 1. Example of DTD

As the value of D for element journal is volume+ and its
attributes are id and category, then its specification is
given by:
journal ::=<journal; id, category; volume+>.
Likewise, since the element volume has the issue+ as the
content model and has no attributes, its specification is:
volume :: = <volume; ; issue+>
and the element paper has the following specification:
paper::=<paper; ; title, author>, since the value of its
content model D is "title, author."
Since the elements title and author have no attributes,
their specifications are:
title =<title;_; #PCDATA> and author::= <author;_;
#PCDATA>, and hence, the value of D for both elements
title and author is #PCDATA.

Specification for XSD

The specification of an element in XSD reposes on its
type. The following regular expression shows a simplified
To of this:

type::= simpleType | complexType

Fig.7 Simplified type in XSD

Then, if E is an element of type "type", its specification is
given by E (E double underlined):

E:: = <E; type>.

Fig.8 Specification of the element E in XSD

Specification for XDTD

To preserve the integrity constraints not supported by

DTD, during translation from XSD into DTD, we define the

extended DTD (XDTD for short) and name these

constraints XSD constraints (XSDC for short).

In XDTD, we represent an attribute attri by attriextended
which we specify in the following figure.

attriextended ::= <attri; type; description; XSDC>,

Fig.9 Specification of the attribute attr in XDTD

which we also note by

attriextended ::= <attr; XSDC>,
where attri (attr underscored) represents the definition of
attr in DTD (see
Fig.2).
 Like the specification, denoted by "_", the extension
denoted by "extended" is considered as a map function.
That enables us to write the following equalities:
attrsextended=((attri)1≤i≤n)extended
 =((attri)1≤i≤n)extended

 =(attriextended)1≤i≤n

So, we have the following relations

attrsextended=((attri)1≤i≤n)extended = (attriextended)1≤i≤n

Fig.10 Specification of the list attrs in XDTD

Similarly, the specification of an element E in XDTD is
given by

Eextended :: = <E; attrsextended; Dextended; XSDC>

Fig.11 Specification of the element E in XDTD

The expression of Dextended deduced from the grammar G
(see
Fig.6) is defined by the following grammar which we
name Gextended:

a) Eextended ::= ANY
b) Eextended ::= EMPTY
c) Eextended ::= Eextended, Eextended
d) Eextended ::= E1extended + E2extended
e) Eextended ::= {Eextended}
f) Eextended ::= {Eextended}, Eextended
g) Eextended ::= [Eextended]
h) Eextended ::= #PCDATA

Fig.12 Elements of the Grammar Gextended

Specification for the object-relational model

The concepts of the OR model include [11,12,26]:

 user defined type (UDT)
2
: a fundamental concept in

the object-relational model. it's used to create
complex structured objects;

 reference type: defines the object identifier (OID);

 row type: to create a structured attribute without
using UDT;

 array type
3
 (AT) : to define limited collection;

 multiset type
4
 (MT): to specify unlimited collection;

 object table: used to create a table based on UDT and
stores objects;

2 We use the terms UDT, type and user type interchangeably.
3An array type is a limited and ordered collection of any element of
any type admissible.
4A multiset type is an unlimited and unordered collection of any
element of any type admissible.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

20 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

 inheritance, for making inheritance relation between
types.

Let attri, 1≤ i ≤n, be the attributes of a UDT E. The
specification of attri comprises its name, its type, and its
constraints which represent a list of constraints on its
permissible values. We represent this specification by:

<attri; type; constraints>

Fig.13 Specification of the attribute attri in ORM

For a UDT E, regarded as a list of its attributes, we use the
below notation

E ((<attri; type; constraints>)1≤ i ≤n)

Fig.14 Specification of the UDT E

The next sections describe the translation from XSD into
ORS. This translation is done by composition in two
phases. The first one is from XSD into XDTD and the
second is from XDTD into ORM.

Translation from XSD into XDTD

In this section, we detail the steps that translate a schema
from XSD into XDTD.

Mapping from XSD into XDTD

In this subsection, we show how translating XSD into
XDTD. There is much software that converts XSD into DTD
but does not consider the XSD constraints. Below we
detail how these constraints can be preserved using the
XDTD and functions that compute these constraints.

Let E be an element in XSD. Its specification is given by

(see

Fig.8):

E:: = <E; Type>

Consider the mapping Ψ defined from XSD to XDTD. This
function takes an XSD element E (resp. an XSD attribute
attri) and reformulates it in an XDTD Eextended (resp. an
XDTD attribute attriextended)):

Ψ : ,XSD- →,XDTD-
E → Ψ(E) = Eextended
 attri → Ψ(attri)= attriextended

Fig.15 Definition of the function Ψ from XSD to XDTD

We recall that Eextended=<E; attrsextended; Dextended> and
attrextended=<attr; XSDC>.
We use the term XSDElement to refer to an element in
XSD, and the term XSDAttribute to refer to an attribute in
XSD.
To obtain the value of XSDC, we define the three

followings functions:

 VC (XSDElement E) return string; //Returns a list of

value constraints of the element E,

 TC (XSDElement E) return string; // Returns a list of
type constraints of the element E

and
 SC (XSDElement E) return string;// Returns a list of

structure constraints of the element E.
These functions allow writing the following regular
expression:
XSDC ::= (VC | TC | SC)*
The functions VC and TC are also applied, using the
overloading, for an attribute parameter. That means we
can write VC (attribute) and TC (attribute).
Below, we give the definition of each function.
The definition of the function VC is:

VC (XSDElement E) returns list of constraints;
/*function called for the element E with simple type*/
Cs: string; /* variable to concatenate all constraints of
value*/
begin

set Cs=""; //initialization of the Cs.

for each constraint c in (Bounds, Pattern, Enumerated

values, default, fixed) of E loop

create a logic constraint using c; /*let LC be the name of

this constraint*/

set Cs=Cs +","+ LC; /* here the symbol "+" denotes the
concatenation*/
end loop;
return Cs;
end;
Listing 2. Definition of the function VC

The definition of the function TC is:

TC (XSDElement E) returns list of constraints;
/*function called for element E with simple type*/
Cs : string; /* variable for grouping all constraints of
type*/
begin

Cs="";

for each constraint c in (type, base, Length, Precision) of

E loop

create a logic constraint using c; /*let LC be the name of

this constraint*/

set Cs=Cs + ","+ LC;

end loop;

return Cs;

end;

Listing 3. Definition of the function TC

The Definition of the function SC is:

SC (XSDElement E) returns string;

/*function called for the element E with different default

value for minOccurs and/or maxOccurs*/

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

21 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

v_minOccurs, v_maxOccurs : string;

begin

Let v_minOccurs be the value of minOccurs associated to
element E;
Let v_maxOccurs be the value of maxOccurs associated to
element E;
return v_minOccurs+ "," + v_maxOccurs;
end;
Listing 4. Definition of the function SC

Before proceeding further, it would be useful to deal with
some translation examples from XSD to XDTD.
Consider, for instance, the following XSD which describes
the XML element "nb_pages":

<xsd:element name="nb_pages">

<xsd:simpleType>

<xsd:restriction base="xsd:integer">

<xsd: minInclusive value="4"/>

<xsd:maxInclusive value="10"/>

</xsd:restriction>

</xsd:simpleType>"
</xsd:element>
Listing 5. XSD of the element nb_pages

Let's look for the specification of nb_pages in XDTD, i.e.
nb_pagesextended or nb_pages and XSD constraints.
The type of nb_pages is delimited by "<xsd:simpleType>"
and "</xsd:simpleType>" :

type="<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd: minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>"
Listing 6. The type of the element "nb_pages"

After that, the representation of nb_pages using our
specification is
nb_pages =<nb_pages; Type>.
So the image of nb_pages by Ψ (see
Fig.15) is
Ψ(nb_pages) = nb_pagesextended
Since the corresponding type for integer in DTD is
#PCDATA, then
nb_pages=<nb_pages; ; #PCDATA>.
we compute the XSD constraints as follows:
- For type constraint: this constraint, returned by the

algorithm TC (0), is related to the type of nb_pages
which is "integer" obtained from the attribute
"base". This constraint is expressed using the regular
expression [0..9]+);

- For value constraint: the value of this constraint,
returned by the algorithm VC (see VC (XSDElement E)
returns list of constraints;

/*function called for the element E with simple type*/

Cs: string; /* variable to concatenate all constraints of
value*/
begin

set Cs=""; //initialization of the Cs.

for each constraint c in (Bounds, Pattern, Enumerated

values, default, fixed) of E loop

create a logic constraint using c; /*let LC be the name of

this constraint*/

set Cs=Cs +","+ LC; /* here the symbol "+" denotes the
concatenation*/
end loop;
return Cs;
end;
- Listing 2), is "4, 5" obtained from constraining facets

(maxInclusive, minInclusive).
Then, if we extend the expression of "nb_pages" by
adding these constraints, we obtain the specification of
nb_pages in XDTD. This is given in the following figure:
nb_pagesextended=<nb_pages; ;#PCDATA ;TC(nb_pages),
VC(nb_pages)>

Fig.16 Specification of nb_pages in XDTD

In the previous example, there is no structural constraint.
For this type of constraint, we consider, for instance, the
following XSD
<xsd:element name="authors">
<xsd:complexType>
<xsd:sequence minOccurs="1" maxOccurs="5">
<xsd:element name="author">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="4"/>
<xsd:maxLength value="50" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
Listing 7. The XSD of the element authors

Here, the specification of the element authors is

authors=<authors; type>,

where "type" is the string between "<xsd:complexType>"

and "</xsd:complexType>. The expression of authors in

DTD is given by.

<!ELEMENT authors (author)+>
<!ELEMENT author (#PCDATA)>
Listing 8. DTD of the element authors

First, if we look for the image of the element authors by
Ψ (see
Fig.3 and
Fig.15), we get
Ψ(authors)=authorsextended with
authors=<authors;;(author)+>.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

22 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

In this case, the value of the structure constraint returned
by "SC(authors)" (see SC (XSDElement E) returns string;
/*function called for the element E with different default

value for minOccurs and/or maxOccurs*/

v_minOccurs, v_maxOccurs : string;

begin

Let v_minOccurs be the value of minOccurs associated to
element E;
Let v_maxOccurs be the value of maxOccurs associated to
element E;
return v_minOccurs+ "," + v_maxOccurs;
end;
Listing 4) is "1,5", where "1" is the value of minOccurs and
"5" is the value of maxOccurs. The specification of the
element "authors" in XDTD is then

authorsextended =<authors; (authorextended)+; SC(authors)>,

Fig.17 Specification of the element authors in XDTD

where authorextended is the image of the element author by
Ψ given by (VC(author) returns constraints defined by
minLength and maxLength facets (see Listing 7))

Ψ(author)=authorextended =<author;;#PCDATA;VC(author))

Fig.18 Specification of the element author in XDTD

That's all for the translation of an element. We can
similarly do for an attribute. To see that, we consider the
following XSD that describes the element "journal" with
two attributes "id" and "issn".

<xsd:element name="journal">
<xsd:complexType>
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<xsd:attribute name="issn">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:length value="9"/>
<xsd:pattern value="\d{4}\-\d{3}[/dX]"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>

</xsd:element>

Listing 9. XSD with attributes

Let us find the specification of the attributes id and issn in

XDTD.

The specification of the element journal in DTD is:

<!ELEMENT journal EMPTY>

<!ATTLIST journal id ID #REQUIRED issn CDATA #IMPLIED>

Listing 10. DTD of the element journal

Thus, its image by Ψ, is given in the below expression:

Ψ(journal)=journalextended =<journal; idextended, issnextended;
XSDC>.
So, since there is no constraint for element journal in XSD
(i.e., XSDC is empty) its specification in XDTD is given by
journalextended=<journal; idextended, issnextended; _>.
For the attribute issn, we have
Ψ(issn)=issnextended = <issn; CDATA; #IMPLIED; XSDC>,
where XSDC is the constraint obtained by VC(issn) and
TC(issn): VC(issn) returns the value of the attribute
"pattern", and TC(issn) returns the value of the attribute
"length".
Whence the specification of issn in XDTD is

Ψ(issn)=issnextended =<issn; CDATA; #IMPLIED; VC(issn),
TC(issn >,

Fig.19 The specification of issn in XDTD

With the same manner, we calculate the specification of
the attribute id in XDTD. We have
Ψ (id)=idextended with id=<id; ID; #REQUIRED> (see Listing
10).
Due to the absence of value constraint and type
constraint, the specification of the attribute id is

idextended=<id; ID; #REQUIRED; _>

Fig.20 Specification of id in XDTD

So far, we have shown that elements and attributes of
XSD can be specified in XDTD using DTD and constraints
defined in XSD. To end the translation, we shall translate
the XDTD into ORS in the next section.
Translating XDTD into Object-Relational schema

In this paragraph, we present a mapping that allows a
formal translation from XDTD into the object-relational
schema. This translation based on the notations used in
the paper cited at [23] uses extended notations (see
Fig.9 and
Fig.11) to include constraints defined in XSD that we have
named XSDC. We add these constraints to constraints
computed in this paragraph for both attribute and
element.

Mapping between XDTD and Object-relational model

To formalize the translation between XDTD and Object-
relational model (ORM), we define a polymorphic

5

function φ which associates to an element E in the XDTD
a UDT E (we suppose that E has n attributes) in the ORM

φ : XDTD → ORM
φ : Eextended → φ(Eextended) =E((<attri;type; constraints>)1≤ i

≤n)

Fig.21 Specification of UDT φ(Eextended)

5 Function that accepts an arbitrary number of different types
arguments.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

23 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

We will show, throughout this section, how are calculated
the attributes of the UDT "E" using the function φ.
We know that Eextended =<E; attrsextended; Dextended; XSDC>,
(see
Fig.11).
If we apply φ on both sides of the equality above, we
obtain
φ(Eextended) = φ (<E; attrsextended; Dextended; XSDC>) which is
equivalent by definition to

φ(Eextended) = E (φ(attrsextended) U φ(Dextended), XSDC),

Fig.22 Definition of a UDT E image by φ of the element E
where the symbol ‘U’ denotes the union operator. We

have then the relation

If we combine the relations in 0
Fig.21 and
Fig.22, we obtain
E ((<attri; type; constraints>)1≤ i ≤n) = E (φ(attrsextended) U
φ(Dextended), XSDC).
From this equality, we can say that the list of the
attributes of the UDT E is the union of the images,
obtained by φ, of the attribute specifications of the XML
element E, i.e. φ(attrsextended)) and its content model, i.e.
φ(Dextended). The calculation of these images is the purpose
of the next subsections.

Calculation of φ(attrsextended)

φ(attrsextended) is a list of attribute specifications for a UDT.
We obtain them by the following algorithm:

Algorithm listAttributes;
Input attrsextended: list of attributes in XDTD;
Output φ(attrsextended): list of attribute specifications in
ORM;
begin
if attrsextended = empty then /* There is no attributes for
the XML element. */
 φ(attrsextended) = empty string;
elseif attrsextended = (attriextended)1≤i≤n then
 φ(attrsextended) = (φ(attriextended)) 1≤i≤n //φ works as map
function.
end if;
return φ (attrsextended);
end;
Listing 11. Calculation of φ(attrsextended)

We have in
Fig.9
attriextended=<attri; type; description; XSDC>.

If we introduce φ, in this last formula, we obtain

φ(attriextended) = φ(<attri; type; description; XSDC>).

By definition, the value of φ(<attri; type; description;

XSDC>) is obtained by the following expression

φ(<attri; type; description; XSDC>)::=<attri; φ(type) minus

Constraints; φ(description) plus Constraints plus XSDC>

and, by transitivity, we get the expression
φ(attriextended)=<attri;φ(type) minus Constraints;
φ(description) plus Constraints plus XSDC>
Fig.23 Specification of the UDT attribute attri

So, to have the value of φ(attriextended) requires φ(type),
φ(description), Constraints and XSDC. The next
subsections deal with these computations.

Calculation of φ(type)

φ(type) returns an expression that defines the type and
constraints in ORM of the attribute attri. The following
table shows this expression. The constraints are defined
using the regular expressions [1].

Table 1 Calculation of φ(type)

type in XDTD
φ (type) in ORM

type Constraints

ID varchar(n)
(Letter|_)(Letter|_|Digit|:|.|-)*,

UC: Unique Constraint

CDATA varchar(n) No constraint

IDREF varchar(n)
(Letter|_)(Letter|_|Digit|:|.|-)*,

FKC: Foreign Key Constraint

IDREFS
array(p) or
multiset of
varchar(n)

(Letter|_)(Letter|_|Digit|:|.|-)*,
FKC: Foreign Key Constraint

NMTOKEN varchar(n) (Letter|_)(Letter|_|Digit|:|.|-)*

NMTOKENS
array(p) or
multiset of
varchar(n)

(Letter|_)(Letter|_|Digit|:|.|-)*

Enumerated
Attribute list

varchar(n)
(Letter|_)(Letter|_|Digit|:|.|-)*,
ELC: Enumerated List Constraint

In what follows, we explain the two right columns in this
table.
In the column Type:
- varchar (n) is a standard type of strings used in

database systems. n is the size of type.
- array (p) is a data type representing a collection of

values in object-relational databases. p is the size of
the collection.

- Multiset is a data type used in object-relational
databases. It represents an unlimited collection.

In the column constraints, we have patterns that values of
an attribute must respect to preserve the semantic values
of XML elements attribute. Those patterns are similar for
all constraints. We can use an applicative constraint to
maintain this type of constraint (for example check
constraint with the operator like).

These patterns use:
- Letter: regular definition [1] that denotes the

expression [A..Za..z] and
- Digit: regular definition that denotes the expression:

[0..9].

There are also, in the column Constraints:

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

24 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

Foreign key Constraint (FKC): refers to referential integrity
constraint which is usual in the database literature.
Unique Constraint (UC): checks the unicity of the attribute
values.
 Enumerated List Constraint (ELC): Constraint with a
list of values corresponding to the enumerated value list
that specifies the content model of XML elements
attributes. We can use check constraint with the operator
like to maintain the ELC constraint.
For convenience, we use the term LAC (contraction for
Lexical Attribute Constraint) to denote the constraint
based on the regular expression:
(Letter|_)(Letter|_|Digit|:|.|-)*

Calculation of φ(description)

The computation of φ(attrs extended) also requires the
calculation of φ(description). The value of φ(description)
is a list of usual constraints in databases system. This
value is obtained using the following table:

Table 2 Calculation of φ (description)

description φ(description)

#REQUIRED Not null

#IMPLIED Null

#FIXED Value Not null, default Value

Value default Value

To show how the function φ operates, we consider the
example below:

<!ELEMENT journal EMPTY>
<!ATTLIST journal id ID #REQUIRED>
<!ATTLIST journal issn CDATA #IMPLIED>
Listing 12. Element journal.

We recall that this element journal results from the XSD
schema in Listing 9.
Calculation of φ (journalextended)
This element journal has two attributes id and issn.
If we apply φ to the element journal we obtain:
φ(journalextended)=journal(φ (idextended), φ (issnextended)).
Then "journal" on right of the symbol "=", is a UDT with
two attributes φ(idextended), φ(issnextended) to compute.
In order to have φ(journalextended) we must calculate
and φ(issnextended)= φ (<issn;CDATA;#IMPLIED>).
Computation of φ(idextended)
The value of φ(idextended) is given by
φ(idextended)= φ (<id; ID; REQUIRED>)
According to formula in 00 and 0, we have
φ (idextended) =<id; φ(ID) - (LAC+UC); φ(#REQUIRED) +
(UC+LAC)+ XSDC>.
Since
φ(ID)=varchar + (LAC+UC), φ (#REQUIRED)=not null and
XSDC="" (see
Fig.20),
φ (idextended) becomes

φ(id)=<id; varchar; not null+ LAC + UC>.
whence φ(idextended) is an attribute of the UDT journal with
the following specifications:
- Id: name of the attribute;
- Varchar: type of id;
- not null, LAC, and unique are constraints of id (object

attribute).
Computation of φ(issnextended)
In the same way, we compute φ(issnextended). We have the
expression
φ(issnextended)= φ (<issn; CDATA; #IMPLIED>), which
becomes, using 0 and 0,
φ(issnextended)=<issn; varchar; null + XSDC>.
Since XSDC="", the last expression becomes
φ(issnextended)=<issn; varchar; null>.
Then the UDT journal becomes
journal(<id;varchar;not null+LAC+UC)>,<issn;
varchar;null>).
End of the example.
The following algorithm generalizes these steps:

Algorithm OR_attribute_from_XDTD_attribute;
Input attriextended: an attribute in XDTD;
Output φ(attriextended): an attribute in ORM;
Begin
 Calculate φ(type);
 Calculate φ(description);
 Return <attri; φ(type) minus constraints;
φ(description) plus constraints plus XSDC>;
End;
Listing 13. Algorithm returning an OR attribute from an
XDTD attribute.

Calculation of φ(Dextended)

We recall that the expression of φ(Eextended) is based on
φ(attrsextended) and φ(Dextended) (see
Fig.22). Since we have computed φ(attrsextended), we will
now compute φ(Dextended).
The value of Dextended is obtained using the grammar

Gextended presented above at 0.
To obtain the value of φ(Dextended), we associate to the
grammar Gextended the grammar φ(Gextended) defined by:

a) φ(Eextended)= φ(ANY) ::= AnyData
6
 or AnyType

7
.

(Generic type in object-relational model)
b) φ(Eextended)= φ(EMPTY) ::= Empty string
c) φ(Eextended)= φ(E1extended, E2extended) ::= φ(E1extended),

φ(E2extended) E1 and E2 are used to distinguish
between E at left of '=' and E at the right of the '='

d) φ(Eextended) ::= (+, φ(E1extended), φ(E2extended)). Here, we
define a generic type that can hold the object types
φ(E1extended) and φ(E2extended)

e) φ(Eextended) ::=,φ(Eextended)-, list of φ(Eextended) with null
constraint

f) φ(Eextended) ::=,φ(Eextended)- list of φ(Eextended) with not
null constraint

6 Type used in Oracle DBMS.
7 Type used in Oracle DBMS.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

25 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

g) φ(Eextended) ::= *φ(Eextended)+, φ(Eextended) with null
constraint

h) φ(Eextended) ::= φ(#PCDATA).

Fig.24 Elements of the grammar φ(Gextended)

By definition, the value φ(#PCDATA) is given by:
φ(#PCDATA) = <value; varchar; XSDC >
where
- value is an attribute of the UDT containing the value

of the XML element,
- varchar is the type of the attribute value, and
- XSDC is the constraint of #PCDATA in XSD of the

attribute value.
Since there is no constraint of #PCDATA in XSD, the XSDC
is empty. Therefore, the equality above becomes:

φ(#PCDATA) = <value; varchar; _ >

Fig.25 Value of φ(#PCDATA)

In order to further understand the translation using φ, we
next present some translation examples from XDTD to
object-relational model.

Examples

Example 1

For element nb_pagesextended, we have (see
Fig.16):
nb_pagesextended=<nb_pages; ; #PCDATA ; TC(nb_pages),
VC(nb_pages)>.
If we apply the function φ to nb_pages, we obtain
φ(nb_pagesextended)=φ(<nb_pages; ;#PCDATA ;TC(nb_page
s), VC(nb_pages))>)
 =nb_pages(φ(#PCDATA); TC(nb_pages), VC(nb_pages)).
If we replace φ(#PCDATA) by its value <value; varchar; _ >
(see
Fig.25), we get
φ(nb_pagesextended)=φ(<nb_pages; ;#PCDATA ;TC(nb_page
s), VC(nb_pages))>)
=nb_pages(<value;varchar;_>;TC(nb_pages),VC(nb_pages
)).
In this last expression, nb_pages is a UDT that has
TC(nb_pages) and VC(nb_pages) as constraints and value
as an attribute with type varchar.

Example 2

In the same way, we can apply the function φ to the
element author defined by:
authorextended =<author; ; #PCDATA; VC(author)), (see
Fig.18):
and we get
φ(authorextended) = φ(<author; ; #PCDATA; VC(author))
=author(φ(#PCDATA); VC(author))
=author(<value; varchar; _ >; VC(author))

whence,
φ(authorextended) = author(<value; varchar; _ >;VC(author))
Thus, nb_pages is a UDT that has VC(author) as a
constraint and "value" as an attribute with type varchar.

Example 3

For a somewhat sophisticated example, we suppose that
the element "author" has two attributes "fn" and "ln"
specified by:
fnextended =<fn; ; #PCDATA; VC(fn)) and
lnextended =<ln; ; #PCDATA; VC(ln)).
In this case, the specification of the "author" in XDTD is
authorextended=<paper; ; fnextended, lnextended; XSDC>.
By applying φ, we obtain
φ(authorextended)= φ(<author; ; fnextended, lnextended; XSDC>).
 =author(φ(fnextended, lnextended)); _), we
suppose that XSDC for author is empty,
 = author(φ(fnextended), φ(lnextended); _), since
φ is a map function.
The value of φ(fnextended) and φ(lnextended) are obtained by
replacing in the previous example author by fn and ln.
Thus, we have the following expressions:
φ(fnextended) = fn(<value; varchar; _ >;VC(fn)) and
φ(lnextended) = ln(<value; varchar; _ >;VC(ln)).
If we replace φ(fn) and φ(ln) by their values computed
earlier, we obtain
φ(authorextended)=author(fn(<value;varchar;_>;VC(fn)),
ln(<value; varchar; _ >;VC(ln)); _).
Hence paper is a UDT with two attributes: fn and ln. Each
of them is a UDT with an attribute named value and
constraints returned by the function VC.
More generally, the computation of φ(Dextended) is given by
the following algorithm:

Algorithm
UDT_Attribute_From_Extended_Content_Model;
Input: Dextended, a model of content of an XDTD element E;
Output: φ(Dextended), list of UDT attributes;
Begin
 Loop
 select an arbitrary φ(v) in φ (Dextended) with v different to
 E;
 If (φ(v) is not in v (to avoid recursion)) then
 Calculate φ(v) using the grammar φ(Gextended) and
algorithm in <!ELEMENT journal (volume+)>
<!ATTLIST journal id ID #REQUIRED category CDATA
#IMPLIED >
<!ELEMENT volume (issue+)>
<!ELEMENT issue (paper+)>
<!ELEMENT paper (title, author)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
Listing 1;
 End If;
 If (there is no φ(v) in φ(Dextended)) or (each φ(v) in
φ(Dextended) is in v /*case of
 recursion*/ or φ(v)=φ(Eextended)) then

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

26 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

 Exit; /*to leave loop*/
 End If;
 End Loop;
End;/*end of algorithm*/
Listing 14. Algorithm of computation of UDT Attributes

Example of the computation with recursion

To show the behavior of φ in the case of recursion, we
propose the following example:

<!ELEMENT paper (title, author, cite?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT cite (paper*)>

where the element "cite" represents the papers that
appear in the references of the paper.
By definition, we have
paperextended = <paper; ; Dextended; XSDC>.
Since XSDC is empty (we suppose that paper has no XSD
constraints), this equality becomes,
paperextended = <paper; ; Dextended; _>.
If we apply φ to this equality, we obtain
φ(paperextended) = φ(<paper; ; Dextended; _>) then

φ(paperextended) = paper(φ(Dextended); _)

Fig.26 The value of paperextended

That needs the value of φ(Dextended) that we will find.
We have
D = (title, author, [cite])
So
Dextended = (titleextended, authorextended, [citeextended]), since "_"
and "extended" are map functions.
If we apply φ to the last equality, we obtain
φ(Dextended) = φ(titleextended, authorextended, [citeextended])
 = φ(titleextended), φ(authorextended), φ(*citeextended])
Since φ is a map function, we can write
φ(Dextended) = φ(titleextended), φ(authorextended),
φ(*citeextended])
The computing of φ(titleextended) and φ(authorextended) are
similar to φ(fnextended). This allows us to write the
following expressions:
φ(titleextended) = title(<value; varchar; _ >;VC(title)) and
φ(authorextended) = author(<value; varchar; _
>;VC(author)).
As to the computing of φ(*citeextended]), we will do this as
follows.
Using the rule (g) in the grammar φ(Gextended) (see
Fig.24), We have
φ(*citeextended+ = *φ(citeextended)]
In addition, from the expression <!ELEMENT cite
(paper*)>, we can write:
citeextended = <cite; ;{paperextended}>.
If we apply the function φ to the above equality, we get
φ(citeextended) = φ(<cite; ;,paperextended}>)

 = cite(φ(,paperextended}))
 = cite(,φ(paperextended)}).
Then, if we replace φ(titleextended), φ(authorextended) and
φ(*citeextended] with their values in
Fig.26, we obtain
φ(paperextended) = paper(φ(Dextended))
 = paper(title(<value; varchar; _ >;VC(title)),
 author(<value; varchar; _ >;VC(author)),
 *cite(,φ(paperextended)})]).
The process stops there because there is no φ(v), with v
different to paperextended, in φ(Dextended).
In the next paragraph, we explain how are created the
UDT from XSD.

Creation of UDT attribute

In this section, we describe how are generated the UDT
attribute of ORM from their antecedents XDTD. This
making employs the recursive function
CreateAttribute(attr()) to create the attributes of the
UDT. We give in detail, in the next subsections, how this
function works.
 The aim of the function CreateAttribute is to
transform the items delimited by symbols: (), [], { } and <
> into UDT attributes. For ease, we decompose it into
functions each dealing with one of the pairs of these
symbols. Below, we give the definition of these sub-
functions.

Transformation of simple items

The processing of simple items, i.e. items of type "<…>", is
done by the algorithm described in the following listing.

Algorithm simpleItems (attr(listOfItems)) return UDT
Attribute;

begin
1) if each item of listOfItems matches "<…>" then
2) if the attr type is not yet created then
3) Create a type named attr, where each of its
 attributes correspond to each item of listOfItems;
4) end if;
5) return <"attr"; attr; constraints + XSDC>; // "attr" is a

UDT attribute:
6) end if;
end; // end of simpleItems
Listing 15. simpleItems algorithm
For an example that uses this algorithm, consider the
expression :
title(<value; varchar; _ >;VC(title))
Since title contains only items that match " <…>", the call
of simpleItems(title(<value; varchar; _ >;VC(title))) creates
a UDT named title with one attribute named value and
returns a UDT attribute defined by : <"title"; title;
VC(title)>.

Transformation of items of type e() and recursion

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

27 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

In the following listing, we show the definition of the
algorithm "recursion" that deals with items of type e(),
direct recursion and mutual recursion.

Algorithm recursion(attr(listOfItems))
begin

1) for each item e(…) in listOfItems loop
2) if e(…) doesn’t contain directly any φ then
3) replace in attr, e(..) by CreateAttribute(e(..));
4) elseif e(..) matches e(φ(x)) then

/* case of recursive element */
5) replace in attr, e(..) by <"e"; ref x;>;
6) elseif e(..) matches e(…,φ(x),…) then

/* case of elements mutually recursive */
7) if the UDT x is not yet created then

 create the UDT x as incomplete type;
8) end if;
9) replace φ(x) by <"x"; ref x;>;
10) end if;
11) end loop;

end; // end of recursion
Listing 16. recursion algorithm

As an application of this algorithm, let's find
CreateAttribute(author(…)) .
We have
φ(authorextended)=author(fn(<value; varchar; VC(fn)>),
 ln(<value; varchar; VC(ln)>).
In this expression, author has items (fn and ln) that match
"e(…)". In this case, to have CreateAttribute(author(…)),
we use recursion(author(…)) and we get
<"fn"; fn; VC(fn), > (obtained by CreateAttribute(fn(…)))
and
<"ln"; ln; VC(ln), > (obtained by CreateAttribute(ln(…))).
After this substitution, author becomes
author(<"fn"; fn; VC(fn)>, <"ln"; ln; VC(ln)>).
Then, we call simpleItems to
author(<"fn"; fn; VC(fn)>, <"ln"; ln; VC(ln)>),
and we get an attribute defined by <"author", author, _>.

Transformation of items of type {x()}

The body of the function that deals with items of type{x(
)- representing the closure without φ is given below. It
transforms these items into UDT attributes.
Algorithm closure_without_φ(attr(listOfItems))
y : UDT Attribute; //y is a variable to store a UDT
attribute;
begin

1) for each ,x(…)- in listOfItems loop /*x is an XDTD
element*/

2) y = createAttribute(x(…)) ;
3) create a multiset type named xs (name of x

concatenated to ‘s’) based on object type y;
4) replace {x(..)} in attr by <"xs"; xs;

constraints_on_x + XSDC>;
5) end loop;

end; //end of closure_without_φ

Listing 17. closure_without_φ algorithm

The processing of the closure without φ can be illustrated
by the example of the Listing 7.
We have from
Fig.17:
authorsextended =<authors; {authorextended}; SC(authors)>
By applying φ to this equality, we obtain the followings
equalities
φ(authorsextended)=φ(<authors;,authorextended};SC(authors)>
)
= authors(,φ(authorextended)}; SC(authors))
=authors(,φ(<author;;#PCDATA;VC(author)>)-;SC(authors)
)
= authors(,author(φ(#PCDATA); XSDC)-; SC(authors))
=authors({author(<value; varchar; _>; XSDC)};
SC(authors)).
If we apply the algorithm closure_without_φ to the last
obtained authors, we get the expression:
authors(<"authors"; authors; _>; constraints)
where "authors" is an attribute of type authors which is a
multiset type, and "constraints" comprises constraints on
author and authors.

Transformation of items of type ,φ(x)-

The goal of this transformation is to delete the symbols
",", "-" and φ. The following listing gives the body of the
algorithm that does this work.

Algorithm closure_with_φ(attr(listOfItems))
begin
1) for each ,φ(x)- in attr loop
2) if type x is not yet created then
3) create the UDT x as incomplete;
 /* necessary to have recursion */
4) end if;
5) create a multiset type xs (name of x concatenated to

‘s’)
 based on the reference of the UDT x: "ref x";
6) replace in attr ,φ(x)- by <"xs"; xs; constraints_on_x +

XSDC >;
7) end loop;
end; //end of closure_with_φ
Listing 18. closure_with_φ algorithm
Let consider the following expression to see how this
algorithm works:
cite(,φ(paperextended)}).

To transform this expression, CreateAttribute calls the

algorithm "closure_with_φ" to delete symbols "," , "-"

and φ by executing the operations:

1) it creates an incomplete UDT named paper;

2) it creates a multiset type based on "ref paper" named

papers; and

3) it replaces ,φ (paperextended)} by <"papers"; papers;

constraints_on_paper + XSDC >.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

28 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

After that, since there is no constraint on paper and
papers, we get the expression:
cite(<"papers"; papers; _>)
Thus, we have eliminated symbols ",", "-" and φ;

Transformation of items of type *…+

The purpose of this transformation is to delete the
symbols "[" and "]" which we do by the following
algorithm.

Algorithm optional(attr(listOfItems))
y : UDT Attribute; //y is a variable to store a UDT
attribute;
begin

1) for each [x(..)] in attr loop
2) y = CreateAttribute(x(…)) ;
3) add to y a null constraint;
4) replace *x(…)+ in attr by y;
5) end loop;

end; //end of optional
Listing 19. optional algorithm

The example that illustrates the work of this algorithm is:
[cite(<"papers"; papers; _>)]
To transform [cite(<"papers"; papers; _>)] that results
from the previous algorithm, createAttribute use the
algorithm "optional" to eliminate symbols '[' and ']' and
returns the expression :
<"cite"; cite; null_constraint>
where "cite" is a UDT attribute with type cite.

Processing of named alternative

The algorithm namedAlternative is defined to take in
charge the expression that results from the named
alternative, e.g. <!ELEMENT a (b|c)>). The following
listing is the definition of this algorithm.

Algorithm namedAlternative (attr(listOfItems)) return
UDT Attribute;
begin
1) if each item of listOfItems matches "<…>"
except one item that matches "+" then
2) if the UDT attr is not yet created then
3) for each item <x …> in listOfItems loop
4) create a UDT named “x” if it’s not created;
5) end loop;
6) create a UDT called attr that has an attribute
 named ‘value’ with a generic type(e.g.,
 ANYDATA);
7) add to attr a constraint that limits values of the
 attributes 'value' to objects that are instances of
 types ‘x’ created by lines between 3 and 5;
 // we call this constraint : c_attr
8) end if;
9) return <"attr"; attr; c_attr>;
10) end if;

end; // end of namedAlternative
Listing 20. namedAlternative algorithm

As an example of the application of this algorithm, we
assume that the element author contains the element
address defined by:
<!ELEMENT address (email | phone)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
We have
φ(addressextended)=address(φ(emailextended | phoneextended))
then
φ(addressextended)=address(+, φ(emailextended),
φ(phoneextended))
We have also
φ(emailextended)=email (<value; varchar; XSDC>) and
φ(phoneextended)=phone(<value; varchar; XSDC>).
then, we obtain the expression
address(+, <"email"; email; XSDC>, <"phone"; phone;
XSDC>)
with lines between 6 and 9 in Listing 20, we obtain the
expression
<"address"; address; c_address>
where address is UDT with one attribute named value.

Processing of unnamed alternative

The aim of the algorithm unnamedAlternative is to treat
the unnamed alternative, e.g. <!ELEMENT a (d, (b|c))>).
The following listing presents its definition.

Algorithm unnamedAlternative (attr(listOfItems)) ;

i integer; /* variable for counting the number of

attributes that are added in the case of the alternative

which has no name (for example <!ELEMENT a (b|c),

d>).*/

begin

1) i=0;

2) for each item (+,…) in listOfItems loop

3) i←i+1;

4) Replace, in attr, (+,…) by

createAttribute(_attr_i(+,…));

 // _attr_i is created for the unnamed alternative

5) end loop;

end; // end of unnamedAlternative

Listing 21. unnamedAlternative algorithm

As an example of application of this procedure, we
assume that the element author is defined by
<!ELEMENT author (fn, ln, (email | phone)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
We have
φ(authorextended)=author(φ(fnextended),φ(lnextended),
φ(emailextended | phoneextended))
then
φ(authorextended)=author(φ(fnextended), φ(lnextended), (+,
φ(emailextended), (phoneextended))) (see

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

29 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

Fig.24).
If we use lines between 2 and 5 in Listing 21 the

expression

(+, φ(emailextended),(phoneextended))

becomes successfully

_author_1 (+, <"email"; email; XSDC>, <"phone"; phone;

XSDC>)),

and

<"_author_ "; _author_; c_author_1>

where _author_ is a UDT with one attribute named value.

Definition of the function CreateAttribute

Now we give in the following listing the body of the

algorithm createAttribute that creates the UDT attribute.

It calls the sub-functions that we have previously

described.

Algorithm createAttribute(attr(listOfItems)) return UDT

attribute;

begin

1) closure_without_φ(attr(listOfItems)); //to delete

eliminates {}

2) closure_with_φ(attr(listOfItems)); //to delete ,- and

φ

3) optional(attr(listOfItems)); //to eliminate *…+

4) Loop

5) simpleItems(attr(listOfItems));// to handle items of

type < ..>

//case of alternative with named element

6) namedAlternative (attr(listOfItems));

//case of alternative with unnamed element

7) unnamedAlternative(attr(listOfItems));

8) recursion (attr(listOfItems)); // to delete the symbols

()

9) end loop;

end; //end of createAttribute

Listing 22. CreateAttribute algorithm

Algorithm of translation

The below listing shows the algorithm of translation. It
takes a valid XML document with its XSD schema and
creates an object-relational schema. The data of the XSD
document will be stored in the object table created by the
last instruction (at line 4) of the algorithm in Listing 23.
The object type of this table is the root element of the
XSD document.
 This algorithm starts with the computation of Eextended
what represents the expression of E in XDTD; then we
transform this expression into the object-relational
schema by using the function φ and the function
CreateAttribute. The result of this latter will be used to
create the object table and its constraints to store the
object-relational data.

Algorithm translation;
input: a valid XML document with its XSD schema; Let be
E the root of this document;
output: an object-relational schema;
begin
//logical translation
1) Compute Eextended = Ψ(E); //see
2) Fig.15
3) Compute E(listOfItems) = φ(Eextended) ; //see
4) Fig.21
//physical translation
5) Compute <"E"; E; Constraints> =

CreateAttribute(E(listOfItems));
6) Create an object table named "E_Table" based on the

UDT E and constraints "Constraints";
 /*"E_Table" is an object table where we store the
data of the XML document.*/
end; //end of translation
Listing 23. Translation Algorithm

Then, as we have seen in the last above algorithm, we
finish the translation of the schema.

Conceptual schema of translation

In the next figure, we present a schema that recapitulates

the steps of the translation.

 We first give specifications for XSD, XDTD, and ORM;

and then we define two mappings, one from XSD to XDTD

and the second from XDTD to ORM. In the last operation,

we generate the ORS from the image of the XSD obtained

by the composition of Ψ and φ.

Fig.27 Conceptual schema of translation

Example and test of the translation

We consider, for instance of translation that uses the

proposed method, the XSD schema shown in the

following figure. It describes the element journal.

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

30 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

Fig.28 The XSD of the element journal

The following figure shows the ORS associated to the XSD
describing the element "journal".

Fig.29 The ORS associated to the XSD describing journal

In the appendix, we give the scripts that create an Oracle
physical schema where are stored the object-relational
data.

Conclusions

In this paper, we have developed a methodology that
translates an XSD data into the object-relational model.
We have introduced a novel formalism to handle
concepts of XSD and ORS and allow a mapping between
them. We have used the ORM of Oracle database to test
and validate this method. The most important features of
this translations are that it preserves data and schema
constraints, realizes a high integration data and is
reversible.
 In future works, we envisage to take into account
more constraints and develop a framework that
automatically reverses engineer the XSD schema from the
object-relational schema to which is associated. Also, we
think to apply this method to translate another XML
Schema into ORM.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, (2007),
Compilers Principles, Techniques, & Tools, pp. 116-122,159-163
[2] L. Al-Jadir and F. El-Moukaddem, (2002), F2/Xml: Storing
Xml Documents in Object Databases, International Conference
on Object Oriented Infomation Systems, Montpellier, France,
[3] M. Bahaj and A. Elalami, (2013), The Migration of Data from
a Relational Database (Rdb) to an Object Relational (Ordb)
Database, Journal of Theoretical and Applied Information
Technology, vol. 58,
[4] V. Bisova and K. Richta, (2000), Transformation of Uml
Models into Xml, ADBIS-DASFAA Symposium on Advances in
Databases and Information Systems, Prague, Czech Republic,
[5] A. Boccalatte, D. Giglio, and M. Paolucci, (1998), An Object-
Oriented Modeling Approach Based on Entity-Relationship
Diagrams and Petri Nets, IEEE Internal conference on Systems,
Man and Cybernetics,San Diego, CA,
[6] T. Bray, J. Paoli, C. M. Sperberg-Mcqueen, and E. Maler,
(2000/10), Extensible Markup Language (Xml) 1.0 (Second
Edition), W3C Recommendation.
http://www.w3.orglTR2OOOlREC- XML-20001006l,
[7] E. Castro, D. Cuadra, and M. Velasco, (2010/12), From Xml
to Relational Models, Informatica, vol. 21(4), pp. 505-519
[8] H. Darwen and C. J. Date, (1995), The Third Manfesto,
SigMOD Record 24(1), pp. 39-49
[9] C. J. Date, (1998(8)), Preview of the Third Manifesto,
Database Programming & Design Journal (San Francisco, CA:
Miller Freeman Publications), vol. 11(8),
[10]C. J. Date and H. Darwen, Databases, Types and the
Relational Model: The Third Manifesto, 3 ed.: Addison-Wesley,
2007
[11]A. Eisenberg and J. Melton, (March 1999), Sql:1999,
Formerly Known as Sql3, SIGMOD Record, vol. 28(1),
[12]A. Eisenberg, J. Melton, K. G. Kulkarni, J.-E. Michels, and F.
Zemke, (2004), Sql: 2003, SIGMOD Record, vol. 33(1), pp. 119-
126
[13]A. El Alami and M. Bahaj, (2015), Framework for a Complete
Migration from a Relational Database Rdb to an Object
Relational Database Ordb, International Journal of Scientific
Engineering and Applied Science (IJSEAS), vol. 1,
[14] A. El Alami and M. Bahaj, (2014), The Road to a Full
Migration of Relational Database (Rdb) to Object Relational
Database (Ordb): Semantic Enrichment, Target Schema, Data
Mapping, International Journal of Advanced Information Science
and Technology (IJAIST), vol. 30,
[15] A. El Alami and M. Bahaj, (2015), Schema and Data
Migration of a Relational Database Rdb to the Extensible
Markup Language Xml, World Academy of Science, Engineering
and Technology International Journal of Computer, Electrical,
Automation, Control and Information Engineering, vol. 9,
[16] B. Elisa and G. Giovanna, Object Oriented Databases:
John Wiley & Sons inc, 2008
[17] G.Powell, Beginning Xml Databases, Indianapolis: wiley
Publishing Inc ,2007, PP 131-135.
[18] J. Hou, Y. Zhang, and Y. Kambayashi, (2001), Object-
Oriented Representation for Xml Data, International Symposium
on Cooperative Database Systems for Advanced Applications,
Beijing, China,
[19] S. Kanagaraj and D. S. Abburu, (2012/3), Converting
Relational Database into Xml Document IJCSI International
Journal of Computer Science Issues, vol. 9(2), pp. 127-131
[20] J. Kim, D. Jeong, and D.-K. Baik, (2009/1), A Translation
Algorithm for Effective Rdb-to-Xml Schema Conversion

http://www.w3.orgltr2ooolrec-/

Mustapha Machkour et al A Translation from XSD into ORM using Mappings

31 | Int. J. of Multidisciplinary and Current research, Vol.5 (Jan/Feb 2017)

Considering Referential Integrity Information, Journal of
Information Science and Engineering, vol. 25, pp. 137-166
[21] D. Lee, M. Mani, and W. W. Chu, (2003/7), Solving
Schema Conversion Problem between Xml and Relational
Models: Semantic Approach, ResearchGate,
[22] M. Machkour and K. Afdel, (2016), Transforming Xml
into Object-Relational Schema IOSR Journal of Computer
Engineering (IOSR-JCE), vol. 18(5), pp. 40-52
[23] M. Machkour, K. Afdel, and Y. Idrissi Khamlichi, (2014),
Conversion Methodology from Hierarchical Model to Object-
Relational Model with Structural and Semantic Aspects
Preservation, International Journal OF Mathematics AND
Computer Research, vol. 2(7), pp. 503-511
[24] M. Machkour, K. Afdel, and Y. I. Khamlichi, (2016), A
Reversible Conversion Methodology between Xml and Object-
Relational Models, Proc. IEEE International Conference on
Information and Communication Systems (ICICS), IRBID, Jordan
[25] M. Machkour, S. Aminzou, K. Afdel, and Y. I. Khamlichi,
(2015), Converting Xml Schema into Object-Relational Model
with Data Constraints Preservation, International Journal of
Multidisciplinary and Current Research, vol. 3, pp. 523-536
[26] J. Melton, Advanced Sql:1999: Understanding Object-
Relational and Other Advanced Features (the Morgan Kaufmann
Series in Data Management Systems), 2003
[27] S. Navathe and R. Elmasri, (2011), Fundamentals of
Database Systems, Addison-Wesley, pp. 353-413
[28] J. Sebastian, The Art of Xsd Simple Talk Publishing, 2009
[29] P. Walmsley:, Definitive Xml Schema: Prentice Hall, 2001
[30] M. Wang, (2010), Using Object-Relational Database
Technology to Solve Problems in Database Development, Issues
in Information Systems, vol. XI,

Appendix

Creation of simple object types
create type title as object (value varchar(50))
/
create or replace type lname as object(value varchar(20))
/
create or replace type fname as object(value varchar(20))
/
create or replace type author as object("fname" fname, "lname" lname)
/
Creation of the collection authors
create or replace type authors is table of author not null
/
Creation of the incomplete type "paper" to allow mutual reference between cite and
paper
create or replace type paper
/
Creation of the type collection "refpapers" of references to the object paper
create type refpapers is table of ref paper
/
create type cite as object("papers" refpapers)
/
Complete the type paper
create or replace type paper as object
 (id varchar(10),
"title" title,
"authors" authors,
"cite" cite)
/
Creation of the type collection "papers" of paper
create type papers as table of paper not null
/
Creation of the type journal
create type journal as object (name varchar(100), ISSN varchar(9), "papers" papers)
/
Creation of the object table "journals" where we store the object-relational data.
create table journals of journal
(constraint uniqueISSN unique(ISSN),
constraint requiredISSN ISSN not null,
constraint requiredName name not null,
constraint patternISSN check (regexp_like(ISSN,'[0-9]{4}\-[0-9]{4}$')))
nested table "papers" store as nested_papers
(nested table "authors" store as nested_authors
nested table "cite"."papers" store as nested_refpapers)

