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Abstract
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1. Introduction

In 1973, Geraghty[7]introduced an extension of the
contraction in which the contraction constant was
replaced by a function having some specified properties.
We use the following notation introduced by Geraghty,
namely

S={p:[0,0) >[0,1)/ p(t,) >1=1t —0O}.
Definition 1.1.(Geraghty [7])A selfmap f : X — X is
said to be a Geraghty contraction if there exists €S
such that forall X,y € X

d(fx, fy) < A(d(x, y))d(x, y) (1.1.2)

Theorem 1.2.(Geraghty [7])Let X be a complete metric
space. Let f : X — X be a mapping such that there

exists f# € S such thatforall X,y € X
d(fx, fy) < A(d(x, y))d(x,y) (1.2.2)

Then for any choice of initial point X,the iteration

X, =f(X,)for n=123,..., converges to the
unique fixed point Z of f in X .
In 1997, Alber and Guerre-Delabriere[2] introduced

weakly contractive mappings as a generalization of
contraction maps and proved some fixed point results in
Hilbert space setting. In 2001, Rhoades [10] extended
this concept to Banach spaces.

In 2003, Kirk, Srinivasan and Veeramani[9] introduced
cyclic contractions and proved fixed point results for not
necessarily continuous mappings.In 2013, Harjani, Lopez
and Sadarangani[6] proved existence of fixed points of
continuous cyclic weakly contractive selfmaps in

complete metric spaces. Recently, Alemayehu [1]
introduced co-cyclic weakly contractive maps and proved
common fixed points results in compact metric spaces.
We denote

7 ={p:[0,0) —[0,2)/}) / pisnon—decreasing,
¢(0) =0, ¢(t) >0 fort > 0}.

Definition 1.3. ['11]Let X be a non-empty set, Ma
f:X—>Xa

X = ui";lA is said to be a cyclic representation of X

positive integer and selfmap and

with respect to the map f if () A,i= 1,2,...,Mare
non-empty subsets of X

(M) FA) A BF(AL) AL (A A
Definition 1.4. [1]let X be a non-empty set, Ma
positive integer and T, f : X — X a selfmap and

X ZULA is said to be a co-cyclic representation of
XwrtT, fif

(i) A,i= 1,2,...,Mare non-empty subsets of X

i T(A) < fA,,..T(A,,) = fA,. T(A,) < fA.
Here we note that, by taking f as the identity map, we

get a cyclic representation of X with respect to the
selfmap T introduced by Rus[11]

Definition 1.5. [1let (X,d)be a non-empty set, Ma
positive integer, A, A,,..., A, are closed non-empty
subsets of X and X = U A. Let T, f:X — X be

two T is said to be a co-cyclic weakly contractive map w.
r.t. fif
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(i) X =Uir11A is said to be a co-cyclic representation of
XwrtTand f.
(i d (Tx, Ty) < d(fx, fy) —e(d (fx, fy)) (1.5.1)

for any Xe A and yeA,, where A ,=A and
peT.

fand T of a

metric space (X, d) are said to be weakly compatible if

Definition 1.6. [8]Two self-mappings

they commute at their coincidence points, i.e., if
fu=Tufor ue X, then fTu= fTu.

Remark 1.7.In [1] maps f,T satisfying (i) and (ii) of
Definition 1.5
contractions'.

are mentioned as ‘co-cyclic weak
But the terminology " T co-cyclic weakly
contractive map w. r. t. f 'is more appropriate as the

inequality (1.5.1) is indicating ‘weakly contractive'
property. For more details, we refer [2],[10], [5] and [3].
Theorem 1.8. [4]Let (X ,d)be a compact metric space

andlet T, f : X — X be two selfmaps. Suppose that
Ma positive integer, A, A,,...,A are closed non-
of X and X = U A. Let
T,f:X — X betwo T is said to be a co-cyclic weakly

empty subsets
contractive mapw. r.t. f. If f isone-oneand T and
f are continuous, then f and T have a coincidence
point in X . Further, if the maps f and T are weakly
compatible then f and T have a unique common fixed
pointin X .

let f and T be two selfmaps of a metric spaces
(X,d)In Section 2, we define Geraghty co-cyclic
contractive maps T w.r.t. f by using a function €S

and prove the existence of common fixed points in
complete metric spaces. In Section 3, we define
generalized Geraghty co-cyclic contractive maps T w.r. t.
f by using ﬁ € S and prove the existence of common

fixed points in complete metric spaces. In Section 4, we
deduce some corollaries from our main results and
provide examples in support of our results.

2. Common fixed points of Geraghty co-cyclic contractive
maps

In the following, we introduce Geraghty co-cyclic
contractive maps by using an element S €S .

Definition 2.1.let (X,d)be a non-empty set, Ma
positive integer, A, A,,..., A, are closed non-empty
subsets of X and X = UL A. Let T,f:X — X be

two T is said to be Geraghty co-cyclic contractive map w.
r.t. fif

(i) X =U;11A is said to be a co-cyclic representation of

Xw.rtTand f.

Common fixed points of generalized Geraghtyco-cyclic contractive maps

(i) there exists 8 € S such that

d(Tx,Ty) < g(d(fx, fy))d(fx, fy)

(2.1.1)
forany Xe A and ye A,,,where A, =A.

Theorem2.2.Let (X, d) be a complete metric space and
Let T, f : X — X be two selfmaps. Suppose thatM a

positive integer, A, A,,..., A, are closed non-empty
subsets of X and X =U", AandTis said to be
Geraghty co-cyclic contractive map w. r.t. f if f is one-
one and f (A) is closed, then there exists Z € ﬁi";lA
such that Z is a coincidence point of f andT .
Proof:let X, € X =, A. Then X, € A for some
ie{,2,3,..,m}. ThenTX, €T(A)c f(A,) and
hence TX, = fx, € f(A,,) forsome X, € A ;.

Now, since TX, € T(A,;) < T(A,,), wehave

Tx, = fX, forsome X, € A,,.
On continuing this
{x,} = X such that

TX, = fx  foralln=1,2,... . (2.2.1)
Hence, for each N, there exists a positive integer
I, €{1,2,....m} such that X, EAH and Xn+1eAn+1

satisfying TXn = an+1(2.2.2)

process, we get a sequence

n+1

If there exists N, €[] with Xy =X then we have

X0 =TX, = X

ny+1

ny+1’
so that fand T have a
coincidence point Xno+l‘

Hence, w. |I. for all

n=12,..
the construction of {X }, we have TX, #TX
n=12,...

Now, by (2.2.2) and the inequality (2.1.1), we have
d(fx,, fx.,,)=d(Tx, ,,TX,)

< B(fx,,, & Nd(fx ,, 7% ) (2.1.3)
foreach n=1,2,.... Therefore
d(fx,, fx. ) <d(fx ,, fx )forall n>1.

Hence {d(fx,, X ,,)}is a decreasing sequence of non-

g, we assume that X #X

. Then an # fX__ forall N. Further, from

n+1

g for all

negative reals and hence converges to a limit I (say) ,
r>0

We now show that I =0.

Suppose that I > 0. Then from (2.2.3), we have
d ( an’ an+1) < IB(d ( fxnfl’ an ))d ( anfl7 an) :
On letting N — o0, we get

d(fx,, fX,.,) _
m———==<lim g(d(fx,_,, fx ) <1
o d(fxn,l, an) n%wﬁ( ( n-1 n))
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1< lim B(d(fx,_,, fx,)) <1sothat

B(fx ,, X)) =1 asn —> .

Since f €S ,itisfollows that limd(fx_ ,, fx,)=0.

n-17

r=Ilimd(fx,,, fx,) =0<r, a contradiction.
n—oo

Hence limd(fx,, fx ,)=0. ie,r=0.

We prove that {an} is a Cauchy sequence in X .

First, we show that for every 0> 0 there exists N &[]
such that if P,g=>nNnwith p—qg=1(modm), then

d(fx,, fx,) <o

If it is false, then there exists an O >0 such that for each
Nell we can find sequences {pn} and {qn}such that
p,>0q,=n P, —0, =1(modm) and
d(fx, , fx, ) =o.

Now, let N be such that N>2M. Then for ¢, 2N we

with

choose {pn} such that {pn} is the smallest positive

than {a.}
d(fx, ., fx, ) =0,
implies that d(fx, , fx, )<o.

integer satisfying

P, —0, =1(modm) and

greater

which

By using the triangular inequality, we have
\ m
o<d(fx,,fx, ) <d(fx,,fx, )+ZLd(fx, ,fx

<o+Zld(fx, ,fx, )

! Pniva

)

Pn-isa

On letting N — o0, we have
limd(fx, , fx, )=0, since MDO d(fx,, fx.,)=0.

nN—o0

(2.2.4)
Again, by the triangular inequality, we have
o<d(fx, , fx, ) <d(fx, , fx, )+d(fx, ,fx, )

+d(fx, , fx, ) <d(fx,, fx, )+d(fx, X, )
+d(fx, . X, )+d(fx, , x, )+d(fx, X )
<2d(fx, , fx, )+d(fx, , fx, )+2d(fx, ,fx,)

On letting N — o0 and by using (2.2.4), we have
limd(fx, 5, , 1) =9,
since limd(fx, fx ;) =0

N—o0

(2.2.5)

In fact, Xq and Xp lie in different adjacently labelled

sets A and A, for 1L<i <M. Now by using condition
(2.1.1), we have
d ( fxqml ! fX pn+l) - d (Tan ’TXpn )

< p(fx, , x, Nd(fx, , fx,) (2.2.6)

On letting N —> 00, using property of [ in (2.2.6) and
using (2.2.4) we have

o ..
1=—<lim B(d(fx, , fx, )). Itisa contradiction.
QO Now n n

Common fixed points of generalized Geraghtyco-cyclic contractive maps

So we conclude that our assumption is wrong. Therefore
given 0>0and N, ell such that if P,q=N,with

p—q =1(modm) thend (fx,, fx,) < g (22.7)

Since limd(fx,, fX,,,) =0, there exists N, €[] such
nN—o0

that d(fx , X, ,) S — . (2.2.8)
2m

foreach n=n,.

Suppose that I',S>max{n,,n}and S>r. Then
there ke{l,2,...,m}such that
Ss—r=k(modm). We choose j=m—Kk+1. Then,

since m+1=1(modm), we have
S+j-r=s+(Mm-k+1)—-r=(s—r)+(m+1)—k =1(modm)

exists

d(fx,, fx)) <d(fx, fx ;) +d(fx;, X, ;)
+.n+d(fxgy, X))
o . 0 _0 0
d(fx , fxX)<=+(j+1).=<—+m.—=0
(&, )< o+(J+D.o<o+m— =0
Therefore, given O>O0there exists N &[] such that
d(fx,, fx,)<ofor all r,s>n. Hence {fX }is a

Cauchy sequence. Since (X,d)is complete
lim fx, = X, for some Xe X .
Nn—o0

Since X, € X =", Aimplies X, € A for some iand
X €A, for al le{l,2,..,m}. In
X, €A,,=Aand X, €A,..., X, €Afor all
k=0,12,... .Since {ka}C A, we
{f (%)} f(A). f(A)is closed and
{f (ka)}is a subsequence of {f(X, )}we have
X, = Xas K —>ooandXx e f(A).

particular,

have

Since

We now show that xem, f(A). We have
X € Arokn = Ay for  all 1=12,...,mwhich
implies that  f(X,,)€ f(A,)for all |. So

i +1 =i,(modm) for somei, €{L,2,...,m}. Therefore

f (Xl+km) € f (Ao)'

Now | {1, 2,...,m} implies f(X,,,) = Xask —>.
Since (A )is closed, we have X & f (A )Note that,
for any ie{l,2,...,m}we
{i+1/1=12,...m}={L2,...,m}under
modulo M .Since this is true for any | €{l,2,...,m}it
follows that X e N, T (A).

have

congruent

Now, Xen, f(A)implies each

i=12,...,m.

xe f(A)for

Since f(A) is closed. Hence there
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exists Z; € Asuch that X = fz, for each i =1,2,...,m.

e~ x=1z, =fz, =...= 1z, for some
z,eA,z,eA, ...z, €A,. Since f isone-one, we

(say). Hence

have L,=7,=..=7,=1
x=fz,ze,A.
Now we prove that Z is a coincidence point of f andT .

By the inequality (2.1.1) we have

d (X 1 T2) =d(TX, 40, T2)
< A% g1 72X 000 T2)

since X, m1 € Amaand Z€ A,

On letting K —> 00, we have

d(x,Tz)

d(x,Tz)

1< Jim B (P g0, f2)) <1 which

B(d(fz,Tz)) > 1las K—>o0. Since B €S, we have
fz =Tz .Therefore Z is a coincidence point of f and T
in X .

Theorem2.3.In addition to the hypothesis of Theorem
2.2, if the maps T and f are weakly compatible then

1+km?

< lim A(d (14 1,1, 12)) <1 Hence

implies that

T and f have a unique fixed point.

Proof: By Theorem 2.2, we have fz=Tz=uU (say).
Since Tand f are weakly compatible, we have
Tu=Tfz = fTz = fuimplies fu=Tu.

Now, we prove that TU=U.

Since Tze X =, A implies TZ € A for some iand
zen,A, we have zZe Afor all ie{l2,..,m}
.Now, by the inequality (2.1.1) we have

d(Tz,TTz) < p(d(fz, fTz))d(fz, fTz)
<p(d(Tz,TTz))d(Tz,TTz)

sothat TZ=TTZzand hence fu=Tu = U .Therefore U
is a common fixed point of f andT .We now show that
uen A, since fu=Tu=u, we have Ue A for
some | .Now,

UeA=TueT(A)=TueT(A)c f(A,)
=Tu="fvef(A,)
for some Ve A,,.  Therefore fu= fvfor some
ve A, since fis one-one we have U=Ve A, so
that U € A+1- By repeating the same argument, we get

uen.A.

Uniqueness: Let Y and Z be two common fixed points of
T and f . Then we have
Ty=fy=yandTz=fz=zandy,zen,A.

From the inequality (2.1.1), we have

Common fixed points of generalized Geraghtyco-cyclic contractive maps

d(y,2) =d(Ty,Tz) < p(d(fy, f2))d(fy, fz)

< B(d(y,z))d(y,2))
since f € S wehave d(y,z)=0.ie, z=Y.
Therefore f and T have a unique common fixed point in

X.
Example2.4.let X =[] with the wusual metric.Let

A =(-0,1]and A, =(0,0).
T,f:X—>Xby Tx=
£ :[0,0) —[0,1) by

We define and

fx=2-x.We define

p) = ﬁ ,t>0.Clearly, X =AUAis co-cyclic
+

representation of X w.r.t. T and f .
Now we verify the inequality (2.1.1) in the following:

For Xe Aand y € A,, then d(Tx,Ty) :|§—%|and
d(fx, fy) = x-y|

d(Tx,Ty) o2 - J 1< BUx-y DXy

= (T, fy))d(f, fy).

Clearly, T and f are weakly compatible and satisfy all
the hypotheses of Theorem~2.3. Therefore $1$ is the
unique common fixed point of T and f andle A N A,

If we relax the f is not one to one of Theorem~2.3 then
T and f may have a common fixed point.
Example2.5.Let X ={0,1, 2, 3} with the usual metric.Let
A ={0,Fand A, ={12,3}. we define T, f : X —> X
byTO=1T1=1T2=0,T3=1

f0=0,f1=1f2=3and f3=0.we define
0 ift=0;
,H[0,00)—)[O,].) by ﬂ(t)= 4+t .
ift>0.
442t

Clearly, X =A UA,is co-cyclic representation of X
w.rt. Tand f.

Now we verify the inequality (2.1.1) in the following:

Case (i):X=0and y=2, then d(T0,T2)=1and
d(fo,2)=3.

d(Tx,Ty) =d(T0,T2) =1< 5(3)3

= A(d(f0, £2))d(f0, f2)=p(d(fx, fy))d(fx, fy).
Case (ii):X=1and y=2, then d(T1T2)=1and
d(f1,f2)=2.

d(Tx, Ty)=d(T1,T2)=1< B(2)2

=£(d(f1, f2)d(fL f2)=p£(d(fx, fy))d(fx, fy).
Case (iii): X=0and y =1.

In this case, the inequality(2.2.1) trivially holds.
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Case (iv): X=0and y=3.

In this case, the inequality (2.2.1) trivially holds.

Case (v): X=1and y=3.

In this case, the inequality (2.2.1) trivially holds.

Clearly, T and f are weakly compatible and satisfying all

the hypotheses of Theorem2.3. Therefore lis the unique
common fixed pointof T and f andle A NA,.

Further, we observe that at X =1and y= 2
d(TLT2)=1lce BU)L=Bd(L2)d(L2) for  any
PeS.

Hence, the inequality (1.1.1) does not hold for any

Therefore T is not a Geraghty contractive map. Hence
Theorem1.2 is not applicable.

3. Common fixed points of generalized Geraghty co-
cyclic contractive maps

In the following, we introduce generalized Geraghty co-
cyclic contractive maps by using an element S €S .

Definition 3.1.Let (X,d)be a non-empty set, Ma
positive integer, A, A,,..., A, are closed non-empty
subsets of X and X = UL AL Let T,f:X — X be

two T is said to be generalized Geraghty co-cyclic
contractive map w.r.t. f if

(i) X :uirilA is said to be a co-cyclic representation of
Xw.rtTand f.
(ii) there exists 8 € S such that

d(Tx,Ty) < (M (X, )M (X, y)
(3.1.1)

forany X € A1 and Y e A1+1' where Aml: Al, where

M (x, y) = max{d ( fx, fy),d(fx,Tx),d(fy,Ty)%(d(fx,Ty)+d(l’x, fy)}
Theorem3.2.Let (X ,d)be a complete metric space and
Let T, f : X — X be two selfmaps. Suppose thatM a
positive integer, A, A,,..., A, are closed non-empty
subsets of X and X =U", AandTis said to be
generalized Geraghty co-cyclic contractive map w. r.t. f

if f is one-one and f(A) is closed, then there exists

Z eﬂinllA such that Z is a coincidence point of f and

T.
Proof: Let X, € X =", A. Then X, € A for some

ie{L,2,3.,m}. ThenTX, €eT(A)c f(A,) and
hence TX, = fx, € f(A,,) forsome X, € A ;.

Now, since TX, € T(A,;) < T(A,,), wehave

Tx, = X, for some X, € A ,.

Common fixed points of generalized Geraghtyco-cyclic contractive maps

On continuing this process,
{x,} = X such that Tx, = fx

(3.2.1)
Hence, for each N, there exists a positive integer

I, €{L2,....,m} such that X, €A and X, €A ,

we get a sequence
for all n=12,....

n+1

satisfying TX, = X_,,. (3.2.1)

o 410 then we have
0

fand T have a

If there exists Ny €[] with $ X, =X
Txno+1 =Txn0 = fx

coincidence point Xn0+l‘

il SO that

Hence, w. |I. for all

n=12,..
the construction of {X }, we have TX, #TX
n=12,...

Now, by (3.2.2) and the inequality (3.1.1), we have

d(fx,, fx,,,) =d(Tx,,, TX,)< (M (X, ;. X, )M (X, . X,)

, Where (3.2.3)
M (Xn—l’ Xn) = max{d ( an—l’ fXn )l d ( an—l’TXn—l)Y

g, we assume that X #X

. Then fX, # fX ,, forall N. Further, from

n+1

n for all

d(fxn,Txn)é(d(fxn_l.Txn>+d(fxn,Txn_1»}

=max{d(fx,,, fx,),d(fx,,, x,),d(fx,, X,,.),
%(d (%0, f,0) +d (B, )}
<max{d(fx,,, fx,),d(fx,, X, ,),

%(d (X, 4, ™) +d(fx,, I, )}

=max{d(fx,,, fx,),d(fx,, fx,,,)}.

if - max{d(fx,,, fx,),d(fx,, fx ,)}=d(fx,, fx,,,)
then, from (3.2.3) we have

d(fx,, fx,.,) < pd(fX,, X, )d(fx,, x.)<d(fx,, X.,).2
contradiction.

Hence

max{d (fx_, fx ),d(fx , fx )}=d(fx _,, fx )
then, from (3.2.3) we have

d(fx,, ) < Bd(fx, . fx Nd(fx . X ).

(3.2.4)

By the property of ,B, we have

d(fx,, fX,,,) <d(fx, ,, fx ) forall n>1.

Hence {d( an, an+l)}is a decreasing sequence of non-
negative reals and hence converges to a limit I (say) ,
r>0

We now show that I =0.

Suppose that I >0. Then from (3.2.3), we have

d(fx,, X.,.) < BM (X, x,Nd(fx ,, fx,). on
letting N — 00, we get

tim 9% Xo) i v (x

X)) <1
n—oo d ( an—l' an) n—o0 n ))

n-17
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1<lim (M (X, ,,X,)) <1so

p(fx,,, X)) >Lasn—>o.
Since S €S, itisfollows that limd(fx, ,, fx,)=0.

that

r=limd(fx,,, fX,) =0<r, a contradiction.
n—oo

Hence limd(fx,, fx ,,)=0. ie,r=0.

We prove that {an} is a Cauchy sequence in X .

First, we show that for every O> O there exists N el
such that if P,q>nwith p—qg=1(modm), then

d(fx,, fx,) <o

If it is false, then there exists an 0> 0 such that for each
Nell we can find sequences {pn} and {qn}such that
p,>0q,=n P, —0, =1(modm) and
d(fx, , fx, ) =o.

Now, let N be such that N>2M. Then for ¢, 2N we

with

choose {pn} such that {pn} is the smallest positive

integer {qn}
P, —0, =1(modm) and d(fan, fxpn) >0, which
implies that d(fx, , fx, )<o.

By using the triangular inequality, we have
o<d(fx, , fx, ) <d(fx,, fxpnim)+2i”lld(fxpn7i, fx

<o+Xld(fx, ,fx, )

On letting N — o0, we have
limd( fan , prn) =0, since
(3.2.4)

Again, by the triangular inequality, we have
o<d(fx, , fx, ) <d(fx, , fx, )+d(fx, ,fx, )
+d(fx, X, ) <d(fx,, fx, )+d(fx, , X, )
+d(fx, , fx, )+d(fx, , fx, )+d(fx, , X, )

<2d(fx,, fx, )+d(fx,, fx, )+2d(fx, ,fx,)

greater than satisfying

)

Pn-isa

limd(fx,, fx,,;) =0.

On letting N — o0 and by using (2.2.4), we have

!]T;]O d(fx, .;, X, ;) =0,since

limd(fx,, fx,,;) =0 (3.2.5)

In fact, Xq and X, lie in different adjacently labelled

sets A and A, for 1L<1 <M. Now by using condition
(3.1.1), we have

d(fx, . &, ) =d(Tx, . Tx, ) < BM(x, . X, DM (X, . %, )
where (3.2.6)
M (x ) =max{d(fx, , x, ),d(fx, ,Tx, ).d(fx, ,Tx, ),

O’ XPn

1
> (@0, Tx, ) +d(fx, . Tx, )}

Common fixed points of generalized Geraghtyco-cyclic contractive maps

=max{d(fx, , fx, ),d(fx, , X, ),

1
d(fx, , prM)'E(d(qun' fx, ) +d(fx, , X, N}
=max{d(fx, , fx, ),d(fx, , fx, ), d(fx,, f, ),
1
E(d(fan, fx, )+d(fx, , &, )+d(fx,, X, )

+d(fx, , X, N}—0
as N —>00. On letting N — 00 , using property of  in
(3.2.6) and using (3.2.4) we have
0 . . -
1= 5 < rlgrjo BM (X, ,X, )). Itisa contradiction.

So we conclude that our assumption is wrong. Therefore
given 0>0and N, €ll such that if P,q=nN,with

p—g =1(modm) thend ( fx,, x,) < g .3.27)

Since limd(fx,, fX,,,) =0, there exists N, €[] such
N—o0

that d(fx,, X ) < —. (3.2.8)
2m

foreach n=>n, .

Suppose that I,S>max{n,,n}and S>r. Then
ke{l2,...,m}such that
s—r=k(modm). We choose j=m—Kk+1. Then,

since m+1=1(modm), we
s+j—-r=s+(M-k+1)—r=(s—r)+(m+1)—k =1(modm)

there exists

have

d(fx, ) <d(fx, fx, ;) +d(fx,;, X,;,)
o+ d (X, X))

S+

O ,. .0
d(fx,, fx)<=+(j+1).=
(P, ) <=+ (i+0).
<2im2 s
2 2m
Therefore, given O>Qthere exists N &l such that
d(fx,, fx;)<ofor all r,s>n. Hence {fX }is a

Cauchy sequence. Since (X,d)is complete
lim fx, = X, for some Xe€ X .
n—oo

Since X, € X =", Alimplies X, € A for some iand
X €A, for al le{l2,..,m}. In
X, €A,,=Aand Xom € Ayeveis Xy € Afor  all
k=0,12,... .Since Kb < A, we
{f (%)} f(A). f(A)is closed and
{f (ka)}is a subsequence of {f (Xn)} we have
X — Xas K —>ooandXx e f(A).

particular,

have

Since

We now show that xem, f(A). We have

Xikm € Avrokn = Ay for  all 1=12,...,mwhich
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f(Xm) € F(A,)for all 1. so
i+1=i,(modm) for i, €{L2,...,m}.
Therefore f(X,,,) € f(A).

Now | €{L,2,...,m} implies f (X,
since f (A )is closed, we have X & f (A )Note that,
forany i €{L,2,...,m}we have
{i+1/1=12,...m}={L2,...,m}under

modulo M.
Since this is true for any | €{L,2,...,m}it follows that

xen f(A).

xeny, f(A)implies Xxe f(A)for
i=12,...,m. Since f(A)is closed.
exists Z; € Asuch that X = fz, for each i =1,2,...,m.

implies that

some

) > Xask —>.

congruent

Now, each

Hence there

e~ X=1z, =fz, =...= 1z, for some
z,eA,z,eA,...2,€A,. Since T isone-one, we
have ,=2,=..=72,=7 (say). Hence

m
x="fz,ze A
Now we prove that Z is a coincidence point of f andT .

By the inequality (3.1.1) we have

d ( fXI+km ,TZ) =d (TXI+km—1!TZ)S ﬁ(M (Xl+km—ll Z))M (Xl+km—11 Z)
, Where (3.2.9)
M (,, » 2) = max{d (X, 1 f2), d (X0 TX i s),

d(fz,Tz),%<d(fx.+km_1,Tz) +d(12,T% 0 )}
=max{d (X, 1, 12),d (X 0 1s X)) A (12, T2),
1

(0 T+ T )

since X ,ym 1 € A,un1and Z€ A, .On letting K —00

, we have

l!im M(x, ,z) =d(fz,Tz).

On letting K — 00 and (3.2.9), we have

d(x,Tz) ..
ﬁ S II(HI]O ﬁ(d ( fXI+km—17 fz)) < 1 . Hence
1< ||<im PA(X, 4y f2)) <1 which implies that

B(d(fz,Tz)) > 1las K—o0. Since B €S, we have
fz=Tz.

Therefore Z is a coincidence pointof f and T in X .

Theorem3.3.In addition to the hypothesis of Theorem
2.2, if the maps T and f are weakly compatible then
T and f have a unique fixed point.

Proof: By Theorem 2.2, we have fZ=Tz =U (say).
Since T and f are weakly compatible, we have
Tu=Tfz = fTz = fuimplies fu=Tu.

Common fixed points of generalized Geraghtyco-cyclic contractive maps

Now, we prove that TU =U.
Since Tze X =, A implies TZ € A for some iand
Ze m:T;lA , we have

Ze Afor all 1e€{l,2,...,m}.Now, by the inequality
(2.1.1) we have

d(Tz,TTz) < (M (2,Tz))M (2,Tz) , where (3.3.1)
M (z,Tz) = max{d(fz, fTz),d(fz,Tz),

d( sz,TTz),%(d (fz,TTz)+d(fTz,T2))}

=max{d(Tz,TTz),d(Tz,Tz),d(TTz,TTz),
d(Tz,TTz)}=d(Tz,TTz)

sothat TZ=TTz and hence fu =Tu =U .Therefore U
is a common fixed point of f andT .We now show that
uen A, since fu=Tu=u, we have Ue A for

some i.
Now,
UeA=TueT(A)=>TueT(A)c F(A)=Tu=fve f(A,)

for some VeA . Therefore fu = fvfor some
Ve A, since fisone-one we have U=Ve A, so
that U A+1- By repeating the same argument, we get
uenA.

Uniqueness: Let Y and Z be two common fixed points of
T and f . Then we have
Ty=fy=yandTz=fz=zandy,zen A.

From the inequality (2.1.1), we have

d(y,z) =d(Ty,Tz) < (M (y,2))M (y,2),

where (3.3.2)

M (y, z) = max{d(fy, fz),d(fy,Ty),d(fz,Tz),

%(d(fy,de(ry, 2))}
=max{d(y,z),d(y,y),d(z,2),

1

5(d(y,z)+d(y, z))}=d(y,z)

From (3.3.2) and since €S, we have d(y,z)=0.
e, Z=Y.

Therefore f and T have a unique common fixed point in

X.

Corollaries and Examples
By choosing f=|xin Theorem2.2, we have the

following corollary.
Corollarie 4.1.Let (X,d)be a complete metric space.

Suppose that Ma positive integer, A, A,,..., A, are
non-empty closed subsets of X and X zuirzlA. Let

T : X — X be a mapping such that
(i) U, A is a cyclic representation of X w.r.t. T
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(i d(Tx, Ty) < S(d(x, y))d (X, y) for any Xe€ A and
yeA, with A=A,
P €S and Ais

zen", A suchthat Tz=1z.

each closed.Then there exist

By choosing f=|xin Theorem3.2, we have the

following corollary.

Corollarie 4.2.Let (X,d)be a complete metric space.
Suppose that Ma positive integer, A, A,,..., A, are
non-empty closed subsets of X and X =uirilA. Let
T : X — X be a mapping such that

(i) U, Ais a cyclic representation of X w. r. t. T (ii)

d(Tx,Ty) < S(M (X, yY))M (X, y) ,where
M (x, y) = max{d (X, y),d (x,Tx),d (y,Ty),

%(d(x,Tde(y,Tx»}
forany Xe A and yeA,, with A, ,=A,FeS

and each A is closed.Then there exist Z €M, A such
that Tz=2.

In the following, we provide examples in support of the
results obtained in Section 3.
If we relax the f is not one to one of Theorem 3.3 then

T and f may have a common fixed point.

Example 4.3.Let X ={L,3,5, 7} with the usual metric
Let A ={1,3}and A, ={3,5,7}. We
T,f:X > Xby
T1=T3=3,T5=1T7=3;f1=1,1f3=3,f5=7
and f7=1.

We define the same [ that are mentioned in Example

define

2.5.Now we verify the inequality (3.1.1) in the following:

Case (i):X=land y=5, then d(TLT5)=2and
M(15)=6.

d(Tx, Ty)=d(TLT5)=2< £(6)6
=BM@LEIML5) = BM (X, y)IM (X, y).

Case (ii):X=3and y=5, then d(T3,T5)=2and
M (3,5)=6.

d(Tx, Ty)=d(T3,T5)=2< 3(6)6
=B(M@B5)IM3,5) = BM(X, Y)IM (X, y).

Case (iii): X=1and y=3.

In this case, the inequality (3.1.1) trivially holds.

Case (iv): X=1land y=7.

In this case, the inequality (3.1.1) trivially holds.

Case(v): X=3and y=7.

In this case, the inequality (3.1.1) trivially holds.

Common fixed points of generalized Geraghtyco-cyclic contractive maps

Clearly, T and f are weakly compatible and satisfying all
the hypotheses of Theorem 3.2. Therefore 3is the unique
common fixed pointof T and f and3e A NA,.

Further, we observe that at X =3and y= 5
d(T3,T5)=2" B(2)2=A(d(3,5))d(3,5), for any
pesS

Hence, the inequality(1.1.1) does not hold for any /.

Therefore T is not a Geraghty contractive map. Hence
Theorem1.2 is not applicable.
If we relax the weakly compatibility property T and f of

Theorem 3.3 then T and f may not have a common

fixed point.
Example 4.4.let X ={0,1,2,3}with the usual metric.

tet A ={0,12}and A, ={1,2,3}. We
T,f:X > Xby
T0=1T1=T2=2T3=3;,f0=3,f1=2,f2=1
and f3=0.

define

We define the same [ that are mentioned in Example
2.5.Now we verify the inequality (3.1.1) in the following:
Case ():X=0and y=1, then d(TO0,T1)=1and
M(@0,1)=2.

d(Tx,Ty)=d(T0,T1) =1< B(2)2

=AM O)M(0,1) = B(M (X, y))M (X, y).

Case (ii):X=0and y=2, then d(T0,T2)=1and
M(0,2)=2.

d(Tx,Ty)=d(T0,T2) =1< 3(2)2
=pM(0,2))M(0,2) = (M (X, y)M (X, )

Case (ii):X=1and y=3, then d(T1,T3)=1and
M(,3)=3.

d(Tx,Ty) =d(TL,T3)=1< B(3)3

=pAM@LIIYIM(L3) = (M (x, )M (X, y)

Case (iv:X=2and y=3, then d(T2,T3)=1and
M (2,3) =3.

d(Tx,Ty) =d(T2,T3) =1< A(3)3

=M (2,3)M(2,3) = B(M (X, )M (X, Y)

Case (v): (X, ¥)=(1,2)and (X,¥) =(2,2).

In this case, the inequality (2.2.1) trivially holds.
Hence 2is the coincidence point of T and f and

le ANA,.

Here, we note that T and f are not weakly compatible,
since T1=2and f1=2then T(f(1)=T(2)=2and
fT@)=f(2)=1, so that T(fQ)= f(T).
And we observe T and f have no common fixed points

in Xandle ANA,.
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Further, we observe thatat X=2and y =3

d(T2,T3)=1" AMW1=A(d(2,3))d(2,3) for

any

pesS

Hence, the inequality(1.1.1) does not hold for any f.

Therefore T is not a Geraghty contractive map. Hence
Theorem1.2 is not applicable.
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