
 International Journal of Multidisciplinary and Current Research ISSN: 2321-3124

 Research Article Available at: http://ijmcr.com

274|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra)
Databases for Business Intelligence

Toluwalope Mary Akinmoladun

1
, Peter Lake

1
, Oluwarotimi Williams Samuel

2
 and Konstantinos Domdouzis

1

1Department of Computing, Sheffield Hallam University, Sheffield, UK, England
2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Accepted 22 March 2017, Available online 23 March 2017, Vol.5 (March/April 2017 issue)

Abstract

The need for business intelligence systems (BI) cannot be overemphasised because of the huge data constantly being
generated in the daily operations of business organisations and the opportunity provided to discover new insights for
the improvement of organisational effectiveness and efficiency from the data. This study attempts to carry out
performance related tests on Oracle and Cassandra in order to propose a suitable database for business intelligence.
Firstly, the extract, transform and load (ETL) processes was used to move data into Oracle and Cassandra virtual
machines. Secondly, SQL and NoSQL queries were run on the data in three iterations to test for performance in selected
workloads (Create and load process, read, update, delete and join operations) both before and after query optimisation.
To create a common ground for comparison, similar queries were run on similar datasets on both databases. Then the
results from the tests were statistically analysed using Microsoft Excel. Experimental results show that the latency
values of Oracle are observed to be lower than that of Cassandra, accuracy values of Cassandra are observed to be
nearly the same with that of Oracle in the create and load process, while their accuracy values are observed to be
slightly different in the remaining tested workload, and the throughput values of Cassandra are observed to be higher
than that of Oracle. Also, the extent to which these performance outcomes support data analytics for BI is hereby
presented.

Keywords: SQL, NoSQL, Cassandra, Oracle, Business Intelligence and CQL.

1. Introduction

The emergence of standards in computing, automation,
and technology involved in modern businesses have led
to the geometric generation of vast amounts of electronic
data. Business organisations now depend on such huge
amount of data to provide feedback and foundational
information about their operational environment.
According to Connolly and Begg [1], Business intelligence
(BI) encompasses the processes for collecting and
analysing data, the technology used in collecting and
analysing the data, and the information determined from
these processes with the intention of facilitating
corporate decision making. In other words, BI brings
together a wide range of analytical software and solution
for collecting, analysing, and providing access to relevant
information needed to make better managerial decisions
[2]. The term business intelligence was first used by Hans
Peter Luhn in 1958 in an article published for IBM, which
he defined as the ability to perceive the existence of
interrelationships in presented facts in such a way that
enhances proactivity and guides action towards a desired
goal. For more than 20 years, the term was not used until
Howard Dresner who was an analyst with Gartner re-

introduced it in 1989. Dresner's definition of BI is similar
to how it is being used today and since then, it has
become widely accepted. The term decision support is
also being used interchangeably with BI although not
popularly used as the latter, it conveys a better literal
meaning [3].
 The reality of social and economic factors faced by
contemporary sectors of industries has made
organisations to seek for equipment that would enhance
effective acquisition, processing and analysing of large
amounts of data that are being generated from
heterogeneous sources and that will make it possible to
identify and predict patterns and trends which will serve
as the basis for discovering new knowledge. Knowledge
workers in organisations need to make decisions under
time pressure, monitor competition and possess different
views about their organisational information, carry out
complex analysis of data from different sources and
consider the different variants needed for their
organisation’s performance. Therefore, organisations
need Business Intelligence (BI) systems to perform these
tasks effectively and efficiently. More of its tasks includes
intelligent exploration, integration, aggregation and
multidimensional data analysis [4].

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

275|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

Business intelligence (BI) software comprises of decision
support technologies intended to enable knowledge
workers such as analysts, managers and executives to
make useful and effective decisions faster. Several
industries have adopted the BI software technology in the
past two decades as a result of the performance both in
the number of products and services derived from
effectively harnessing the BI software. However, the need
for the BI software has majorly increased because
enterprises no longer acquire and store very large
amounts of data from different sources alone, they now
collect data at a finer granularity to meet their specific
needs. This in turn generate a larger volume of data [5].
It is difficult to find a successful organisation that has not
leveraged the BI software technology for its business
data. It has been applied to different sectors such as
manufacturing, retail, financial services, transportation,
telecommunications, utilities and in health care.
 Intelligent data analysis techniques are now deployed
to enhance faster business decisions and deliver
customised functionalities to customers [5]. Zeng et al. [6]
and Nedelcu [7] proposed that accurate, valid, integrated
and timely data are needed for the successful application
of BI in a business enterprise. Elbashir [8] reported that
because BI systems belong to an important class of data
analysis and reporting which provides decision makers
with timely and relevant information, organisations need
to integrate their BI systems into management and
operational processes. Chaudri et al. [5] further asserted
that as a result of the different sources of data and its
inconsistent format, problems of data integration,
cleansing and standardisation are posed for pre-
processing the data required for BI tasks. For example,
data stored in Oracle and Cassandra databases are of
different formats and structure. Thus, efficient and
scalable data loading capabilities are highly imperative to
efficiently extract and integrate (create and load, read,
update and delete operations) the data into BI systems.
 Moniruzzaman and Hossain [9] noted that the digital
world is growing very fast and becoming more complex as
data generation has increased in volumes (terabyte to
petabyte), variety (structured, unstructured and hybrid),
and velocity (high speed in growth). This is a global
phenomenon commonly referred to as Big Data, and such
data cannot be effectively managed for BI by using the
conventional data management tools such as the
relational data management systems. In order to address
this problem, a number of Structure Query Language
(SQL) and Non Structure Query Language (NoSQL) tools
have been proposed as alternative means of analysing
such big data. SQL databases such as Oracle operate on
fixed table structures in which data can only be
selected/retrieved using only the SQL. These kind of
databases often employ one or more join operations to
select/retrieve data across multiple tables. In addition,
SQL driven databases scale well in a vertical manner and
worse in a horizontal manner. On the other hand, NoSQL
databases such as Cassandra typically require key-value

stores, which allows data to be stored and retrieved by
key. Because it does not support the fixed data structure,
less powerful query languages are required to retrieve
the stored data. In contrast to SQL databases, the NoSQL
databases scale well along the horizontally [10]. Despite
the huge advances made in the field of big data analytics,
only few studies had focused on evaluating the
performance of NoSQL and SQL tools with respect to big
data analyses for BI. Hence, deciding the most
appropriate database solution for BI tasks such as
querying, storage, and security [11], is still a major
challenge.
 In this research, the performances of SQL and NoSQL
tools were systematically investigated and compared with
respect to (1) accuracy, (2) average latency, and (3)
throughput, for data analytics by using structured open
data developed for a BI system. The possibilities of using
relational (SQL) and non-relational (NoSQL) databases for
data management tasks were also discussed. As
underlying databases for the developed BI system, Oracle
is considered as a representative of SQL database
because it enables its users perform administrative
functions such as creating schema objects including
tables, views and indexes, granting privileges to users,
managing users’ security, managing database memory
and storage, importing and exporting data, viewing
performance and status information of the database. In
addition, it provides a platform for database performance
tests with the help of utilities like SQL*Loader [12]. On
the other hand, Cassandra was chosen as a representative
of NoSQL database because it is a scalable open source
NoSQL database that is developed for managing large
amounts of structured, semi-structured, and unstructured
data across multiple data centres and the cloud.
Moreover, Cassandra architecture allows authorised
users to access data and connects to any node in the data
centre using the Cassandra Query Language (CQL) which
is similar to the SQL. It also provides a platform for
importing and exporting data using the Cassandra utility
(cqlsh) and viewing performance reports about a
database [13].
 The rest of this paper is organised as follows: Section
2 presents a critical review of existing related research on
SQL and NoSQL databases for BI. Section 3 highlights the
systems specification, details of the software used in the
experimental framework and the steps taken to execute
the performance tests. Section 4 presents and discusses
the obtained and Section 5 concludes the paper presents
future research direction.

2. Literature Review

Lee et al. [14] conducted a research to investigate and
evaluate the suitability of NoSQL and the document-
centric data structure of Extensible Mark-up Language
(XML) for structured clinical data and revealed that in
terms of query speed, NoSQL performed better than XML,
although they both demonstrated the potential of

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

276|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

becoming key databases for clinical data management.
They concluded that implementing NoSQL approach on a
relational database offers database developers the
opportunity of using a schema-less and non-relational
design for handling complex data while maintaining
existing well-established relational database systems.
NoSQL database however, falls short of scalability and
flexibility when compared to XML approaches in their
study.
 Veen et al., [10] compared the relative performance
of an SQL database (PostgreSQL) and two NoSQL
databases (Cassandra and MongoDB) with regards to
sensor data storage and their obtained results show that
Cassandra is best suited for large critical sensor
applications because it is built to scale horizontally,
MongoDB is best suited for small or medium sized non-
critical sensor application, particularly when write
performance is important, meanwhile PostgreSQL is best
suited when flexible query capabilities are required and
read performance is important.
 Hecht and Jablonski [15] investigated the underlying
techniques of NoSQL databases in relation to their
applicability for certain data analytics requirements in BI
by comparing their data models, query possibilities,
concurrency controls, partitioning, and replication
opportunities. They eventually recommended that key
value stores should be used when fast and simple
operations are needed, document stores should be used
when a flexible data model with great query possibilities
is important, column family stores should be used for
large datasets requiring scaling at a large size and graph
databases should be used in domains where data entities
are as important as the relationship that exists between
them.
 Grolinger et al., [11] conducted a review on NoSQL
databases and SQL databases because of the growing
amounts of large data generated daily resulting in
increased data processing and the varying BI tasks
required. He pointed that in terms of querying, SQL
pattern of querying has been adopted in the NoSQL world
because of its widespread usage over the past years. For
example, Cassandra offers a similar variant such as
Cassandra Query Language (CQL). In terms of scaling,
Cassandra has been recognised to be capable in handling
large number of write requests. In terms of security,
NoSQL solutions have been affirmed not to be as mature
as those in traditional relational database systems. When
Cassandra was compared to MySQL, it achieved the
highest throughput in update operations on heavy
workload. It also achieves a good throughput of 50% on
read-write workloads and 99% on write workloads [16].
Tudorica and Bucur [17] pointed that although, NoSQL
databases were created to offer a higher performance in
speed and size and a higher availability at the price of
replacing the ACID (Atomic, Consistent, Isolated, Durable)
trait of relational databases with a weaker BASE (Basic,
Availability, Soft state, Eventual Consistency) trait, it is
suggested that they cannot be used interchangeable but
should rather be chosen depending on the problem at a
given instance.

Li and Sathiamoorthy [18] conducted a study to
investigate the performance of some NoSQL and SQL
databases by comparing read, write, delete and
instantiate operations on key-value stores and discovered
that not all NoSQL databases perform better than SQL
databases as some are much worse. For each database,
performance varies with each operation and there is a
relationship between performance and the data model
each database uses. For instance, Cassandra is slow on
read operations but reasonably good on write and delete
operations. This implies that data retrieval will be slow
while data creation and updating as well as deletion are
reasonable faster when data analytics for BI is performed
in Cassandra database.
 However, a comparative analysis of the performances
of Oracle (a representative of SQL database) and
Cassandra (a commonly used NoSQL database) have been
rarely investigated especially for BI tasks. Therefore, this
study is aimed at investigating the performance outcomes
in terms of accuracy, average latency, and throughput of
Oracle and Cassandra for structured data management
using similar datasets and workloads on create and load
process, read, delete, and update operations. The results
of this study may provide proper insight on the most
suitable database for data analytics in business
intelligence.

3. Performance Comparison of Relational (Oracle) and
Non-Relational (Cassandra) Databases

In order to carry out the experiments on Oracle and
Cassandra databases, both test environments are
implemented using similar experimental setups. The
setups make use of two (2) separate Virtual Machine
(VM) Workstation 11 hypervisor which subsequently
hosts one Ubuntu VM operating systems (Oss) each.
Oracle database software application was installed on the
first Ubuntu VM while the Cassandra database software
application was installed on the second Ubuntu VM. The
performance metrics used in the current study include
Average Latency Test (ALT), Accuracy Test (ACT) and
Throughput test (THT).

3.1 System specifications for the experimental setups

Both Cassandra and Oracle VM’s were installed on the
same Workstation, therefore the system specification
remains the same as shown in Table 1 and 2.

Table 1 System specifications

S/N System Configurations

1 System Model HP Z210 CMT Workstation

2 Processor Intel(R) Core(TM) i7-3770 CPU @
3.40GHz

3 Installed-Memory 16.0 GB

4 System type 64-bit Operating System

5 Hard Drive 1 TB

6 Operating System Window 7 Enterprise

7 Hypervisor Application VMware Workstation 11.1.2

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

277|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

Table 2 VM specifications

S/N Virtual machine Configurations

1 Hard Disk size 20.1 GB

2 Internal Memory 1 GB

3 Processor Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz

4 System type 32-bit Operating System

5 Operating System
(Oracle)

Ubuntu 10.04 LTS

6 Operating System
(Cassandra)

Ubuntu 11.10 LTS

3.2 Performance test execution on Oracle database virtual
machine

A number of SQL queries were run against small and large
datasets and migrated using the extract, transform, and
load processes (ETL) to test for performance in create and
load process, read, update, and delete operations before
and after optimisation. All the queries were run in three
iterations and the average was computed. The processes
involved in the individual performance tests are described
as follows.

3.2.1 Average latency tests (ALT)

The processes for the performance tests execution on
small and large datasets before optimisation are quite
similar. For the create process, a Data Definition
Language (DDL) script was created and saved in the test
directory. On the VM terminal, the SET TIMING ON was
typed and at the prompt the DDL script was run to create
tables for both small and large datasets. For the load
process, a control file was created and saved to load
source data in .csv format into the already created tables.
This file was thereafter run in the VM terminal with the
timing and records of the load process stored in the
corresponding log files. For the read, update, delete and
multiple join operations, an SQL script was created to
select, update, and delete data respectively across the
created database, then saved in the performance test
directory. Thereafter, a timing template script for each
operation was created to store the latency results (time
required to query the database system and get the
desired results or the delay and waiting time experienced
by a user during query request) and saved in the test
directory. This script was then run on the VM terminal
and the timing results as well as the retrieved data were
stored in the corresponding log files.
 For the performance tests execution on the small and
large datasets after optimisation, an index was created
for the columns that are in the where clause for select
and join SQL statements and saved in the performance
test directory. Similarly, the same SQL queries used for
the read, update, delete and multiple join operations on
the small and large datasets before indexing were also
run on the datasets after indexing. The timing template
scripts for each operation was also created and run on
the VM terminal to store the latency results of retrieved
data from the database as presented in Figure 1.

Figure 1 Sample screenshot of create process on Oracle

3.2.2 Accuracy tests (ACT)

Similar procedures were employed for the accuracy tests
on both small and large datasets before and after
optimisation. The log files created during the load
processes were checked to record the total number of
correct rows imported when a load query is run. Also, the
text files embedded in the timing scripts were checked to
record the number of correct rows returned /selected
when a read, update, delete and multiple join SQL script
was run against the dataset in the database. A sample of
the small dataset log file on the Oracle database server is
displayed as follows:

Sample of Small Dataset log file on Oracle
SQL*Loader: Release 11.1.0.6.0 - Production on Tue Nov
24 12:36:09 2015
Copyright (c) 1982, 2007, Oracle. All rights reserved.
Control File: SMALLDATASET.CON
Data File: SMALLDATASET.csv
Bad File: SMALLDATASET.bad
Discard File: none specified
Table ACCIDENTS:
 8075 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were
failed.
 0 Rows not loaded because all fields were null.
Elapsed time was: 00:00:01.98
CPU time was: 00:00:00.03

3.2.3 Throughput tests (THT)

For each of the workload tested above, the timing from
the average latency test is divided by the corresponding
number of rows obtained from the accuracy tests to
calculate the throughput (Number of rows
selected/returned per millisecond) of the Oracle
database. The results obtained based on the following

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

278|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

formulae were subsequently recorded for the throughput
performance tests.

Throughput (ms) = Average Latency (ms)/Accuracy (No of
Rows)

3.3 Performance test execution on Cassandra database
virtual machine

The CQL queries similar to the SQL queries written for
Oracle were run against the small and large datasets in
Cassandra and migrated using the ETL processes to test
for performance in create and load process, read, update
and delete operations after optimisation. In contrast to
Oracle, the cqlsh utility in Cassandra database was used
to create and load data simultaneously. The small and
large dataset testing before optimisation was not
conducted because Cassandra does not retrieve data
unless it is optimised (index key creation). Therefore, only
tests for the small and large dataset after optimisation
were conducted. The Apache-Cassandra 1.1.6 requires
named primary key in the where Clause and it does not
support the BETWEEN operator, so few changes were
made to the update and delete query. The Apache-
Cassandra 1.1.6 does not support joins and views and so
few changes were made to the multiple-join statement.
Queries were rewritten and saved three times to enable
the 3-iterative performance tests. All the queries were
run in three iterations and the average value was
obtained. The processes involved in the individual
performance tests are described as follows.

3.3.1 Average latency tests (ALT)

The processes for the performance tests execution on the

small and large datasets are quite similar. For the create

and load process, a script was written to create a key-

space, use the key-space, create a column family and

import the data in .csv format into the Cassandra

database using a text-editor and saved in the tests

directory. On the server terminal, the script was run and

the timing results are displayed on the screen (Figure 2).

This process was repeated three times using the same

key-space.

Figure 2 Sample screenshot of create and load process on

Cassandra database

For the read, update, delete, and multiple join operations,
a CQL script was created to select, update and delete data
respectively across the created database and then saved
in the bin directory of the database. Thereafter, the

scripts were run on the VM terminal using the cqlsh utility
repeatedly for three times. The obtained timing results
are displayed on the screen for recording as shown in
Figure 3.

Figure 3 Sample screenshot of read operation on
Cassandra database

3.3.2 Accuracy tests (ACT)

Similar procedures were carried out to execute accuracy

performance tests on the small and large datasets. For

the create and load process, a CQL script saved in the bin

directory of Cassandra was written to select accuracy

count and re-confirm the results of the timing displayed

during the ALT tests above. This script was run against the

database and compared with the earlier results. The

results were thereafter recorded and was used to

determine the accuracy of the database. For read,

update, delete, and multiple join operation, a CQL query

was written to select accuracy count when any of the

query operations is requested. The results which are

displayed on the screen were verified and recorded

(Figure 4).

Figure 4 Sample screenshot showing accuracy count of

small and large dataset operations on Cassandra

3.3.3 Throughput Tests (THT)

Similarly, for each of the workload tested above, the
timing from the average latency test was divided by the
corresponding number of rows obtained from the
accuracy tests to determine the throughput of the
Cassandra database. The results were then recorded for
the throughput performance tests based on the following
formulae.

Throughput (ms) = Average Latency (ms)/Accuracy (No of
Rows)

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

279|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

4. Results and Discussion

An evaluation of the results of the ALT, ACT and THT
carried out on the Oracle and Cassandra databases are
presented and analysed below.

4.1 Average latency performance test of create and load
process on small and large dataset

The ALT values for Oracle were observed to be lower
compared with the ALT those of Cassandra, even though
Cassandra executed create and load processes together
unlike Oracle which executed them separately (Figure 5).
Therefore, Oracle was observed to perform better than
Cassandra in the creation of tables and loading of large
and small structured datasets.

Figure 5 ALT of create and load process on Oracle and
Cassandra database

4.2 Average latency performance test of read, update,
delete and join operation on large dataset before and
after using indexes

The ALT values for Oracle were observed to be lower
when compared with those of Cassandra even though
Cassandra queries could not be executed without
optimisation unlike Oracle which was executed before
and after (Figure 6 and 7).

Figure 6 ALT of read, update, delete and multiple join
operation on large dataset before using indexes

Figure 7 ALT of read, update, delete and multiple join
operation on large dataset after using indexes

Therefore, Oracle was observed to perform better than

Cassandra in read, update, delete and join operations of

queries on the large structured datasets after

optimisation

4.3 Accuracy performance tests of create and load process

on small and large dataset

The ACT values for Cassandra were examined to be nearly

the same when compared with those of Oracle as shown

in Table 3. Hence, it could be said that Oracle and

Cassandra have approximately equal accuracy

performance in the creation and load process of large and

small structured datasets.

Table 3 Accuracy Performance Tests for create and load

process on small and large datasets before and after
optimization

Workload Oracle Cassandra

Create tables of small dataset 0 0

Load process of small dataset 8075 8075

Create tables of large dataset 0 0

Load process of large dataset 16147 16148

4.4 Accuracy performance tests of read, update, delete
and join operation on large dataset before and after using
indexes

The ACT values for Cassandra are observed to be slightly

different when compared with the ACT performance

values for Oracle in large dataset after optimisation (Table

4). Therefore, Oracle was observed to have an accurate

performance in read, delete, update and join of queries

on large structured datasets before and after

optimisation, while Cassandra was observed to have only

an accurate performance in read, update and multiple

columns join of queries on large structured datasets after

optimisation.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

SMALL DATASET
CREATE

SMALL DATASET
LOAD

LARGE DATASET
CREATE

LARGE DATASET
LOAD

AVERAGE LATENCY PERFORMANCE(ms)

AVERAGE LATENCY PERFORMANCE(ms)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

READ
OPERATION

UPDATE
OPERATION DELETE

OPERATION JOIN
OPERATION

AVERAGE LATENCY BEFORE OPTIMISATION WITH LARGE DATASET(ms)

AVERAGE LATENCY BEFORE OPTIMISATION WITH LARGE DATASET(ms)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

READ OPERATION UPDATE
OPERATION

DELETE
OPERATION

JOIN OPERATION

AVERAGE LATENCY AFTER OPTIMISATION WITH LARGE DATASET(ms)

AVERAGE LATENCY AFTER OPTIMISATION WITH LARGE DATASET(ms)

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

280|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

Table 4 Accuracy performance tests of read, update,
delete and join operation on large dataset before

optimisation

Accuracy before optimisation with large dataset(rows)

Workload Oracle Cassandra

Read operation 14299 0

Update operation 14299 0

Delete operation 14299 0

Multiple table/colomn join
operation

16147 0

Accuracy after optimisation with large dataset(rows)

Workload Oracle Cassandra

Read operation 14299 14300

Update operation 14299 2000

Delete operation 14299 16148

Multiple table/colomn join
operation

16147 16148

4.5 Throughput performance tests of create and load
process on small and large dataset

The THT values for Cassandra are observed to be higher
when compared with the THT performance values of
Oracle even though Cassandra executed create and load
process together unlike Oracle which executed them
separately (Figure 8). Hence, Oracle could be said to have
better performance than Cassandra in the creation of
tables and loading of large and small structured datasets.

Figure 8 THT performance of create and load process on
small and large dataset

4.6 Throughput performance tests of read, update, delete
and join operation on large dataset before and after using
indexes

The THT values for Cassandra were equally observed to

be higher when compared with the THT performance

values of Oracle even though Cassandra queries could not

be executed without optimisation unlike Oracle which

was executed before and after optimization (Figure 9 and

10). This clearly shows that Oracle performed better than

Cassandra in read, update, delete and join operations of

queries on large structured datasets after optimisation.

Figure 9 THT performance of read, update, delete and
join operation on large dataset before optimisation

Figure 10 THT performance of read, update, delete and
join operation on large dataset after optimisation

Conclusions and Future Works

Based on the results obtained in this study, it could be
said that using Oracle as a database for business
intelligent systems will provide better performance in
terms of latency, throughput, and accuracy when
compared with the corresponding performances of
Apache Cassandra database. Specifically, Oracle’s support
for joins and views enables query optimisation for better
performance results. Its structured schema enhances
accuracy, throughput, and latency during import of data
from external sources and CRUD (create, read, update
and delete) operations on small and large structured
datasets before and after optimisation. These
performance outcomes of Oracle may enhance data
analytics in the real world of business intelligence.
However, Cassandra’s support for the creation of column
family and imports of data from external sources
simultaneously saves time in terms of writing queries; its

0.000000

0.000100

0.000200

0.000300

0.000400

0.000500

0.000600

SMALL DATA
CREATE

SMALL DATA
LOAD

LARGE DATA
CREATE

LARGE DATA
LOAD

THROUGHPUT PERFROMANCE TEST (1 row per ms)

THROUGHPUT PERFROMANCE TEST (1 row per ms)

0.000000

0.000010

0.000020

0.000030

0.000040

0.000050

0.000060

0.000070

0.000080

0.000090

0.000100

READ
OPERATION

UPDATE
OPERATION DELETE

OPERATION JOIN
OPERATION

THROUGHPUT BEFORE OPTIMISATION WITH LARGE DATASET (1 row per ms)

THROUGHPUT BEFORE OPTIMISATION WITH LARGE DATASET (1 row per ms)

0.000000

0.000500

0.001000

0.001500

0.002000

0.002500

READ
OPERATION

UPDATE
OPERATION DELETE

OPERATION JOIN
OPERATION

THROUGHPUT AFTER OPTIMISATION WITH LARGE DATASET (1 row per ms)

THROUGHPUT AFTER OPTIMISATION WITH LARGE DATASET (1 row per ms)

Toluwalope Mary Akinmoladun et al Comparative Analysis of Relational (Oracle) and Non-Relational (Cassandra) Databases for Business Intelligence

281|Int. J. of Multidisciplinary and Current research, Vol.5 (March/April 2017)

processor which supports data indexing before executing
queries ensures query optimisation and maintains data
quality while its low accuracy in delete operations
reduces data reliability and completeness on structured
data. These performance outcomes of Cassandra may not
provide optimal support for structured data analytics in
the real world of business intelligence. Analysing the
results presented in Tables 3, 4 and Figures 5, 6, 7, 8,
9,10, it can be observed that Oracle performed better
than Cassandra as it exhibited higher throughput and
lower latency in the create process, load process, read,
update, delete and join operations on small and large
structured datasets before and after optimisation. Also,
Oracle and Cassandra both have approximately equal
accuracy performance as they exhibited almost same
results in the create process, load process, read, update
and join operations on small and large structured
datasets before and after optimisation but a slight
difference in delete operations. Therefore, for the
development of business intelligent systems in
organisations, Oracle database may result in optimal
support for small and large structured data analytics than
Cassandra database. It is important to note that this study
only considered structured datasets in its experiment. As
future work, it would be useful to carry out the
performance evaluation on unstructured/big data over
heterogeneous systems. In addition, it would be relevant
to include more metrics such as data consistency,
availability, reliability, quality, scalability, and security in
the performance tests. Finally, it is important to
investigate the cause of the lesser accuracy performance
of Cassandra on delete operations.

References

[1] Connolly, Thomas M. and BEGG, Carolyn E. (2015), Database
systems: a practical approach to design, implementation, and
management, 6th ed., Global ed., Harlow, Pearson Education.
[2] gangadharan, G. R. and SWAMI, Sundaravalli N. (2004),
Business intelligence systems: design and implementation
strategies, In: Information technology interfaces, 2004, 26th
international conference on, IEEE, 139-144.
[3] Van Der Lans, Rick (2012), Data Virtualization for business
intelligence systems: revolutionizing data integration for data
warehouses, Elsevier.
[4] Olszak, C. M., & Ziemba, E. (2007), Approach to building and
implementing business intelligence systems, Interdisciplinary
Journal of Information, Knowledge, and Management, 2(1), 135-
148.

[5] Chaudhuri, Surajit, Dayal, Umeshwar and Narasayya, Vivek
(2011), An overview of business intelligence technology,
Communications of the ACM, 54 (8), 88-98.
6] ZENG, Li, et al. (2006), Techniques, process, and enterprise
solutions of business intelligence, In: Systems, man and
cybernetics, 2006, SMC'06. IEEE international conference
on, IEEE, 4722-4726.
[7] Nedelcu, Bogdan (2013), Business Intelligence Systems,
Database Systems Journal, 4(1), 12-20
[8] Elbashir, Mohamed Z., Collier, Philip A. and Davern, Michael
J. (2008), Measuring the effects of business intelligence systems:
The relationship between business process and organizational
performance, International journal of accounting information
systems,9 (3), 135-153.
[9] Moniruzzaman, ABM and Hossain, Syed Akhter (2013),
NoSQL database: New era of databases for big data analytics-
classification, characteristics and comparison, arXiv preprint
arXiv:1307.0191.
[10] Van der Veen, Jan Sipke, Van Der Waaij, Bram and MEIJER,
Robert J. (2012), Sensor data storage performance: SQL or
NoSQL, physical or virtual, In: Cloud computing (CLOUD), 2012
IEEE 5th international conference on IEEE, 431-438.
[11] Grolinger, Katarina, et al. (2013), Data management in
cloud environments: NoSQL and NewSQL data stores, Journal of
cloud computing: Advances, systems and applications, 2 (1), 1.
[12] Oracle (2015), Managing Oracle Enterprise Manager
Database Control, [Online] California, USA, Oracle Corporation,
Last accessed on 01 Dec. 2015 at:
https://docs.oracle.com/cd/E11882_01/server.112/e25494/dbc
ontrol.htm#ADMIN13401
[13] DATASAX (2015). About Apache Cassandra. [Online]
California, USA, Datasax Inc, Last accessed on 01 Dec. 2015 at:
http://docs. datastax.com/en/
cassandra/2.1/cassandra/gettingStartedCassandraIntro.html
[14] LEE, Ken Ka-Yin, TANG, Wai-Choi and CHOI, Kup-Sze (2013),
Alternatives to relational database: comparison of NoSQL and
XML approaches for clinical data storage, Computer methods
and programs in biomedicine, 110 (1), 99-109.
[15] HECHT, Robin and Jablonski, Stefan (2011), Nosql
evaluation, In: International conference on cloud and service
computing, IEEE, 336-341.
[16] RABL, Tilmann, et al. (2012), Solving big data challenges for
enterprise application performance management, Proceedings
of the VLDB endowment, 5 (12), 1724-1735.
[17] Tudorica, Bogdan G. and Bucur, Cristian (2011), A
comparison between several NoSQL databases with comments
and notes, In: 2011 RoEduNet international conference 10th
edition: Networking in education and research, IEEE, 1-5.
[18] LI, Yishan and Manoharan, Sathiamoorthy (2013), A
performance comparison of SQL and NoSQL databases,
In: Communications, computers and signal processing (PACRIM),
2013 IEEE pacific rim conference on, IEEE, 15-19.

https://docs.oracle.com/cd/E11882_01/server.112/e25494/dbcontrol.htm#ADMIN13401
https://docs.oracle.com/cd/E11882_01/server.112/e25494/dbcontrol.htm#ADMIN13401

