Diagnosis of Malaria Infection using Three Diagnostic Techniques in Diary Villages Khartoum North State during the Period October 2015-February 2016

Hammad.A¹. Musa.H.A², Elfadil A.G³, Bashir.A²; Mohammed. Makkawi¹, Mohammed. Babeker¹, Awad. Mohy Eldeen⁴, Yasir Hassan⁵
¹Department of Parasitology. ²Department of Microbiology, ³Department of immunology, National Ribat University, ⁴Primary health care Ministry of Health. ⁵Department of Medicine, Elrazy University, Sudan

Accepted 25 March 2017, Available online 21 April 2017, Vol.5 (March/April 2017 issue)

Abstract

Background: Laboratory diagnosis of malaria is currently recommended for the confirmation of the disease before management. The two most common techniques in use for the diagnosis of malaria parasite in Sudan are Giemsa stained smears and Rapid diagnostic tests (RDTs). This study was carried out to compare microscopy (Giemsa and Acridine orange stain) and RDTs as effective tools for the diagnosis of malaria among individuals with clinical symptoms attending local primary health care center.

Methods: Traditional Giemsa stained thick blood films were compared with Acridine orange fluorescence's techniques and RDTs for the diagnosis of malaria in blood smears collected from symptomatic individual in new malaria area of Diary villages of Khartoum North state, Southern Khartoum Sudan. The information of clinical symptoms were collected by the clinician using structured questionnaire. A total of 432 subjects were examined between the period of October 2015-February 2016.

Results: Prevalence rate of malaria infection was not significantly different between sex (P = 0.06). The overall positive cases were found to be 328 (75.9%) out of 432. The commonly affected age group was found among children aged 1-10 years old 164 (38%). The study also revealed predominance of Plasmodium falciparum malaria 227 (73.9%) among all the positive cases of malaria. Performance of the three techniques Giemsa stain, Acridine orange stain and RDTs showed positive rate 139 (42.9%), 266 (81.1%) and 306 (93.6%) respectively.

Conclusions: The study concluded that P. falciparum is the commonest species in the area. The acridine orange diagnostic technique is a valuable alternative method that can be used specially in well equipped laboratories. Rapid diagnostic tests alone can’t replace Giemsa stain technique but when used with other techniques can be with better value.

Keywords: Malaria parasite. Giemsa, Acridine orange, RDTs.

Introduction

Malaria is one of the most important parasitic diseases of humans, which caused by plasmodium spp that transmitted through the bite of infected female Anopheles mosquitoes. About 3.3 billion persons are estimated to be at risk of malaria infection of whom 243 million are infected in Africa and nearly 863,000 died of them (WHO 2008). In the Sudan, malaria is a leading cause of morbidity and mortality. The annual estimated number is 7.5 million cases and 35,000 deaths, accounting for 20-40% of the total outpatient attendance and around 40% of admissions (WHO-Sudan 2005). Malaria is prevalent in Khartoum with higher transmission in the peri-urban areas (Elseyed 2000). Early diagnosis and treatment of malaria infections are key factors to reduce malaria-related morbidity and mortality. In many endemic countries including Sudan, patients are usually clinically diagnosed (fever, nausea, joint pain, headache, vomiting) and only a small proportion of malaria cases are tested owing to a lack of diagnostic capabilities, therefore raising a considerable uncertainty surrounding the estimate of the number of cases and deaths.

The definitive diagnosis of malaria in most clinical laboratories depend on the demonstration of malaria parasite in Giemsa stained thick and thin blood films (WHO, 1991). But this method is labor intensive and time consuming for the diagnosis of malaria, in addition it requires a reader with experience and skill to provide an accurate diagnosis (McKenzie FE 2003). Alternative to traditional Giemsa staining of blood film for the detection of malaria parasites Sodeman in 1970 introduced for the first time the staining of...
thick blood film by Acridine orange. A few year later WHO proposed the Acridine orange staining for
identification of malaria parasite (Shute and Sodeman 1973). Adding of fluorescent dyes to blood film
highlighted the presence of low parasitaemia within erythrocytes and it can be considered as a potential
method of improving the accuracy of microscopic
diagnosis (Srinivasan, 2000). However this method has
several limitations including cost and well equipped
laboratory. The diagnostic errors in microscopy occurs
more commonly with low density parasitaemia (10 –
100 parasite/μl of blood) or in higher density of >
5000 / μl of blood (Kilian, 2000).To overcome this
problem new technology methods have emerged and
they include antigen detection, serology for antibodies
flow cytometry and PCR (Murray,2008). The rapid
diagnostic test (RDTs) performance for diagnosis of
malaria has been reported as excellent
method(Chilton, Donder 2006, 2007). Bell (2006) and
Murray (2008) have showed a wide variation in
sensitivity in malaria endemic areas. Overall RDTs
appear as highly valuable, for healthcare workers for
its simplicity to perform even by unskilled person.
The test employ lateral-flow immunochromatographic technique (Bell 2006).
The limitation of RDTs is that it can give false positive and false negative results due to the persistence of
the target antigens, their inability to distinguish plasmodium species, cost and limited to monitor
responses therapy (Sotimehin, 2008). This study was
carried out to compare Giemsa-stained smears, Acridine
orange stained blood film microscopy and malaria rapid
diagnostic test as methods for the detection of
Plasmodium parasitaemia among patients with fever
and other symptom at primary health care centre at
the end of rainy season in Diary villages Sudan.

Material and methods

The study area are Diary villages in Northern Rural
Province of Khartoum North, located 60 Km North
Khartoum and about 3.5 Km from the River Nile. The
area cover a land mass of 20 Km², with 3.500
inhabitant of one ethnic group with low
socioeconomic status. The inhabitants use piped water
which they store in large open container for many
weeks. The area is considered as a new malaria area.
Ethical approval was obtained from the medical
research ethical committee in the National Ribat
university. The study was clinical and laboratory based
study done in the period of October 2015 - February
2016. A total of 432 patients, both sexes and different
age groups with clinical symptoms of malaria
who attended the clinic during the study period
were included in the study.

Blood collection and examination

2 ml of venous blood samples were collected into an
Ethylene diamine tetra acetic acid (EDTA) containing
bottles for the study, using vein puncture technique
(CEC Okocha, 2005). For malaria microscopy two slides
thick and thin smear were made from patient’s blood
samples according to Cheesebrough (2000), allowed
to air-dry and fixed in methanol. One slide smear from
each sample was stained with 10% Giemsa solution
using standard procedure and examined microscopically
under oil immersion at X 100 on Olympus CH25
microscope, by two expert technologist from the
parasitology unit faculty of laboratory sciences Ribat
university. A film was considered negative if 100
microscopic fields showed no parasites.

For Acridine orange technique Just before
examination, 10 μL of Acridine orange stain (100 pg /
ml in phosphate - buffered saline, pH 7.2) were
pipetted on to a clean 22x22 mm glass cover slip
which was then inverted and placed on the prepared
blood film. The slide was examined at magnification of
x 40, on Olympus microscope with mercury light
source model B X 51 TRF Japan, by specialist
technologist from the microbiology laboratory.
Parasite nuclei fluoresce bright green, while
cytoplasm appear yellow orange. Each sample was
also subjected to malaria RDTs using the SD BIOLINE
Malaria Ag P.f & P.v Test kit (Standard Diagnostics India)
according to manufacturer’s instructions by trained
medical assistance at field. Microscopy and RDTs
were performed by different persons and each was
blinded from the report of the other. Data obtained
was analyzed using the statistical package SPSS
version 21. The level of significance was set at ≤ 0.05.

Results

Out of the 432 individuals enrolled in the study,
206/432 (47.7%) were males 226/432 (52.3%) were
females.
The overall prevalence of malaria among
the studied group was 328 out of the 432 patients. The
commonly infected age was among the age group 1-
10 years (164/328 (38%) table 1.

<table>
<thead>
<tr>
<th>Age range</th>
<th>positive</th>
<th>negative</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>164</td>
<td>38.0%</td>
<td>57</td>
</tr>
<tr>
<td>11-20</td>
<td>57</td>
<td>13.2%</td>
<td>20</td>
</tr>
<tr>
<td>21-30</td>
<td>47</td>
<td>10.9%</td>
<td>11</td>
</tr>
<tr>
<td>More than 30</td>
<td>60</td>
<td>13.9%</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>328</td>
<td></td>
<td>104</td>
</tr>
</tbody>
</table>

No significant difference was observed in malaria
prevalence among the different sexes (p = 0.06). Table 2.
The detection of the malaria parasite infection by the three different techniques showed that the positive results by the rapid diagnostic test was 306/328 (93.6%), by the acridine orange stained thin blood film 266/328 (81.1%), and by the Giemsa stained films as the gold standard 139/328 (42.9%) (table 3). Acridine orange stain and RDTs showed sensitivity and specificity of 100%, 98.9% and 71.0%, 61.7% respectively. All the positive specimens by AO stain were positive also by the Giemsa stain. There were twenty positive specimens by AO stain that were negative by RDTs and three specimens that were positive by GT but negative by RDTs.

The correlation between the three techniques using the Giemsa stained smears as the gold standard showed a significant difference in favor of the rapid diagnostic test and the acridine orange stain (P = 0.000) (table 4).

The distribution of the different plasmodium species diagnosed by the rapid diagnostic test among the 307 positive results was plasmodium falciparum 227, plasmodium vivax 43 and mixed infection 39.

Discussion

All the study samples were collected from patients with clinical symptoms of malaria in Diary villages. The study compared three techniques to detect malaria parasites, and it revealed a high malaria prevalence rate (75.9%) among patient attending the primary health care center in the village, which is high compared to the study done in Dibaira camp in New Halfa town Sudan (Yousif et al., 2005). Another study done in Dar Alsalam and Jabal Awlia camp showed also low prevalence 5% and 11% respectively (Miskelyemen et al., 2012). The explanation for this high finding may be due to the changing of the population habits. In the past they use to bring water from the River Nile which is far from the village. Now a days they use pipe water and they usually store it in large open containers together with small pools that created by broken pipes as well as the activity of cultivation of some vegetables around the habitat which created a good condition to the vector breeding.

Compared to this report Houmsou reported high prevalence rate of (39.5%) of malaria among patients in Nigeria and Chansuda and Awalludin 48% in the Republic of Indonesia (Houmsou et al., 2011, Chansuda and Awallindin (2006). The highest malaria prevalence was observed in patients of the age groups 1-10 year with 38.0%. This probably due to the weak immunity status of this group and their ignorance of the preventive measurement. This finding is lower than that reported by Alioune et al. who observed 51.8% among the age groups 1-13 years and 55-68 years in Dielmo and Ndlopi villages of Senegal (Alioune et al., 2010). The similar rates of infection observed among males (50.3%) and females (49.7%) could be the result of exposure to malaria parasite due to environmental and living conditions which support the availability of the vector.

Performance of the HRP-2 Rapid Diagnostic Test recorded a sensitivity of 98.9% and specificity of

Table 2: Sex-related prevalence of malaria infection among patients attending the primary health care

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent %</th>
<th>Males</th>
<th>Females</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>328</td>
<td>75.9</td>
<td>165</td>
<td>50.3%</td>
</tr>
<tr>
<td>Negative</td>
<td>104</td>
<td>24.1</td>
<td>41</td>
<td>39.4%</td>
</tr>
<tr>
<td>Total</td>
<td>432</td>
<td>100</td>
<td>206</td>
<td>47.5%</td>
</tr>
</tbody>
</table>

Table 3: Comparison of Acridine orange fluorescence examination of thin blood films, Giemsa stained thick blood film techniques and Rapid diagnostic test for diagnosis of malaria

<table>
<thead>
<tr>
<th></th>
<th>G.stain</th>
<th>A.O.stain</th>
<th>RDTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>139</td>
<td>266</td>
<td>306</td>
</tr>
<tr>
<td>Negative</td>
<td>189</td>
<td>62</td>
<td>246</td>
</tr>
<tr>
<td>Total</td>
<td>328</td>
<td>328</td>
<td>307</td>
</tr>
</tbody>
</table>

Table 4: Comparison of the three techniques and the correlation each other

<table>
<thead>
<tr>
<th></th>
<th>positive</th>
<th>Negative</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.stain</td>
<td>139</td>
<td>171</td>
<td>310</td>
<td>0.000</td>
</tr>
<tr>
<td>RDTs</td>
<td>307</td>
<td>125</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>A.O.stain</td>
<td>246</td>
<td>20</td>
<td>266</td>
<td>0.000</td>
</tr>
<tr>
<td>RDTs</td>
<td>307</td>
<td>125</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>A.O.stain</td>
<td>266</td>
<td>0</td>
<td>266</td>
<td>0.000</td>
</tr>
<tr>
<td>G.stain</td>
<td>139</td>
<td>293</td>
<td>432</td>
<td></td>
</tr>
</tbody>
</table>
61.7.4%. Sensitivity and specificity obtained in this study were within the range that found by previous studies ((Houmsou et al., 2011, Willcox ML et al., 2009, Murray CK et al.,2008) The false-negative result obtained (6.1%) could be due to undetected HRPT-2 antigen which may be due to gene deletion by individual for the production of HRP-2 and so will give a negative result with these RDTs (WHO, 2008). Other limitations of RDTs for this antigen is related to the method of storage and transport which affect the test sensitivity (WHO, 2008).Other limitation of RDTs is the false negative results. In this study there were 3 specimens gave negative RDTs but the parasites were detected in Giemsa stained films. Also 20 specimens were negative in RDT but positive in acridine orange fluorescence techniques. Films examination in microscopy remains the standard method for diagnosing malaria. However in settings where microscopy is unavailable the application of RDTs can be of very high value in the diagnosis of malaria specially if other RDTs that detect other target antigen such as PLDH or Aldolase are used.

In case of Acridine orange staining the study result demonstrated the highest sensitivity 100% and specificity 71.0% compared to the Giemsa staining. This was different from other study that reported sensitivity and specificity 96.4% % and 95.1% respectively (F&d&rick Gay., et al 1996). One hundred and twenty seven specimens positive by AO were negative by G T. So the advantage of Acridine orange stain is that it is more sensitive than Giemsa stained smears. However, the technique necessitates a fluorescence system, which is not usually available in most of the developing counties. To overcome this problem daylight-illuminated microscopes fitted with interference filters, could have significant advantages for field use Kawamoto, F. (1991).

The current study documented that *P. falciparum* is the most common species diagnosed from the cases reported in the primary health care center, followed by *Plasmodium vivax*. No other species detected among the inhabitant of the Diary villages. This high occurrence of *P. falciparum* was reported by other investigators in Khartoum state and the findings of WHO which reported predominance of *P. falciparum* infection in sub-Saharan Africa ((Miskelyemen A et al., 2012, WHO, 2008)

Conclusion

The results concluded that malaria infection was common among symptomatic individuals attending the primary health care, and *P. falciparum* was the common infective species. Although the RDTs has some limitations due to the false negative results but it can be a good diagnostic method in settings where microscopy is unavailable. However blood film examination by microscopy remains the standard method for diagnosing malaria since it is sensitive, cheap and simple to apply. The study showed that AO was quite sensitive even in specimen with low density of parasites, Combination of AO and RDT could be an appropriate method for both clinical and epidemiological studies. The study recommended that AO using modified light microscopy should be applied in parallel to G T or/ and RDT.

Acknowledgment

Our gratitude goes to the patients involved in this study and to the people of Diary villages. We particularly grateful to our colleague Mohammed Ibrahim who kindly supplied the acridine orange stain. Also our thanks to Mrs Soha El Sayed for processing the data. The study was financially supported by the Faculty of Graduate Studies and Scientific Research National Ribat University

References

Hammad A et al Diagnosis of Malaria Infection using Three Diagnostic Techniques in Diary Villages

[14]. Miskelyemen A El Mekki1,2, Nea’am A Aburas2, Abdulaziz A Alghaithy3 and

