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Abstract  
   
The evolution of the ground-state nuclear shapes in describing low-lying states of 

103
Mo isotope, is studied within the 

quasiparticle-phonon coupling plus rotor. Calculations based on the deformed mean field of Nilsson, the monopole-
pairing interaction (BCS) and the quadrupole-quadrupole force. Microscopic structure of quadrupole phonon is given 
from the Tamm-Dancoff Approximation (TDA). The two effects of the recoil and Coriolis forces are included with the 
hypothesis of a symmetric rotational motion. The nuclear deformation and shape coexistence inherent to this mass 
region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying 
one-quasineutron states. 
 
Keywords: Neutron-rich nuclei; quasiparticle states; low-lying levels; γ-phonon. 
 
 
1. Introduction 

 
The nuclear structure of neutron-rich nuclei near A ~ 100 
is of particular interest in studying the effect of nuclear 
deformation and shape coexistence phenomena of 
transitional region. For the even 38Sr and 40Zr isotopes a 
sudden onset of strong deformation is observed from N = 
60, whereas the lighter isotopes up to N=58 are rather 
spherical. There were showed for N=59 isotones, using 
the quasiparticle-Rotor-Model, that some shapes coexist, 
particularly the two unique-parity states πg9/2 and νh11/2, 
in the structure of 

97
Sr, 

99
Zr and 

96
Rb isotopes [1, 2]. The 

clear identification of the bandhead spins, their 
deformations and the Nilsson orbitals of N=59 isotones, 
has given a new insights in understanding the 
mechanisms responsible of this rapid change in shapes, 
which are highlighted from the quadrupole moment 
measurements of the ground state for Rubidium isotopes 
[3]. However, using the self-consistent Total Routhian 
Surface (TRS) model for N > 59 isotones, there have been 
found that the nuclear structure of 

105
Mo and 

103
Zr has a 

medium triaxiality parameter of γ = -19° and γ = 0° [4], 
respectively. The triaxial effect, sign of strong 
deformation, is more important for Mo isotopes than Zr 
ones, using RTRP and TRS models [4, 5]. Experimentally, 
producing Zr and Mo isotopes from 

238
U(α,f) fusion-fission 

reaction mechanism,  the analysis of experimental data 
performed in the framework of the particle–rotor-model 
showed that the triaxial degree of freedom is more 
important for Mo than Zr isotopes [6]. In these 

calculations, the Cranked shell model was used for the 
study of the crossing frequency of the aligned band. It 
was concluded that the alignment of νh11/2 neutron 
orbital is responsible for the first band crossing in the 
even Zr and Mo isotopes [6], which has a great 
consequence on the behavior of 5/2

-
(532) bands in the 

odd Zr and Mo isotopes. In the transitional region A~100, 
the nuclear shape is soft spherical-deformed, which is 
theoretically a reason to do not use a rigid triaxiality. It is 
then a better way to treat this spherical-deformed shape 
by using the coupling between (axial) rotation and 
vibration. Therefore, in our work, we have used a Soloviev 
[7] inspired model: Quasiparticle Phonon plus rotor, 
where TDA phonon was used instead of RPA one.  We 
have developed a microscopic description for the low-
lying excited states of odd-A = 105 and 130 nuclei [8-9]. 
For the transitional region, a microscopic structure is 
considered for the quadrupole phonon by means of 
Tamm-Dancoff Approximation (TDA), developed in the 
Ring-Schuk book [10]. This method is microscopic and 
provides two-quasiparticle structure of the quadrupole 
vibrational core (γ-phonon) in contrast to the 
phenomenological model in which the phonon structure 
is excluded.  
 This paper is then organized as follows where the 

theoretical formalism of total Hamiltonian is developed in 

section 2, with a discussion of the intrinsic eigenvalue 

problem. In section 3, the results of calculations are 

presented and discussed in the case of existing 

experimental data for 
103

Mo [6]. And finally, our 
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conclusions for the nuclear structure in transitional region 

are presented in section 4.   

 
2. Theoretical Procedures 
 
The calculations presented in this paper are investigated 
via a new code based on Nilsson, BCS and TDA 
formalisms. The originality of our new method is based on 
the diagonalization of total Hamiltonian, emanating from 
individual and collective correlations.     
 
Total Hamiltonian formalism 
 
Theoretically, the odd-A nucleus is treated as a system of 
an extra-nucleon coupled to an even-even core, with the 
standard assumption of total Hamiltonian [11], 
 
H = Hrot + Hint                                                                 (1) 
 
Where Hrot is the collective kinetic energy associated to 
the rotation of the nucleus. And, Hint is the intrinsic 
motion treated as one-body deformed potential field Hsp 
plus a two-body residual interaction composed by a short 
range constant pairing force Hp and a quadrupole part HQ 
of the long range multipole-multipole force [10]. 
 
The kinetic energy of rotational motion in the laboratory 
system is developed as: 
 
Hrot = A1R1

2 
+ A2R2

2
 + A3R3

2
                                (2)                                                                                                                                                                                                                                      

 
where Rk is the component of the collective angular 
momentum along the axis of the intrinsic system. Ak is the 

corresponding rotational parameter defined as Ak=ħ
2
/2k 

with the moment of inertia parameter k around the 
three principal axis k=1,2,3 of the nuclear mass 
distribution. 
 In (2) we gave a general triaxial form. However, in this 
paper we limit our analysis to the case of a nucleon 
coupled to an axially symmetric rotor [12]. The rotational 
Hamiltonian can then be reduced to 
  

Hrot = ħ
2

 (R1
2
 + R2

2
) /2                                                           (3)                                                                                                      

 

with the same moment of inertia  along the two axis k = 
1, 2 perpendicular to the symmetry axis k=3.  
 

The total angular momentum I is composed of two terms: 
the collective rotation of the core R and the angular 
momentum of the extra-nucleon J; I = R + J. Since I is a 
conserved quantity, R in (3) is replaced by I and J. The 
total Hamiltonian (1) is then expressed as [12]:                                    
 
H = Hint + HI + HC                                                                                                         (4) 

                                                                                                                                                                
where 
 
Hint = Hsp + HP + HQ + HJ 

HI = AR(I
2 

- I3
2
)         

HC= -AR(I+J- + I-J+) 
HJ= AR(J

2
 - J3

2
)                                                                           (5)                                                                                                                      

 
with I± = I1 ± iI2, J± = J1 ± iJ2 and the rotational coefficient 

AR = ħ
2
/2.  

 
The total Hamiltonian H is thus separated into three 
terms, the intrinsic Hint, rotational  HI and  Coriolis HC 

terms  which couple the intrinsic and rotational motions. 
The intrinsic Hamiltonian is more interesting from a 
physical point of view. It is separated into four parts. The 
first, Hsp, contains the deformed potential field which 
governs the independent motion of nucleons. In this 
sense, we prefer to use the Nilsson harmonic oscillator 
model which is rather simple and is more performed to 
describe a deformed nucleus. Using second quantization, 
Hsp takes the simple form [13]                                                       
 

spH e a a  



                         (6)                                                                                                                                               

 
where a

+
ντ (aντ) is the operator that creates (destroys) a 

particle of nucleon type τ (neutron or proton) in a Nilsson 
orbital and with an energy eντ. The quantum number ν 
stands for the asymptotic quantum along numbers [Nnzlz] 
with the projection Ων of the particle angular mom    
entum along the symmetry axis. The term Hp describes 
the monopole pairing interaction with the strength 
parameter Gτ and is written as [11]:     
 

pH G a a a a    


 

 
                  (7)                                                                                               

The next term HQ is the quadrupole-quadrupole force and 
is expressed by [10] 
                       

'

' '

22 22 2 2 2 2

1
{ ( ) ( ) ( ) ( )}

2
QH Q Q Q Q



     

  
             (8)                                                                              

 
where the quadrupole moment of mass with γ = ± 2 is 
given as one-body interaction 
 

 
2

( )
2 2


 Q r Y a a     

.                             (9)                                                                                                                

 
The last term in equation (5) is the recoil force HJ. In many 
earlier works HJ was neglected with the argument that it 
could be absorbed in the independent nucleon motion of 
the potential average field [11]. Here, we have chosen to 
treat it in the same way as a residual interaction into the 
intrinsic motion. By using second quantization, HJ can be 
expressed as  
 

'

' '1
( ( ) ( ) ( ) ( ))

2
J RH A J J J J



       
                            (10)                                                                          

where the one-body interaction of the intrinsic 
momentum J± is written as 
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( )J J a a 


   

 
                                               (11)                                                                                                   

    
The term HI in equation (4) represents the kinetic energy 
in the rotational motion and produces energy differences 
between states in a rotational band. The inclusion of the 
Coriolis force HC requires the matrix of the model 
Hamiltonian H to be constructed and diagonalized within 
the space of symmetrized functions [11]. 
                         

 2

2 1
( )

16

I I K I

MK M K

I
IMK D K D K  








                  (12)                                                                        

 
Here ρ is the quantum number of a given intrinsic states 
with a projection K of the intrinsic angular momentum 
along the symmetry axis. |Kρ> can be obtained by 
resolution of the secular problem  
                        

int

int ( )sp P Q J KH K H H H H K E K
      

             (13)                                   
 
As it is well known, D

I
MK is the rotational matrix and is an 

eigenfunction of I
2
 and I

3
 with respective eigenvalue I(I+1) 

and K. Thus, a diagonalization of H within the basis states, 
equation (12) requires essentially to determine the matrix 
element of the Coriolis term HC [12] 
 

 ' ' ' '
'

1
' ' '

2
1 1 , 1

2 2

1
( ) ( 1)

2

I

C R K KK K
IMK H IMK A I K J K I K I K K J K    

  


  

  
       

          
                (14)                          
      

As we can see from the above equations, the solutions 
must be obtained in a two-step process. First, the intrinsic 
eigenvalue equation (13) when solved gives a set of 
intrinsic states |Kρ> and intrinsic energies EK

int
. From 

these states, different rotational wave functions of the 
form given in (12) are constructed. Then in a second step, 
a diagonalization of the Coriolis term is performed. 
 

Intrinsic Hamiltonian formalism 
     

To discuss the different terms in the intrinsic eigenvalue 
(13) we must first look for a possible solution of the 
system. By neglecting HJ and HQ we have a model which 
describes an independent nucleon motion in a Nilsson 
deformed potential and where is added the pairing 
correlations. The BCS approximation is adopted so as to 
transform the system to an independent quasiparticle 
motion. The long range interaction of quadrupole type HQ 
is introduced so to account for the dynamical mode of 
deformation or the vibrational excitation. We work in the 
frame of Tamm-Dancoff approximation in order to make 
a microscopic structure description for the γ-phonon 
state. Our intrinsic Hamiltonian will contain also a residual 
part of the rotational motion by retaining the recoil force 
HJ which is independent in regard to the total angular 
momentum I. The BCS method is an approximate 
approach to treat pairing correlation by using the 
Bogoliubov-Valatin transformation which makes change 
from particle to quasiparticle operators [14]   

a U V       

                 
(15)                                                                                                                

     
Here the operator αςντ

+
( αςντ ) creates (destroys) a 

quasiparticle in state |ςντ> with a ς-sign depending to 
time reversal symmetry and where the occupation (non-
occupation) probability is expressed by Uντ (Vντ) . The 
expression deduced from Hsp+HP is given by                    
  

 BCSH T E  


                     (16)                                                                                                                    

 
where T is the BCS ground state energy and Eντ is the 
energy of single quasiparticle  
 

 
2

2 2E e G V                         (17)                                                                                                              

 
where λ is the Lagrange multiplicator and Δτ is the energy 
gap. 
      In the same way, the transformation (15) allows the 
expression of quadrupole (9) and intrinsic (11) moments 
to change into form of quasiparticle terms: 
  

 ' ' ' ' ' ' ' ' ' ' ' '

' ' ' '

, ' , ,

2

1, 1,

1
( )

2
Q G F F     

                  
   

          

 
 

   
                 

                      (18) 
where: 
 

 ' ' ' '

, 2 ' '

2G U U V V r Y 

      
              (19)                                                                                              

 

 ' ' ' '

, 2 ' '

2F U U V V r Y 

      
                        (20)                                                                                                                      

and: 
 

 ' ' ' ' ' ' ' ' ' ' ' '

' ' ' '

, ' , ,

1, 1,

1
( )

2
J M N N  

                 
   

             

  
 

   
             

                (21)                                         
Here: 
 

 ' ' ' '

, ' 'M U U V V J

     
  

                 (22)                                                                                                                       

  

 ' ' ' '

, ' 'N U U V V J

     
  

  .                  (23)                                                                                   

 
By introducing these new expressions respectively in (8) 
and (10), the quadrupole and the recoil forces can be 
decomposed as in the form H00 + H11 + H20 + H22 + H31 + H40 
where the subscript refer to the number of quasiparticle 
creation and annihilation operators. In this form, we 
noted that both one-body and two-body interactions 
should be considered [10].  In the frame of Tamm-Dancoff 
Approximation the creation operator of γ-phonon is 
defined as:                   
 

 
1

2
A X 

   
 

    
                                                          (24)                                                                                                                 

 

This expression permits a microscopic structure 
description for the quadrupole vibrational core (γ-phonon 
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state) by showing the X-amplitudes which are related to 
two-quasiparticle excitations. 
 
Intrinsic eigenvalue for odd-A nuclei 
    
The resolution of (13) for an odd-A nucleus is perfected 
by a diagonalization within a basis formed by one-
quasiparticle states (1-qp) and quasiparticle-phonon 
coupling states (qp-phγ). If we retain only the terms that 
do not have a zero matrix element within the states of 
this basis, the intrinsic Hamiltonian is then reduced to 
    

'

20 22 31 11 20 22 31 22

Q Q Q Q J J J J P

int BCS 11H =H H H H H H H H H H        

                                         (25)                                             
 
The Q and J terms are related respectively to quadrupole 
and recoil forces. The last term is H’22

P
 is a residual pairing 

interaction which was neglected in BCS approximation. 
The interaction between two-1qp states and qp-Phγ 
states are given respectively by L11 and L22 matrix 
elements and that between 1-qp and qp-phγ states by L31. 
They are written as follows. 
 

Q J +

11 K'τ BCS 11 11 KτL = BCS α (H +H +H )α BCS            (26)                                                                                               

   
'

22 ' ' 11 11 22 22 22( )Q J Q J p

K BCS KL BCS A H H H H H H A BCS           

                 (27)                                                                                             
    

Q J Q J +

31 γ K'τ 20 20 31 31 KτL = BCS A α (H +H +H +H )α BCS   (28)                                                                                     

 
The eigenvalue problem is written in matrix form 
 

ρ

ρ ρ
11 31 K Kintr

Kρ ρ

31 22 Kγ Kγ

L L C C
= E

L L D D

    
    

    
    

                                      (29)                                                                                                    

 
Where  CK

ρ
 represents the 1-qp component and DKγ

ρ
 the 

qp-phγ component. The intrinsic eigenvalue EK
int

 
corresponds to the eigenvector 
 

 
K KK C D A BCS

 

 

     
 

     

  

 
  
 
               (30)                                             

 

The overlap between the 1-qp and qp-phγ states is always 
zero. However, the overlap between two different qp-phγ 
states can be non-zero so as they can form a non-
orthogonal basis set 
  

+ +

ij γ' i j γ

ij γ'γ γ' jλ γ iλ

λ

S = i j = BCS A α α A BCS

= S δ - (X ) (X )
                                   (31)                                                                                                                 

 

where |i> is the qp-phγ states. To solve this rather 
eigenvalue problem we adopt the method where we first 
solve the eigenvalue equation for the Sij overlap matrix  
 

h h

ij j h i

j

S n                      (32)                                                                                                                                               

The eigenvectors obtained can be written in the basis 
{|i>} as: 
 

h

i

ih

1
i = ω i

n
                              (33)                                                                                                                                            

 
They have the property of being mutually orthogonal; 
they have a norm equal to unity and form a complete set. 
The amplitude Dν

ρ
 in (30) are then calculated from the g-

amplitudes in the following way 
 

ρ ρ h

ν h ν

h h

1
D = g ω

n


                 (34)                                                                                                                                        

 
3. Results and discussion 
      
The new code discussed in this work is developed for the 
transitional region A~100 with particular investigation of 
the low-lying states of 

103
Mo, which are treated as a 

system of even-even core plus an extra nucleon. We have 
developed this code in respect to the following steps: 
Nilsson, BCS and TDA calculations. For the case of Nilsson 
calculation, we have reproduced the even-even core 
structure using conjointly the deformation parameter 2 
from Möller data  [15]   and from Meyer data  [16], the 
Kappa = 0.068 and Mu = 0.35 parameters of deformed 
average Nilsson field. The BCS pairing was fixed for proton 
and neutron by the well-known phenomenological 
relation p=n=12/A

1/2
 [17]. And, for TDA calculation, the 

parameter of quadrupole force χ was fitted from the 
experimental energy of quadrupole vibrational core using 
the experimental from Guessous et al and Hua et al  
[6,18], where  

102
Mo have  E(2

+
) =295 keV. We have 

summarised the effect of all parameters cited above in a 
subroutine diagonalizing the total Hamiltonian where the 
inertia parameters are determined semi-empirically using 

the energy of first excited state (
2 7/3 1

2 1176( (2 ))A E
 

 ) 

[19, 20]. The partial diagram provided by Nilsson is 
presented in figure 1 for the region of 50 ≤ N ≤ 82, where 
the level energy is a function of deformation parameter 
(ε2) and the pairing correlation Gp=19.6A

-1
 and Gn= (19.6-

15.7(N-Z)A
-1

) A
-1

 are obtained phenomenologicaly [21]. 
 

 
 

Fig.1: The Nilsson diagram of single particle levels for 
neutrons (50≤N≤82) as a function of deformation ε2 
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For the 
103

Mo, where the 
102

Mo core is localised with a 
deformation parameter ε2 = 0.3, we have to primarily 
identifying the ground state from the excited ones in a 
region where the excitation gap is more important 
regarding to the deformation parameter. We introduced 
the BCS method in which the correlation probability 
between quasiparticle operators (creation and 

annihilation) is well determined. With this method, we 
treat numerically for 

103
Mo the energy of 10 up and down 

band-head levels – candidates to be the ground state - 
around the Fermi level.  In table 1, with a precision of 10

-7
 

after 7 iterations, we present for each subsequent level 
the calculated eigen-energy and their occupancy (U) and 
vacancy (V) probabilities. 

 
Table 1: Quasiparticle energy levels calculated for 

102
Mo (neutrons case) around the Fermi surface 

 

Band-head 
number 

Band-head 
levels 

Energy-levels 
(MeV) 

U V 

21 5/2
+
[422] 5.959 0.100 0.995 

22 5/2
-
[303] 4.772 0.125 0.992 

23 1/2
-
[301] 4.749 0.126 0.992 

24 1/2
+
[431] 4.367 0.137 0.990 

25 7/2
+
[413] 3.814 0.158 0.987 

26 1/2
+
[420] 2.429 0.252 0.967 

27 1/2
-
[550] 2.043 0.305 0.952 

28 3/2
+
[422] 2.013 0.310 0.950 

29 9/2
+
[404] 1.559 0.419 0.907 

30 3/2
-
[541] 1.385 0.493 0.870 

Fermi level 

31 3/2
+
[411] 1.342 0.856 0.517 

32 5/2
-
[532] 1.514 0.900 0.436 

33 5/2
+
[413] 1.865 0.941 0.338 

34 1/2
+
[411] 2.579 0.971 0.237 

35 7/2
-
[523] 3.159 0.981 0.191 

36 1/2
-
[541] 3.634 0.986 0.166 

37 5/2
+
[402] 3.855 0.988 0.156 

38 7/2
+
[404] 4.741 0.992 0.126 

39 1/2
-
[530] 5.231 0.993 0.114 

40 9/2
-
[514] 5.382 0.992 0.111 

 
So, when looking for the closest energy level to the Fermi one, we could have a confusing decision if one treats and 

finds out the ground state only according to its energy level. In table 2, we carried out the whole possible ground and  
 excited states correlated from particular states presented in table 1. 
 

Table 2:  BCS eigen-values for Nilsson orbitals of 
102

Mo 
 

<ν/ <ν’/ E(ν) + E(ν’) 

5/2
+
[422] 7/2

+
[413] 9.774 

5/2
+
[422] 3/2

+
[422] 7.972 

5/2
+
[422] 3/2

+
[411] 7.301 

5/2
+
[422] 7/2

+
[404] 10.701 

5/2
-
[303] 3/2

-
[541] 6.157 

-1/2
-
[301] 1/2

-
[301] 9.498 

-1/2
-
[301] 1/2

-
[550] 6.792 

1/2
-
[301] 3/2

-
[541] 6.134 

-1/2
-
[301] 1/2

-
[541] 8.383 

-1/2
-
[301] 1/2

-
[530] 9.980 

-1/2
+
[431] 1/2

+
[431] 8.734 

-1/2
+
[431] 1/2

+
[420] 6.797 

1/2
+
[431] 3/2

+
[422] 6.379 

1/2
+
[431] 3/2

+
[411] 5.709 

-1/2
+
[431] 1/2

+
[411] 6.947 

7/2
+
[413] 9/2

+
[404] 5.373 
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7/2
+
[413] 5/2

+
[413] 5.679 

7/2
+
[413] 5/2

+
[402] 7.669 

-1/2
+
[420] 1/2

+
[420] 4.859 

1/2
+
[420] 3/2

+
[422] 4.442 

1/2
+
[420] 3/2

+
[411] 3.771 

-1/2
+
[420] 1/2

+
[411] 5.009 

-1/2
-
[550] 1/2

-
[550] 4.086 

1/2
-
[550] 3/2

-
[541] 3.428 

-1/2
-
[550] 1/2

-
[541] 5.677 

-1/2
-
[550] 1/2

-
[530] 7.274 

3/2
+
[422] 5/2

+
[413] 3.878 

3/2
+
[422] 1/2

+
[411] 4.592 

3/2
+
[422] 5/2

+
[402] 5.868 

9/2
+
[404] 7/2

+
[404] 6.300 

3/2
-
[541] 5/2

-
[532] 2.899 

3/2
-
[541] 1/2

-
[541] 5.019 

3/2
-
[541] 1/2

-
[530] 6.616 

3/2
+
[411] 5/2

+
[413] 3.207 

3/2
+
[411] 1/2

+
[411] 3.922 

3/2
+
[411] 5/2

+
[402] 5.197 

5/2
-
[532] 7/2

-
[523] 4.674 

5/2
+
[413] 7/2

+
[404] 6.607 

7/2
-
[523] 9/2

-
[514] 8.541 

 
Table 3: TDA calculations for neutrons structure in

102
Mo. X is the amplitude of each couple of orbitals. Each couple is 

identified by the excitation energy Eν + Eν’ and the quadrupole moment of mass. Fνν’ and Gνν’ are the quadrupole 
coefficients 

 
<ν/   /ν’> Eν + Eν’ <ν/r

2
Y22/ν’> Fνν’ Gνν’ X 

3/2
+
[422] 1/2

+
[431] 6.379 -0.122 0.438 -0.899 0.010 

3/2
+
[422] 1/2

+
[420] 4.442 0.952 0.540 -0.841 -0.142 

3/2
+
[422] 1/2

+
[411] 4.592 -0.141 0.997 0.076 0.037 

3/2
-
[541] 1/2

-
[301] 6.134 -0.003 0.598 -0.801 -0.001 

3/2
-
[541] 1/2

-
[550] 3.428 -0.703 0.735 -0.678 -0.189 

3/2
-
[541] 1/2

-
[541] 5.019 0.589 0.939 0.342 0.134 

3/2
-
[541] 1/2

-
[530] 6.616 -0.149 0.921 0.390 -0.025 

3/2
+
[411] 1/2

+
[431] 5.709 0.249 0.919 -0.395 -0.049 

3/2
+
[411] 1/2

+
[420] 3.771 -0.039 0.959 -0.284 0.012 

3/2
+
[411] 1/2

+
[411] 3.922 1.328 0.705 0.709 -0.296 

5/2
+
[422] 1/2

+
[431] 10.327 0.387 0.236 -0.972 0.010 

5/2
+
[422] 1/2

+
[420] 8.389 -0.855 0.348 -0.937 -0.042 

5/2
+
[422] 1/2

+
[411] 8.539 0.069 0.990 -0.138 0.009 

5/2
-
[303] 1/2

-
[301] 9.521 -1.195 0.249 -0.968 -0.037 

5/2
-
[303] 1/2

-
[550] 6.815 0.001 0.422 -0.906 0.000 

5/2
-
[303] 1/2

-
[541] 8.406 0.013 0.999 -0.041 0.002 

5/2
-
[303] 1/2

-
[530] 10.003 0.012 0.999 0.011 0.001 

7/2
+
[413] 3/2

+
[422] 5.827 0.366 0.456 -0.889 0.035 

7/2
+
[413] 3/2

+
[411] 5.156 -1.115 0.927 -0.376 -0.244 

9/2
+
[404] 5/2

+
[422] 7.518 -0.225 0.509 -0.861 -0.018 

9/2
+
[404] 5/2

+
[413] 3.424 0.269 0.996 0.088 0.098 

9/2
+
[404] 5/2

+
[402] 5.414 -1.359 0.962 0.273 -0.293 

5/2
-
[532] 1/2

-
[301] 6.263 -0.003 0.948 -0.319 -0.001 

5/2
-
[532] 1/2

-
[550] 3.557 -0.612 0.990 -0.140 -0.213 

5/2
-
[532] 1/2

-
[541] 5.148 0.388 0.579 0.815 0.053 

5/2
-
[532] 1/2

-
[530] 6.745 -0.825 0.536 0.844 -0.079 

5/2
+
[413] 1/2

+
[431] 6.232 -0.261 0.978 -0.206 -0.049 

5/2
+
[413] 1/2

+
[420] 4.2945 -0.003 0.996 -0.089 -0.009 

5/2
+
[413] 1/2

+
[411] 4.445 -1.177 0.552 0.834 -0.179 

7/2
-
[523] 3/2

-
[541] 4.545 -0.518 0.948 0.317 -0.132 
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5/2
+
[402] 1/2

+
[431] 8.222 0.023 0.999 -0.019 0.003 

5/2
+
[402] 1/2

+
[420] 6.285 -0.183 0.995 0.099 -0.035 

5/2
+
[402] 1/2

+
[411] 6.435 0.073 0.386 0.923 0.005 

7/2
+
[404] 3/2

+
[422] 6.754 -0.187 0.982 0.188 -0.033 

7/2
+
[404] 3/2

+
[411] 6.083 -0.012 0.621 0.784 -0.002 

9/2
-
[514] 5/2

-
[303] 10.154 -0.008 0.999 0.014 -0.001 

9/2
-
[514] 5/2

-
[532] 6.896 -0.396 0.533 0.846 -0.037 

 
 The combinations between states (columns 1 and 2) are 
treated in the approximation of quasiparticle 
independent model, where the Hamiltonian is: 




v
vvEEUH


 )(0

, and the correspondent energy is 

presented in column 3. We find out three possible 
combinations of states. With smallest energy (Eμ + Eν) 
according to the Fermi level, the ground state could be 
formed from the couple (3/2

-
[541], 5/2

-
[532]) with energy 

level of 2.899 MeV, the couple (1/2
-
[550], 3/2

-
[541]) with 

3.428 MeV, or the couple (1/2
+
[420], 3/2

+
[411]) with 

3.771 MeV. Therefore, when comparing these eigen-
values with the ones from table 1, we could expect one of 
the 5/2

-
[532], 3/2

-
[541] and 3/2

+
[411] orbitals to be the 

ground state of 
103

Mo. However, in the Tamm-Dancoff 
Approximation (TDA), the 

103
Mo could be treated in 

simple way as a two-body interaction where the shape 
softness of 

102
Mo could be introduced in dynamic manner 

by γ vibration (see equation 24). In table 3, the amplitude 
values (Xγ)μν of TDA phonon are illustrated for different 
states combinations around the Fermi level. 
 As we can note from table 3, the state 3/2

+
(411) 

presents the largest vibration -0.296 compared to the 
nearest ones, -0.213 and -0.189 for 5/2-(532)  and 3/2-
(541) respectively. Consequently, in the approximation of 
quasiparticle – phonon coupling model, we adopted the 

3/2
+
[411] orbital, originating from the g7/2 subshell, to be 

the ground state of 
103

Mo, which is in good agreement 
with the experimental assignment from [6, 22].  
 We have shown in figure 2, the comparison between 

theoretical and experimental energy levels of the 

collective bands of 
103

Mo is investigated by our QPRM 

calculations, in respect to the deformation parameters 

given by Möller [5], and compared to the existing 

experimental data [8]. The states characterized by the 

same asymptotic quantum numbers Ω
π
 [N, nz, ], where 

Ω is the quantum number that corresponds to the third 

component of the angular momentum in the intrinsic 

frame, π and N being its parity and the principal quantum 

number of the major oscillator shell, nz is the number of 

quanta associated with the wave function moving along 

the z-direction and Λ is the projection of the orbital 

angular momentum onto the z axis (symmetry axis). We 

note that the odd-neutron wave function for the Ω
π
 = 5/2

-
 

isomer is calculated to have the following asymptotic 

Nilsson components: 

 
ǀ5/2

-
> = -0.064[503]+ 0.273 [512]- 0.395 [523]+ 0.875 

[532], while that of the Ω
π
 = 3/2

+
 ground state has 

components: 

ǀ3/2
+
> = -0.174[402]+ 0.894[411]- 0.398[422]- 0.106000 

[431]. 
 

 
 

Fig.2:  Comparison between experimental and theoretical 
values of the ground and rotational band for 

103
Mo using 

QPRM Method 
 

Through analyzing the intrinsic structure of positive and 
negative parity side bands, we conclude that the low-
excitation deformation bands are attributed to the high-j 
intruder states 1g7/2 and 1h11/2 in the N =  4 , 5 shells. In 
addition, we conclude from the discussion of quasi-
particle bands that the quasi-particles in the orbit 
ν3/2

+
[411]  and ν5/2

-
[532] play an important role in the 

deformation of 
103

Mo. The ground state found in our 
calculations is assigned to be 3/2

+
[411] raising up from 

g7/2, which is in good agreement with the experimental 
assignment. As discussed in Refs [6, 22], 

103
Mo has an 

excited state at 346.6 keV assigned to be 5/2
-
[532]. 

Looking at the result of our calculations, this state 
localized at 349.0 keV, is well predicted to be originating 

from h11/2 orbital. They had been arranged in two 
structures: the first one, built on the ground state, 
extends up to spin 11/2

+
 and the other, with negative 

parity, extends from spin 5/2
-
 at 346.6 keV up to spin 

15/2
-
. 

 

Conclusion  
 
We have presented theoretical calculations of intrinsic 
method based on the quasiparticle-phonon coupling, 
inspired by MQPM of Soloviev. We used phonon TDA to 
simplify the calculations with BCS vacuum which is a 
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phonon TDA vacuum.  We have shown that the residual 
interaction coming from rotational Hamiltonian favours 
the positive parity states, because of deformation 
alignment of the states coming from νh11/2 spherical 
orbital. It gives a microscopic description of the structure 
of transitional nuclei by showing coexistence and 
contribution of different excitation modes: individual, 
vibrational and rotational. To obtain intrinsic states, we 
have used a deformed average field of Nilsson, a 
monopole pairing and a quadrupole-quadrupole 
interaction. The states of rotational bands are determined 
by inclusion of both recoil and Coriolis effects coming 
from the treatment of the axially symmetric rotational 
motion. The contribution of vibrational excitation is 
considered by using the Tamm-Dancoff Approximation 
(TDA) so as to give a microscopic structure to the 
bandhead  or the phonon state. The quadrupole force 
tends to deform the nucleus (γ-softness) in such a 
situation where the spherical shape is stabilized by the 
pairing force. When more nucleons are added to the 
spherical shape (closed shell), the relative strength of the 
quadrupole force increases and at a certain point the 
transition to the deformed shape takes place. 
 We have shown for 

103
Mo that the contribution of 

quasiparticle-phonon coupling is more important for 
positive parity states than negative parity ones. At low-
spin the excited stated have been obtained by including 
the Coriolis mixing force. The calculations of negative 
parity rotational structure built upon the intrinsic state 
5/2-[532] have been revised by neglecting the recoil 
force. Using this quasiparticle-phonon coupling method, 
we have analysed the low-lying excited levels in 

103
Mo. In 

general, the results obtained for 
103

Mo are in agreement 
with the experimental data. 
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