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Abstract  
   
Study of nuclear structure exhibits a wide variety of modes of nuclear excitations. The A ~ 100 mass region demonstrate 
a rich diversity of structure phenomena. In this context we utilized the theoretical method based on the quasiparticle-
phonon coupling is developed for a microscopic description of the low-lying states for odd nuclei of the A ~ 100 mass of 
transitional region with application to Sr, Zr, Mo and Ru. The individual excitation is retained in a deformed average field 
of Nilsson and a monopole pairing interaction. The collectif vibrational motion is represented by including the 
quadrupole phonon term given from the Tamm-Dancoff Approximation. The two effects of recoil and Coriolis forces are 
included with the assumption of a symmetric rotation motion. To determine the intrinsic states of an odd-nucleus we 
adopted an exact diagonalization in the basis of both 1-quasiparticle and quasiparticle-phonon states. This contribution 
will conclude with an overview of recent results obtained for theoretical level schemes of 

99
Sr, 

101
Zr, 

103
Mo and 

105
Ru and 

compared with the existing experimental data.  
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1. Introduction 

 
The properties of the low lying states near A ~ 100 are 
particularly fascinating to study several interesting 
features of nuclear structure in this mass region. There 
has been much study of the quasi-collectivity in these 
nuclei and its evolution with spins and neutron numbers.  
For the even 38Sr and 40Zr isotopes a sudden onset of 
strong deformation is observed from N = 60, whereas the 
lighter isotopes up to N=58 are rather spherical. However, 
the abrupt change of the deformation quickly washes out 
when moving away from Z = 38. There were showed for 
N=59 isotones, using the quasiparticle-Rotor-Model, that 
some shapes coexist, particularly the two unique-parity 
states πg9/2 and νh11/2, in the structure of 

97
Sr, 

99
Zr and 

96
Rb isotopes [1, 2]. The clear identification of the 

bandhead spins, their deformations and the Nilsson 
orbitals of N=59 isotones, has given a new insights in 
understanding the mechanisms responsible of this rapid 
change in shapes, which are highlighted from the 
quadrupole moment measurements of the ground state 
for Rubidium isotopes [2]. However, using the self-
consistent Total Routhian Surface (TRS) model for N > 59 
isotones, there have been found that the nuclear 
structure of 

105
Mo and 

103
Zr has a medium triaxiality 

parameter of γ = -19° and γ = 0° [3], respectively. The 
triaxial effect, sign of strong deformation, is more 
important for Mo isotopes than Zr ones, using RTRP and 

TRS models [3, 4]. Experimentally, producing Zr and Mo 
isotopes from 

238
U(α,f) fusion-fission reaction mechanism,  

the analysis of experimental data performed in the 
framework of the particle–rotor-model showed that the 
triaxial degree of freedom is more important for Mo than 
Zr isotopes [5]. In these calculations, the Cranked shell 
model was used for the study of the crossing frequency of 
the aligned band. It was concluded that the alignment of 
νh11/2 neutron orbital is responsible for the first band 
crossing in  the even Zr and Mo isotopes [5], which has a 
great consequence on the behavior of 5/2

-
(532) bands in 

the odd Zr and Mo isotopes. It would be interesting to see 
if these results remain valid for neighboring nuclei Sr and 
Ru. 
 

 In the transitional region A ~ 100, the nuclear shape is 
soft spherical-deformed, which is theoretically a reason to 
do not use a rigid triaxiality. It is then a better way to 
treat this spherical-deformed shape by using the coupling 
between (axial) rotation and vibration. Therefore, in our 
work, we have used a Soloviev [6] inspired model: 
Quasiparticle Phonon plus rotor (QPRM), where TDA 
phonon was used instead of RPA one.  We have 
developed a microscopic description for the low-lying 
excited states of odd-A = 99 and 105 nuclei [7-8]. For the 
transitional region, a microscopic structure is considered 
for the quadrupole phonon by means of Tamm-Dancoff 
Approximation (TDA), developed in the Ring-Schuk book 
[9]. This method is microscopic and provides two-
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quasiparticle structure of the quadrupole vibrational core 
(γ-phonon) in contrast to the phenomenological model in 
which the phonon structure is excluded. The article is 
presented in two main parts.  First, we present advances 
in the understanding of QPRM Method. Second we 
present the results, briefly describe the QPRM method 
that we have used to perform our systematic tests, 
discuss the results obtained in comparison to the 
experimental data from [10, 11, 12, 13] for neutron-rich 
Sr, Zr, Mo and Ru isotopes, and, finally, present the 
conclusions. 
 
2. Theoretical Procedures 
 
The current release of the QPRM code, which is used for 
the transitional region A~ 100 with particular investigation 
of the low-lying states of 

99
Sr, 

101
Zr, 

103
Mo and 

105
Ru which 

are treated as a system of even-even core plus an extra 
nucleon. We take in consideration the following steps: 
Nilsson, BCS and TDA calculations. We make a brief 
reminder of the quasiparticle-phonon coupling plus rotor 
method (QPRM) developed in [7, 8]. The excited state for 
an odd-nucleus are then reproduced has been 
combinaison of rotational state.  
 

I

K
K

I b k

                                                (1)                                                                                               

The index α labels the states with the same angular 

momentum and 
I

Kb  represents the amplitudes of Coriolis 

mixing determined after diagonalization of the total 
Hamiltonien which is separated into three terms: the 
intrinsic Hamiltonian Hint, the rotational terms HI, and the 
Coriolis force HC [14]. 
 
H = Hint + HI + HC                                                                                                   (2)  

  
Where 
 
HI = AR(I

2 
- I3

2
)                                  (2-a)                                                                                                                                                                                                                                     

HC= -AR(I+J- + I-J+)                          (2-b)                                  
 
With I± = I1 ± iI2, J± = J1 ± iJ2 and the rotational coefficient 

AR = ħ
2
/2. The intrinsic motion is essentially represented 

by a quasiparticle system (BCS approximation) by 

considering a Nilsson average deformed field Hsp [15] plus 

a monopole pairing interaction [9]. As residual 

interaction, the quadrupole-quadrupole interaction HQ [9] 

and the recoil force HJ [16] are also added to Hint. 

 
Hint = Hsp + HP + HQ + HJ                                                                       (3)                                                                                                                                        

 
Where 

 

spH e a a

  


                 (3-a)                                                                

H G a a a ap
 

    


                                          (3-b)                                                               

' '

Q 22 22 2 2 2 2
'

1
H {Q ( )Q ( ) Q ( )Q ( )}

2
 

 


                      (3-c)                                                            

1 ' 'H A (J ( )J ( ) J ( )J ( ))
J R2 '
        



               (3-d)                                                          

Where a
+

ντ (a ντ) is the operator that creates (destroys) a 
particle of nucleon type τ (neutron or proton) in a Nilsson 
orbital and with an energy eντ. The quantum number ν 
stands for the asymptotic quantum along numbers [N, nz, 
Λ] with the projection Ων of the particle angular 
momentum along the symmetry axis. The quadrupole 
moment of mass with γ = ±2 is given as one-body 
interaction  

2

2 2Q ( ) r Y a a


   


            (4)                                                                        

Diagonalzation of the total Hamiltonian is performed 
under basis formed by symmetrised rotational functions 
[16]. 
                    

 2I 1 I I K IIMK D K ( ) D K
MK M K216

     

            (5) 

Here ρ is the quantum number of a given intrinsic states 
with a projection K of the intrinsic angular momentum 
along the symmetry axis. |Kρ> can be obtained by 
resolution of the secular problem  
                        

int

int ( )    sp P Q J KH K H H H H K E K
  

           (6)                                                                                             

As it is well known, I

MKD  is the rotational matrix and is an 

eigenfunction of I
2
 and I

3
 with respective eigenvalue I(I+1) 

and K. Thus, a diagonalization of H within the basis states, 
equation (5) requires essentially to determine the matrix 
element of the Coriolis term HC [14] 

 
1 1I' ' 'IMK H IMK A I K J K (I K)(I K 1) K J K2R' C ' 1 1 ' ''2 K ,K 1K K

2 2

 
  

  
  

 


              

 

                   (7)                                        
In the form of the QPRM method, configuration for wave 

functions of an intrinsic state K  must renferms 

contributions of both one-quasiparticle and  
quasiparticle-phonon components. 

                          

K C D A BCS
K K

 
 
 

                               

(8)

                                               

 

 

With BCS is the BCS ground state and 


 represents 

the creator quasiparticle operator for a nuclear τ. The 
quadrupole-phonon operator is defined in the frame of 
the Tamm-Dancoff Approximation (TDA) [9]. 
 

 1
A X

2  
 

      
                                      (9)                                                                        

 
This expression permits a microscopic structure 
description for the quadrupole vibrational core (γ-phonon 
state) by showing the X-amplitudes which are related to 
two-quasiparticle excitations. 
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The resolution of (3) for an odd-A nucleus is perfected by 

a diagonalization within a basis formed by one-

quasiparticle states (1-qp) and quasiparticle-phonon 

coupling states (qp-phγ). If we retain only the terms that 

do not have a zero matrix element within the states of 

this basis, the intrinsic Hamiltonian is then reduced to 

 
Q Q Q Q J J J J 'P

int BCS 11 20 22 31 11 20 22 31 22H H H H H H H H H H H        =        (10)                                                   

 
The Q and J terms are related respectively to quadrupole 

and recoil forces. The last term is 
'P

22H  is a residual 

pairing interaction which was neglected in BCS 

approximation. The interaction between two-1qp states 

and qp-Phγ states are given respectively by L11 and L22 

matrix elements and that between 1-qp and qp-phγ states 

by L31. They are written as follows [7, 8]. 

 
Q J +

11 K' BCS 11 11 KL = BCS α (H +H +H )α BCS 
            (11) 

                                                                                       
Q J Q J 'P

22 ' K' BCS 11 11 22 22 22 KL BCS A (H H H H H H ) A BCS 

              (12)                                                                                                           

 
Q J Q J +

31 K' 20 20 31 31 KL = BCS A α (H +H +H +H )α BCS  
   (13)           

                                    
The eigenvalue problem is written in matrix form 
 

   
   

    
    

K11 31 K intr

K

K31 22 K

CL L C
= E

DL L D 









                       (14)                                

 

Where 
K

C
 represents the 1-qp component and KD




 

the qp-phγ component. The intrinsic eigenvalue 
int

KE  

corresponds to the eigenvector (8). 

 
3. Results and discussion 

      
In this section, we focus on selected results for several 

chains of neutron-rich for the transitional region A~100. 

We base our theoretical analyses on QPRM calculations 

which are treated as a system of even-even core plus an 

extra nucleon. We have developed this code in respect to 

the following steps: Nilsson, BCS and TDA calculations. 

We have diagonalized  the total Hamiltonian taking into 

account the rotational motion. For the case of Nilsson 

calculation, we have reproduced the even-even core 

structure using conjointly the deformation parameter 2 

from Moller data [17] and from Meyer data [18], the 

Kappa = 0.068 and Mu = 0.35 parameters of deformed 

average Nilsson field. The BCS pairing was fixed for proton 

and neutron by the well-known phenomenological 

relation p=n=12/A
1/2

 [19]. And, for TDA calculation, the 

parameter of quadrupole force χ was fitted from the 

experimental energy of quadrupole vibrational core using 

the experimental from [20, 21, 22, 23], where 
98

Sr, 
100

Zr, 
102

Mo and 
104

Ru have E(2
+
) =144 keV, E(2

+
) =212keV, E(2

+
) 

=295 keV and E(2
+
) =358 keV respectively .The inertia 

parameters are determined semi-empirically using the 

energy of first excited state (
2 7/3 1

2 1176( (2 ))A E
 

 ) [24, 

25].  

 The level energy is a function of deformation 

parameter (ε2) and the pairing correlation Gp=19.6A
-1

 and 

Gn=(19.6-15.7(N-Z)A
-1

)A
-1

  are  obtained 

phenomenologicaly [26]. 

       For the special case of 
99

 Sr, the core 
98

Sr is localised 

with the deformation parameter ε2 = 0.325 and the shell 

effect is completely degenerated. We have to primarily 

identify the ground state from the excited one in a region 

where the excitation gap is more important regarding the 

deformation parameter. The result obtained by our 

Nilsson calculations for 
98

Sr is presented in table1. 

 The 3/2+(411) positive parity state (candidate for it is 

ground state) is calculated with the structure 

(approximately 92%g7/2 
,
 29.5% d5/2 

,
 17.5% d3/2 

,
 18.7% 

g9/2) which imply the dominance of g7/2 orbital and expose 

the weak Coriolis mixage, whereas for 1/2+(431) (with 

65.3%g9/2 
,
  64.9% d5/2 

,
 25.6% g7/2 

,
 28.1% s1/2) shows a 

strong Coriolis mixage. For the negative parity state we 

perceive the strong Coriolis mixing and a dominance of 

the h11/2 orbital for 5/2
-
(532). If there is no excitation of 

core particles, then the valence neutron can take on all 

neighbouring Nilsson orbits 2d5/2 , 1g7/2 , 3s1/2 , 2d3/2 and 

1h11/2 with equal probability. Those orbits are undoubtely 

correlated with one another through Coriolis interaction 

with the core. Since these orbits tend to be nearly equally 

spaced as deformation parameter ε2 approaches to value 

0.3, there is no reason why any one of these orbits will 

not contribute to the band-mixing, therefore we consider 

all five  of them. We introduce the BCS method in which 

the correlation probability between quasi-particle 

operators (creation and annihilation) is well determined. 

In table 2, the subsequent excited states, provided by BCS 

numerically with a precision of 10
-7

 after 7 iterations, are 

presented for 
99

Sr. Around the Fermi level, 10 up and 

down levels, candidates to be a ground state are treated. 

For each identified level, the energy is calculated and the 

occupation (U) and vacancy (V) probabilities are 

determined. From the energy level close to the Fermi 

one, we could have a confusing decision if we treat and 

find out the ground state only in its energy level (the 

closest energy to the Fermi level). 
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Table 1: Calculated energies and Coriolis-mixing amplitude of intrinsic states in 
99

Sr near of the Fermi energy 
 

Nilsson orbitals 
Energies of each 
particle (in ћω) 

Asymptotic Nilsson components (with corresponding spherical orbitals) 

[4 0 2](2d3/2)  [4 1 1](1g7/2) [4 2 2](2d5/2) [4 3 1](1g9/2) 

3/2+(411) 5.714 -0.175 0.920 0.295 -0.187 

3/2+(422) 5.433 0.177 -0.241 0.817 0.492 

 [4 0 0](2d3/2) [4 1 1](3s1/2) [4 2 0](1g7/2) [4 3 1]( 2d5/2) [4 4 0](1g9/2) 

1/2+(411) 5.874 -0.173 0.895 0.362 -0.163 -0.100 

1/2+(420) 5.383 0.197 -0.196 0.816 0.464 -0.201 

1/2+(431) 5.118 -0.069 0.281 -0.256 0.649 0.653 

 [4 0 2](1g7/2) [4 1 3](2d5/2) [4 2 2](1g9/2) 

5/2+(413) 5.782 -0.178 0.917 0.355 

5/2+(422) 4.927 0.168 -0.332 0.927 

5/2+(402) 6.098 0.979 0.158 -0.120 

 [4 0 4](1g7/2) [4 1 3](1g9/2) 

7/2+(404) 6.124 0.974 0.222 

7/2+(413) 5.240 -0.223 0.974 

 [4 0 4](1g9/2) 

9/2+(404) 5.557 1.000 

 [5 0 3](2f5/2) [5 1 2](1h9/2) [5 2 3](2f7/2) [5 3 2](1h11/2) 

5/2-(532) 5.694 -0.060 0.261 -0.386 0.882 

 [3 0 1](2p1/2) [3 1 0](1f5/2) [3 2 1](2p3/2) [3 3 0](1f7/2) 

1/2-(301) 5.167 0.956 0.280 -0.073 -0.045 

 [5 0 3](1h9/2) [5 1 4](2f7/2) [5 2 3](1h11/2) 

7/2-(523) 5.927 0.157 -0.294 0.942 

 [3 0 3](1f5/2) [3 1 2](1f7/2) 

5/2-(303) 5.143 0.966 0.255 

 [5 0 5](1h9/2) [5 1 4](1h11/2) 

9/2-(514) 6.222 -0.206 0.978 

 [5 0 1](3p1/2) [5 1 0](2f5/2) [5 2 1](3p1/2) 
[5 3 

0](1h9/2) 
[5 4 

1](2f7/2) 
[5 5 

0](1h11/2) 

1/2-(541) 5.924 0.051 -0.058 0.363 0.015 0.620 0.689 

1/2-(550) 5.389 -0.029 0.112 -0.245 0.468 -0.541 0.643 

1/2-(530) 6.146 -0.054 0.291 -0.167 0.717 0.590 -0.143 

 [5 0 1](3p1/2) [5 1 2](1h9/2) [5 2 1](3p1/2) 
[5 3 

2](1h11/2) 
[5 4 1]( 2f7/2) 

3/2-(541) 5.504 0.050 -0.140 0.389 -0.455 0.786 

 
Table 2: Energy of 20 levels of quasi-particle calculated for 

99
Sr (neutrons case) 

 
Number Identification EQP(MEV) U V 

21 5/2+(422) 6.098004 0.098877 0.995100 

22 1/2+(431) 4.772874 0.126732 0.991937 

23 5/2-(303) 4.551124 0.133018 0.991114 

24 1/2-(301) 4.535018 0.133499 0.991049 

25 7/2+(413) 3.709811 0.163952 0.986468 

26 1/2+(420) 2.575156 0.240011 0.970770 

27 1/2-(550) 2.476344 0.250256 0.968180 

28 3/2+(422) 2.128516 0.295017 0.955492 

29 3/2-(541) 1.618642 0.405521 0.914086 

30 9/2+(404) 1.336147 0.529254 0.848464 

Level of Fermi 

31 3/2+(411) 1.427856 0.878047 0.478574 

32 5/2-(532) 1.429102 0.878370 0.477981 

33 5/2+(413) 2.004617 0.948956 0.315409 

34 1/2+(411) 2.725895 0.974138 0.225955 

35 1/2-(541) 3.225543 0.981891 0.189446 

36 7/2-(523) 3.239222 0.982051 0.188615 

37 5/2+(402) 4.293308 0.989986 0.141166 

38 1/2-(530) 5.047481 0.992806 0.119733 

39 7/2+(404) 5.202647 0.993236 0.116111 

40 1/2+(660) 5.335202 0.993574 0.113188 
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Table 3:  BCS eigen-values for Nilsson orbitals of  
98

Sr 

 

<µ /                            <ν / Eμ + Eν 

5/2+(422) 7/2+(413) 9.807815 

5/2+(422) 3/2+(422) 8.226520 

5/2+(422) 3/2+(411) 7.525860 

5/2+(422) 7/2+(404) 11.300651 

-1/2+(431) 1/2+(431) 9.545749 

-1/2+(431) 1/2+(420) 7.348030 

1/2+(431) 3/2+(422) 6.901391 

1/2+(431) 3/2+(411) 6.200731 

-1/2+(431) 1/2+(411) 7.498769 

-1/2+(431) 1/2+(660) 10.108077 

5/2-(303) 3/2-(541) 6.169766 

5/2-(303) 7/2-(523) 7.790345 

-1/2-(301) 1/2-(301) 9.070036 

-1/2-(301) 1/2-(550) 7.011362 

1/2-(301) 3/2-(541) 6.153660 

-1/2-(301) 1/2-(541) 7.760561 

-1/2-(301) 1/2-(530) 9.582499 

7/2+(413) 9/2+(404) 5.045957 

7/2+(413) 5/2+(413) 5.714427 

7/2+(413) 5/2+(402) 8.003118 

-1/2+(420) 1/2+(420) 5.150312 

1/2+(420) 3/2+(422) 4.703672 

-1/2+(420) 1/2+(411) 5.301050 

1/2+(420) 3/2+(411) 4.003012 

-1/2+(420) 1/2+(660) 7.910358 

-1/2-(550) 1/2-(550) 4.952687 

1/2-(550) 3/2-(541) 4.094986 

-1/2-(550) 1/2-(541) 5.701887 

-1/2-(550) 1/2-(530) 7.523825 

3/2+(422) 5/2+(413) 4.133133 

3/2+(422) 1/2+(411) 4.854411 

3/2+(422) 5/2+(402) 6.421824 

3/2+(422) 1/2+(660) 7.463718 

3/2-(541) 5/2-(532) 3.047744 

3/2-(541) 1/2-(541) 4.844185 

3/2-(541) 1/2-(530) 6.666123 

9/2+(404) 7/2+(404) 6.538793 

3/2+(411) 5/2+(413) 3.432473 

3/2+(411) 1/2+(411) 4.153751 

 
In table 3, we carried out the whole possible ground and 
excited states correlated from particular states presented 
in table 2.  
 The combinations between states (columns 1 and 2) 
are treated in the approximation of quasiparticle 
independent model, where the Hamiltonian is:  
 



H U0  (E  Ev )
v

v


  

and the correspondent energy is presented in column 3. 
We find out three possible combinations of states. With 
smallest energy (Eμ + Eν) according to the Fermi level, the 
ground state could be formed from the couple (3/2

-
[541], 

5/2
-
[532]) with energy level of 3.048 MeV, the couple 

(3/2
+
[411], 5/2

+
[413]) with 3.432 MeV, or the couple 

(3/2
+
[411], 1/2

+
[411]) with 4.153 MeV. Therefore, when 

comparing these eigen-values with the ones from table 1, 

we could expect one of the 5/2
+
[413], 5/2

-
[532] and 

3/2
+
[411] orbitals to be the ground state of 

99
Sr.  

      We refer to figure 1 in order to demonstrate the 
contribution of each term in the intrinsic Hamiltonian (10) 
for the energy evolution of intrinsic states (assigned by 
the dominant one-quasiparticle configuration or Nilsson 
orbital) and which are positioned near the Fermi level in 
99

Sr isotope. The dashed lines connect the states marked 
by their asymptotic quantum number Ω

π
 [N, nz, ], where 

N is principle quantum number, nz is number of nodes of 
the wave function in the z-direction (the number of times 
the radial wave function crosses zero). Larger nz values 
corresponds to wave function more extended in the z-
direction which means lower energy orbits, Λ is the 
projection of the orbital angular momentum on to the z-
axis, and  Ω is the quantum number that corresponds to 
the third component of the angular momentum in the 
intrinsic frame. 
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Table 4: Energy (≤1.5 Mev) and structure of intrinsic states in 
99

Sr 
 

KΠ 
Energy Exp. 

(keV) 
Energy 

Th. (keV) 
1-qp Cν qp-Phγ Dν 

3/2+ 0 0 3/2+(411) 0.836 3/2+(411) 0.836 

1/2+ _ 37 1/2+(411) 
0.694 
0.946 

1/2+(411) 
5/2+(413)+Q22 

0.694 
0.726 

5/2+ _ 345 5/2+(413) 
0.825 
0.874 

5/2+(413) 
9/2+(404)+Q22 

0.825 
0.962 

1/2+ _ 585 1/2+(420) 0.694 1/2+(420) 0.694 
5/2- 422 626 5/2-(532) 0.943 5/2-(532) 0.943 
3/2+ 1071 686 3/2+(422) 0.782 3/2+(422) 0.782 
9/2+ 377 690 9/2+(404) 0.966 9/2+(404) 0.966 
3/2- _ 757 3/2-(541) 0.882 3/2-(541) 0.882 

 

 
 

Fig.1: Energy evolution of intrinsic states in 
99

Sr caused by including successive interaction terms of quadrupole and 
recoil forces to the initial pairing interaction 

 

 
 

Fig.2:  Systematic of the low lying states in N=61 isotones 
99

Sr, 
101

Zr,
103

Mo and 
105

Ru 
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Here, we can see that by adding quadrupole and recoil 
forces to pairing interaction a new arrangement of 
intrinsic energies is obtained. Thus, for the quadrupole 
force we notice that both two-body and one-body  terms 
exhibit important interaction for positive parity states 
than negative parity ones. The influence is so high as 
states have a small spin. This situation changes with the 
recoil force which preferentially influences the negative 
parity states. The effect due to the last term H22

P
  in (10) 

is in general small. The results of calculations obtained by 
considering all terms of the intrinsic Hamiltonian are 
given in table 4. 
 The low-lying intrinsic states in 

99
Sr with a calculated 

energy up to 1,5Mev are presented. Only components Cν 
or Dν which contribution to the normalization of wave 
function is more than 1% are shown. The calculated 
energy position reproduces the observed positive parity 
bandhead. Also, an important contribution from the 
quasiparticle-phonon coupling is established for the 
configuration of positive parity wave functions. However, 
for the negative parity wave function, the configuration 
indicates a large component related to only a one-
quasiparticle excitation. One can then consider the 
negative parity intrinsic states in 

99
Sr as been a pure one-

quasiparticle excitation without any contribution from the 
vibrational excitation mode. The construction and 
diagonalization of the total Hamiltonian matrix are 
performed by using the basis function (5). The energies 
and wave functions of rotational bands based upon the 
dominant intrinsic states are determined for each value of 
the total angular momentum and parity.  
      In Fig. 2, the isotonic chain for N = 61 (

99
Sr, 

101
Zr, 

103
Mo 

and 
105

Ru) is reproduced by our QPRM calculations, in 
respect to deformation parameters given by Moller [17], 
and compared to the existing experimental data. The 
ground state corresponds to 3/2+(411) states both 
experimentally and theoretically  is present, the odd 
neutron determines the spin and parity of the ground 
state. First one realizes the observed experimental 
correspondence between the spins and parities of 
isotones within Sr, Zr, Mo and Ru nuclei. It, therefore, 
holds that the positive parity states are very sensitive to 
the quadrupole interaction and recoil force; whereas the 
negative parity states were influenced only by the terms 
of the one-body of recoil force. 
 Then we can deduce that the nuclear shape is 
determined by a competition between a quadrupole 
force and a pairing force. The quadrupole force tends to 
deform the nucleus while the spherical shape is stabilized 
by the pairing force. With only a small number of 
nucleons outside a closed shell, pairing dominates, and 
the nucleus remains spherical. When more nucleons are 
added, the relative strength of the quadrupole force 
increases and at a certain point a transition to a deformed 
shape takes place. Therefore deduces from the vibration 
is dominant over rotation for nuclei with few valence 
nuclei outside the spherical core. Pure rotational spectra 
are only observed for nuclei with a large number of 

valence nucleons, which can correlate to form stable 
deformation. The general case is a mixture of all three, 
but as a first approximation they can be separated, and 
treated independently. We can deduce that nuclear 
structure of rich-neutron nuclei in the transition region 
with A ~ 100 is very complex. To better interpret the 
experimental data, we must consider models that are 
based on the unification of all modes of excitation.  
 
Conclusion  
     
In this contribution, some recent results obtained within a 

fully microscopic model beyond mean-field will be 

reviewed. Our model is based on the coupling between 

quasiparticle and collective degrees of freedom. 

Moreover, as vibration mixing at low-lying excitations is 
also expected, some calculations based upon the 

quasiparticle-phonon coupling plus rotor method (QPRM) 

have been carried out for isotopic chain of odd-A Sr, Zr, 

Mo and Ru isotones. It is now well established that the 

three shapes coexist in neutron-rich nuclei in the 

transitional region with A~100. Our theoretical 
interpretation of these collective bands is based on 

coupling between axially rotational motion and vibration 

instead of triaxial deformed nuclei. We have shown the 

importance of band-mixing effect due to Coriolis force. 

We remark also that the band head is determined by a 

competition between a quadrupole force and a pairing 

force, the quadrupole force tends to deform the nucleus 
while the spherical shape is stabilized by the pairing force. 

When more nucleons are added to the spherical shape 

(closed shell), the relative strength of the quadrupole 

force increases and at a certain point the transition to the 

deformed shape takes place.  This competition plays a 

very important role in the shape coexistence. However, 
we are aware of the challenge of reproducing in detail the 

observed spectroscopic properties in the particular mass 

region considered in the present study. 
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