
 International Journal of Multidisciplinary and Current Research ISSN: 2321-3124

 Research Article Available at: http://ijmcr.com

950|Int. J. of Multidisciplinary and Current research, Vol.5 (July/Aug2017)

Temporal Data Management

Sameer

Shah Satnam Ji P.G Boys College, Sirsa, India

Received 05 June 2017, Accepted 20 Aug 2017, Available online 25 Aug 2017, Vol.5 (July/Aug 2017 issue)

Abstract

A temporal database records time-varying information. Most database applications are temporal in nature, e.g.,
scheduling applications such as airline, train, and hotel reservations and project management, and scientific
applications such as weather monitoring, financial applications such as portfolio management, accounting, and
banking, record-keeping applications such as personnel, medical-record, and inventory management,. Recently there
has been a surge of interest in temporal data, because memory and magnetic disk storage costs are rapidly decreasing,
and the advances in optical disk technology. In the past, temporal data was mostly delegated to archival storage or
discarded altogether because it was too expensive or impractical to access them on-line. While it was recognized that
historical data are of great importance to applications such as data analysis for policy decisions, such applications were
not viewed as essential for a day-to-day operation. As a result, existing data management systems are designed to
support the view of the most current version of the database. The dominant approach is one of data being updated,
deleted, and inserted in order to maintain the current version. A wide range of database applications manage time-
varying data. In contrast, existing database technology provides little support for managing such data. The research
area of temporal databases aims to change this state of affairs by characterizing the semantics of temporal data and
providing expressive and efficient ways to model, store, and query temporal data.

Keywords: Temporal database records etc.

1. Introduction

A temporal database records information that varies with
time. Most database applications are temporal in nature.
Time is one of the main aspects characterizing several real
world facets and phenomena. The ability to model the
temporal dimension of the real world and to respond
within time constraints to changes in the real world as
well as to application-dependent operations is essential
to many computer applications.
 In the context of database research, the management
of time has been studied extensively in the last decades.
In particular, many efforts have been devoted to add time
support to database models and system functionalities.
Temporal database systems provide special facilities for
storing, querying, and updating historical and/or future
data.
 In this context, two time dimensions are usually
considered: legal time and dealing time. Legal time
(sometimes referred to as valid time) is the real world
time. It refers the time a fact is true in the real world.
Dealing time (also known as transaction time) is the
system time and it denotes the time during when the fact
is stored in the database.
 In general a temporal value is actually a triplet (s, t, v)
where s, t, and v stand for surrogate, time, and value

respectively. Thus, the triplet (Rahul, April, 23) may
represent Rahul’s age in April drawn from the space
(name X month X age). Surrogates may be either taken
from a defined domain, such as “name” or may be
assigned automatically by the system. The important
thing is that they uniquely identify each element. A
collection of values for Rahul over time will have the
same surrogate, and thus it can be represented as (s, (t,
v)*). (t, v)* ,that represents an ordered-sequence of pairs
of times and their associated values. Thus, we may think
of temporal data as time ordered sequences of pairs (t, v)
for each surrogate. Each sequence for a single surrogate
is known as a time sequence (TS).

2. Temporal Data Semantics

A database models and records information about a part
of reality, termed either the modeled reality or the mini-
world. Aspects of the mini-world are represented in the
database by a variety of structures that we will simply
term database entities. We will employ the term “fact”
for any (logical) statement that can meaningfully be
assigned a truth value, i.e., that is either true or false. In
general, times are associated with database entities.
 In this context, two time dimensions are usually
considered: legal time and dealing time. The legal time

Sameer Temporal Data Management

951 | Int. J. of Multidisciplinary and Current research, Vol.5 (July/Aug 2017)

also known as valid time of a fact is the collected times-
possibly spanning the past, present, and Future-,when the
fact is true in the mini-world . Valid time thus captures
the time-varying states of the mini-world. All facts have a
valid time by definition. However, the valid time of a fact
may not necessarily be recorded in the database, for any
of a number of reasons. For example, the valid time may
not be known, or recording it may not be relevant for the
applications supported by the database. If a database
models different possible worlds, the database facts may
have several valid times, one for each such world.
 Next, the Dealing time also known as Transaction time
of a database fact is the time when the fact is current in
the database. Unlike legal time, dealing time may be
associated with any database entity, not only with facts.
For example, dealing time may be associated with objects
and values that are not facts because they cannot be true
or false in isolation. To be more concrete, the value “63”
may be stored in a database, but does not denote a
logical statement. It is meaningful to associate dealing
time with “63,” but not legal time. Thus, all database
entities have a dealing-time aspect. This aspect may or
may not, at the database designer’s discretion, be
captured in the database. The dealing-time aspect of a
database entity has a duration: from insertion to deletion,
with multiple insertions and deletions being possible for
the same entity.
 In addition, some other times have been considered,
e.g., decision time. But the desirability of building
decision time support into temporal database
technologies is limited, because the number and meaning
of “the decision times” of a fact varies from application to
application.

3. Temporal data model

Temporal data management is very difficult using
conventional (non -temporal) data models and query
languages. The first step to provide support for temporal
data management is to extend the database structures of
the data model supported by the DBMS to become
temporal. More specifically, means must be given for
capturing the legal and dealing times of the facts
recorded by the relations, leading to temporal relations.
 Subsequent steps are to provide support for temporal
data modeling and database design, and to design
temporal query languages that operate on the databases
of the temporal data models.
 As a simple example, consider a book library where
customers, identified by CustomerIDs, rent books
identified by BookIds. We consider a few rents during
May 2007. On the 6th, customer C101 rents book B1001
for three days. The book is subsequently returned on the
9th. Also on the 10th, customer C102 rents book B1002
with an open-ended return date. The book is eventually
returned on the 14th. On the 15th, customer C103 rents
book B1005 to be returned on the 18th. On the 16th, the
rental period is extended to include the 19th, but this

book is not returned until the 21st. The library keeps a
record of these rentals in a relation termed Rented.
 Figure 1 gives the relation instance in the Bitemporal
Conceptual Data Model (BCDM) that describes the
sample rental scenario. This data model timestamps
tuples, corresponding to facts, with values that are sets of
(dealing time, legal time) pairs, captured using attribute T
in the figure.
 The presence of a pair (dt, lt) in a timestamp of a tuple
means that the current state of the database at time dt
records that the fact represented by the tuple is valid at
time lt.

Fig: 1: Bitemporal conceptual Rental Instance

The special value UC (“until changed”) serves as a marker
indicating that its associated facts remain part of the
current database state, and the presence of this value
results in new time pairs being included into the sets of
pairs at each clock tick.
 The timestamp of the second tuple is explained as
follows. On the 5th, it is believed that customer C102 has
checked out tape T1002 on the 10th. Then, on the 11th,
the rental period is believed to include the 10th and the
11th. On the 12th, the rental period extends to also
include the 12th. From then on, the rental period remains
fixed. The current time is the 21st, and as time passes, the
region grows to the right; the arrows indicate this and
correspond to the UC values in the textual
representation.
 Figure 2 shows a graphical illustration of the three
timestamps. The tuples correspond to facts and are times
tamped with bitemporal elements, which are finite
unions of intervals or, equivalently, sets of time points in
the (finite and discrete) two-dimensional space spanned
by valid and transaction time.
 The idea behind the BCDM is to retain the simplicity of
the relational model while also allowing for the capture of
the temporal aspects of the facts stored in a database.
Because no two tuples with mutually identical explicit
attribute values (termed value-equivalent) are allowed in
a BCDM relation instance, the full history of a fact is
contained in exactly one single tuple. In addition, BCDM
relation instances that are syntactically different have
different information content, and vice versa.

Sameer Temporal Data Management

952 | Int. J. of Multidisciplinary and Current research, Vol.5 (July/Aug 2017)

However, in case of the internal representation and the
display to users of temporal information, the BCDM falls
short. Although it is arguably a first-normal-form relation,
the non-fixed-length and voluminous timestamps of
tuples are impractical to manage directly, and the
timestamp values are also hard to comprehend in the
BCDM format. Thus we required alternative
representations of temporal information that may be
better suited for these purposes.
 Figure 3 illustrates the same temporal information as
in Figure 1, in two different data models. The model
illustrated in 3(a) uses a practical and popular (particularly
when implementation is considered) fixed-length format
for tuples. In this format, each tuple’s timestamp records
a rectangular or stair-shaped region of times, and it may
take several tuples to represent a single fact. The relation
format in Figure 3(b) is a typical non-1NF format. In this
format, a relation is thought of as recording information
about some type of objects. The present relation records
information about customers and thus holds one tuple for
each customer in the example, with a tuple containing all
information about a customer. Attributes Ds and De
record starting and ending dealing times, and Ls and Le
record starting and ending legal times

Customer Id BookId Ds De Ls Le

C101 B1001 6 UC 6 8

C102 B1002 10 13 10 now

C102 B1002 14 UC 10 13

C103 B1005 15 15 15 17

C103 B1005 16 18 15 18

C103 B1005 19 20 15 now

C103 B1005 21 UC 15 20

(a)

CustomerId BookId

[6,Now]×[6,8] C101 [6,Now]×[6,8] B1001

*10,13+×*10,∞+ C102 *10,13+×*10,∞+ B1002
[14,Now]×[10,13] [14,Now]×[10,13]

[15,15]×[15,17] C103 [15,15]×[15,17] B1005
[16,18]×[15,18] [16,18]×[15,18]
*19,20+×*15,∞+ *19,20+×*15,∞+

[21,Now]×[15,20] [21,Now]×[15,20]

(b)

Fig 3: Alternative Representation of Rented Instance

Unlike in the BCDM, where relations must be updated at
every clock tick, relations in this format stay up- to- date;
this is achieved by introducing variables (e.g., now) as
database values that assume the (changing) current time
value. The sample relation illustrate the two predominant
choices for where to enter time values into relations,
namely at the level of tuples (tuple timestamping) and at
the level of attribute values (“attribute” timestamping).

4. Designing Temporal Database

The design of appropriate database schemas is critical to
the effective use of database technology and the
construction of effective information systems that exploit
this technology. Database schemas capturing time-
referenced data are often particularly complex and thus
difficult to design.
 Database design is typically considered in two
contexts. In conceptual design, a database is modeled
using a high-level design model that is independent of the
particular (implementation) data model of the DBMS that
is eventually to be used for managing the database. The
second context of database design is the implementation
data model, which is assumed to conform to the ANSI
three-level architecture. In this context, database design
must thus be considered at the view level, the logical
level (originally termed “conceptual”), and the physical
(or, “internal”) level. Here we consider conceptual and
logical design of temporal databases. In the second
context, a database is modeled using a high-level,
conceptual design model, typically the Entity-Relationship
model. This model is independent of the particular
implementation data model that is eventually to be used
for managing the database, and it is designed specifically
with data modeling as its purpose, rather than
implementation or data manipulation, making it more
attractive for data modeling than the variants of the
relational model.

4.1. Conceptual Design

By far, most research on conceptual design of temporal
databases has been in the context of the Entity-
Relationship (ER) model. This model, in its varying forms,
is enjoying a remarkable, and increasing, popularity in
industry. Building on the example introduced in Section 3,
Figure 4 illustrates a conventional ER diagram for video
rentals.

Sameer Temporal Data Management

953 | Int. J. of Multidisciplinary and Current research, Vol.5 (July/Aug 2017)

Fig. 4: Non Conventional ER Diagram of Book Rental

The diagram in the figure 4 is non-temporal, capturing the
mini-world at a single point in time. Attempting to
capture the temporal aspects that are essential for this
application clutters up the simple diagram. For example,
since the same customer may check out the same tape at
different times, the CustomerID and BookId attributes do
not identify a single instance of Rented. Instead, it is
necessary to make Rented a ternary relationship type,
with the third entity type capturing start dates of rentals.
There is also the issue of where to place the end-time
attribute of rentals. Next, rental prices may vary over
time, e.g., due to publications and books getting old.
Finally, inclusion of dealing time complicates matters.
 As a result, some industrial users simply choose to
ignore all temporal aspects in their ER diagrams and
supplement the diagrams with textual phrases to indicate
that a temporal dimension to data exists, e.g., “full
temporal support.” The result is that the mapping of ER
diagrams to relations must be performed by hand; and
the ER diagrams do not document well the temporally
extended relational database schemas used by the
application programmers.
 One approach is to devise new notational shorthands
that replace some of the patterns that occur frequently in
ER diagrams when temporal aspects are being modeled.
One example is the pattern that occurs when modeling a
time-varying attribute in the ER model (e.g., the Rental
Price in our example). With this approach, it is possible to
retain the existing ER-model constructs with their old
semantics. Another approach is to change the semantics
of the existing ER model constructs, making them
temporal. In its extreme form, this approach does not
result in any new syntactical constructs—all the original
constructs have simply become temporal. With this
approach, it is also possible to add new constructs.
 In brief, the ideal temporal ER model is easy to
understand in terms of the ER model; does not invalidate
legacy diagrams and database applications; and does not
restrict the database to be temporal, but rather permits
the designer to mix temporal and non-temporal parts.
The existing models typically assume that their schemas
are mapped to schemas in the relational model that
serves as the implementation data model. The mapping
algorithms are constructed to add appropriate time-

valued attributes to the relation schemas. None of the
models have one of the many time-extended relational
models as their implementation model. These models
have data definition and query language capabilities that
better support the management of temporal data and
would thus constitute natural candidate implementation
platforms.

4.2. Logical design

A central goal of conventional relational database design
is to produce a database schema, consisting of a set of
relation schemas. Normal forms constitute an attempt at
characterizing “good” relation schemas. A wide variety of
normal forms has been proposed, the most prominent
being third normal form and Boyce-Codd normal form. An
extensive theory has been developed to provide a solid
formal footing.
 In temporal databases, there is an even greater need
for database design guidelines. However, the
conventional normalization concepts are not applicable to
temporal relational data models because these models
employ relational structures different from conventional
relations. New temporal normal forms and underlying
concepts that may serve as guidelines during temporal
database design are needed.
 In response to this need, an array of temporal
normalization concepts have been proposed including
temporal dependencies, keys, and normal forms.
Consider the Rented relation schema from Section 3, as
illustrated in Figures 1 and Does Customer ID (temporally)
determine BookId or vice versa? Looking at the first
representation in Figure 3 and applying conventional
dependencies directly, the answer to both questions is
no. The second representation is so different from a
regular relation that it makes little sense to directly apply
conventional dependencies. The relation in Figure 1 also
rules out any of the dependencies when we apply regular
dependencies directly.
 Considering that the different representations of the
Rented relation model the same mini world and are
capable of recording the same information, it may
reasonably be assumed that these different
representations would satisfy the same dependencies. At
any point in time, a customer may have checked out
several books. In contrast, a book can only be checked
out by a single customer at a single point in time. With
this view, BookId temporally determines CustomerID, but
the reverse does not hold.
 Temporal data models generally define time slice
operators, which may be used to determine the
snapshots contained in a temporal relation. Accepting a
temporal relation as their argument and a time point as
their parameter, these operators return the snapshot of
the relation corresponding to the specified time point. For
example, a time slice operator for temporal relations like
the one in Figure 1 may take a point (dt, lt) in bitemporal
space as its parameter. It returns the tuples of the

Sameer Temporal Data Management

954 | Int. J. of Multidisciplinary and Current research, Vol.5 (July/Aug 2017)

argument relation that contain this time point, but
omitting the timestamp attribute.
 This notion of dependency naturally generalizes
conventional dependencies and may be applied to other
dependencies than functional. With this notion of
dependency, a temporal normalization theory may be
built that parallels conventional normalization theory and
that is independent of any particular representation of a
temporal relation.
 It is also relevant to consider dependencies and
associated normal forms that effectively hold between
time points. One approach to achieve this is to build the
notion of time granularity into the normalization
concepts. As a result, it not only is possible to consider
snapshots computed at non-decomposable time points,
but it is also possible to consider snapshots computed at
coarser granularities. Another approach to taking the
temporal aspects of data into account during database
design is to introduce new concepts that capture the
temporal aspects of data and may form the basis for new
database design guidelines.
 The concept of lifespan, that captures when an
attribute of an entity has values, also has implications for
database design. Specifically, if the lifespan of two
attributes differ, null values of the unattractive “do not
exist” variety result unless the attributes are stored in
separate relations. Assuming that the temporal data
model used timestamps tuples, attributes should also be
stored separately when different temporal aspects need
to be captured for them or when the temporal aspects
are captured with differing precisions

5. Adding time to query languages

Given the prevalence of applications that currently
manage time-varying data, one might ask why a temporal
query language is even needed. Is the existence of all this
SQL code not proof that SQL is sufficient for writing such
applications? The reality is that in conventional query
languages like SQL, temporal queries can be expressed,
but with great difficulty. To illustrate the issue, consider
the two relations S-Rented and V-Rented in Figure 5. The
first is a snapshot relation that records which customers
have currently checked out which video tapes; the
second, a valid-time relation, records the check-out
periods for rentals. The current time is 17, making the
former relation a snapshot at the current time of the
latter relation.

CustomerId BookId

C101 B1001

C102 B1003

C102 B1002

C103 B1005

CustomerId BookId Ls Le

C101 B1001 2 Now

C101 B1003 5 10

C102 B1002 22 25

C102 B1002 9 19

C102 B1005 4 14

C102 B1006 9 Now

C103 B1004 7 21

Fig 5: Realations (a) S-Rented and (b) V-Rented

Using SQL, it is straightforward to express the number of
current checkouts from S-Rented. For example, this can
be expressed as follows.

SELECT COUNT(bookid) AS CNT From S-Rented

We proceed to consider the temporal generalization of
this query, asking now for the time-varying count of tapes
checked out as recorded in relation V-Rented. The result
given in Figure 6 correctly gives the count of books rented
at each point in time were a book is rented (assuming
value 17 has been used for now). Expressing this query in
SQL is exceedingly difficult, but possible if now is replaced
with a fixed time value.

CNT Ls Le

1 2 3

1 20 25

2 4 4

2 18 19

3 5 6

4 7 8

4 15 17

5 11 14

6 9 10

Fig 6: A Time-Varying Count on the BookId Attribute of V-

Rented

As another example, specifying a key constraint on the
non-temporal relation S-Rented is trivial in SQL.

Alter Table S-Rented Add Primary Key (BOOKID)

This key constraint may be generalized to apply to a legal-
time relation, now meaning that BookId is a key at each
point in time or, equivalently, in each snapshot that may
be produced from the legal-time table. Specifying this
constraint on relation V-Rented in SQL is again difficult.

Sameer Temporal Data Management

955 | Int. J. of Multidisciplinary and Current research, Vol.5 (July/Aug 2017)

Ordinary queries on non-temporal relations become
extremely challenging when timestamp attributes are
added.
 In an another example in addition to the Rented
relation from Section 3, we assume in this section a Book
relation with attributes BookId, Title, and RentalPrice.
Consider first this database with only current information.
 To determine who has rented which titles, SQL
provides a natural solution. SELECT CustomerID, Title
FROM Rented, Book

WHERE Rented.BookId = Book.BookId

We then extend the Book and Rented relations to record
also past and future states by adding to each relation two
additional attributes, StartDate and EndDate, specifying
the interval of validity of the tuples. To request the
history of who checked out which titles requires huge size
of SQL which is very difficult to execute.
 With a temporal query language, simple queries
should remain simple when time is added. The temporal
join can be expressed in the variant of TSQL2 being
proposed for inclusion into SQL3 as follows.

VALIDTIME SELECT CustomerID, Title FROM Rented, Book
WHERE Rented.BookId = Book.BookId

Similarly, referential integrity can be expressed as
“CONSTRAINT BookId VALIDTIME REFERENCES Book.”
Even with this minimal explanation, the user should have
no difficulty in expressing the average rental price query
in this extension to SQL

Recently a set of criteria for temporal query languages
has emerged. These include temporal upward
compatibility (that is, conventional queries and
modifications on temporal relations should act on the
current state), support for sequenced queries (that
request the history of something, such as the temporal
join above), adequate expressive power (a query
language-independent test suite is useful for such
evaluations), and the ability to be efficiently
implemented.

Conclusion

A wide range of database applications manage time-
varying data. In contrast, existing database technology
provides little support for managing such data. The
research area of temporal databases aims to change this
state of affairs by characterizing the semantics of
temporal data and providing expressive and efficient
ways to model, store, and query temporal data.
 This paper has briefly introduced the concept of
temporal data management, emphasizing what we
believe are important concepts and surveying important
results produced by the research community. In what
remains, we first summarize the current state-of-the-art,

then point to issues that remain challenges and which
require further attention. A great amount of research has
been conducted on temporal data models and query
languages, which has shown itself to be an extraordinarily
complex challenge with subtle issues. Many languages
have been proposed for querying temporal databases,
half of which have a formal basis.
 Although many important insights and results have
been reported, many research challenges still remain in
temporal database management. The lack of
consideration of some of these challenges has reduced
the potential of earlier results. In many cases, core
concepts have been established, but it remains to be
shown how they may be combined and applied, to
simplify and automate the management of time-
referenced data in practice.
 The recent growth in database architectures, including
the various types of middleware, prompts a need for
increased architecture-awareness. Studies are needed
that provide the concepts, approaches, and techniques
necessary for third party developers to efficiently and
effectively implement temporal database technology
while maximally exploiting available architectural
infrastructure, as well as the functionality already offered
by existing DBMSs. The resulting temporal DBMS
architectures will provide a highly relevant alternative to
the standard integrated architecture that is generally
assumed. As a next step, research is needed on how to
exploit existing and novel performance-improving
advances, such as temporal algebraic operator
implementations and indices, in these architectures. Also,
there has been little work on adding time to so-called
fourth-generation languages that are revolutionizing the
user interfaces of commercially available DBMSs.

Reference

[1] Developing Time-Oriented Database Applications In Sql, Richard
T. Snodgrass, Morgan Kaufman Publishers.
[2] Introduction to Temporal Database, Christian S. Jensen
[3] Jensen, C. S. ; R. T. Snodgrass(1996), “Semantics of Time-Varying
Information,” Information Systems, Vol. 21, No. 4, pp. 311–352.
[4] Clifford, J., C. Dyreson, ;T. Isakowitz, Jensen, C. S. and R. T.
Snodgrass(1997), “On the Semantics of “Now” in Databases,” ACM
Transactions on Database Systems, Vol. 22, No. 2, June pp. 171–
214.
[5] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S.
Jajodia (eds). A Glossary of Temporal Database Concepts. ACM
SIGMOD Record,
[6] Jensen, C. S.,M. D. Soo, ;R. T. Snodgrass(1994), “Unifying
Temporal DataModels via a Conceptual Model,” Information
Systems, Vol. 19, No. 7, pp. 513–547.
[7] N. Kline ; R. T. Snodgrass.(March 1995) Computing Temporal
Aggregates. In Proceedings of the IEEE International Conference on
Database Engineering, Taipei, Taiwan.
[8] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. T.
Snodgrass (eds.). TemporalDatabases: Theory, Design, and
Implementation.
[9] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation
of the Valid-Time Natural Join. In Proceedings of the International
Conference on Data Engineering,

