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Abstract  
   
A temporal database records time-varying information. Most database applications are temporal in nature, e.g., 
scheduling applications such as airline, train, and hotel reservations and project management, and scientific 
applications such as weather monitoring, financial applications such as portfolio management, accounting, and 
banking, record-keeping applications such as personnel, medical-record, and inventory management,. Recently there 
has been a surge of interest in temporal data, because memory and magnetic disk storage costs are rapidly decreasing, 
and the advances in optical disk technology. In the past, temporal data was mostly delegated to archival storage or 
discarded altogether because it was too expensive or impractical to access them on-line. While it was recognized that 
historical data are of great importance to applications such as data analysis for policy decisions, such applications were 
not viewed as essential for a day-to-day operation. As a result, existing data management systems are designed to 
support the view of the most current version of the database. The dominant approach is one of data being updated, 
deleted, and inserted in order to maintain the current version. A wide range of database applications manage time-
varying data. In contrast, existing database technology provides little support for managing such data. The research 
area of temporal databases aims to change this state of affairs by characterizing the semantics of temporal data and 
providing expressive and efficient ways to model, store, and query temporal data. 
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1. Introduction 
 
A temporal database records information that varies with 
time. Most database applications are temporal in nature. 
Time is one of the main aspects characterizing several real 
world facets and phenomena. The ability to model the 
temporal dimension of the real world and to respond 
within time constraints to changes in the real world as 
well as to application-dependent operations is essential 
to many computer applications. 
 In the context of database research, the management 
of time has been studied extensively in the last decades. 
In particular, many efforts have been devoted to add time 
support to database models and system functionalities. 
Temporal database systems provide special facilities for 
storing, querying, and updating historical and/or future 
data. 
 In this context, two time dimensions are usually 
considered: legal time and dealing time. Legal time 
(sometimes referred to as valid time) is the real world 
time. It refers the time a fact is true in the real world. 
Dealing time (also known as transaction time) is the 
system time and it denotes the time during when the fact 
is stored in the database. 
 In general a temporal value is actually a triplet (s, t, v) 
where s, t, and v stand for surrogate, time, and value 

respectively. Thus, the triplet (Rahul, April, 23) may 
represent Rahul’s age in April drawn from the space 
(name X month X age). Surrogates may be either taken 
from a defined domain, such as “name” or may be 
assigned automatically by the system. The important 
thing is that they uniquely identify each element. A 
collection of values for Rahul over time will have the 
same surrogate, and thus it can be represented as (s, (t, 
v)*). (t, v)* ,that represents an ordered-sequence of pairs 
of times and their associated values. Thus, we may think 
of temporal data as time ordered sequences of pairs (t, v) 
for each surrogate. Each sequence for a single surrogate 
is known as a time sequence (TS). 
 

2. Temporal Data Semantics 
 
A database models and records information about a part 
of reality, termed either the modeled reality or the mini-
world. Aspects of the mini-world are represented in the 
database by a variety of structures that we will simply 
term database entities. We will employ the term “fact” 
for any (logical) statement that can meaningfully be 
assigned a truth value, i.e., that is either true or false. In 
general, times are associated with database entities. 
 In this context, two time dimensions are usually 
considered: legal time and dealing time. The legal time 
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also known as valid time of a fact is the collected times- 
possibly spanning the past, present, and Future-,when the 
fact is true in the mini-world . Valid time thus captures 
the time-varying states of the mini-world. All facts have a 
valid time by definition. However, the valid time of a fact 
may not necessarily be recorded in the database, for any 
of a number of reasons. For example, the valid time may 
not be known, or recording it may not be relevant for the 
applications supported by the database. If a database 
models different possible worlds, the database facts may 
have several valid times, one for each such world. 
 Next, the Dealing time also known as Transaction time 
of a database fact is the time when the fact is current in 
the database. Unlike legal time, dealing time may be 
associated with any database entity, not only with facts. 
For example, dealing time may be associated with objects 
and values that are not facts because they cannot be true 
or false in isolation. To be more concrete, the value “63” 
may be stored in a database, but does not denote a 
logical statement. It is meaningful to associate dealing 
time with “63,” but not legal time. Thus, all database 
entities have a dealing-time aspect. This aspect may or 
may not, at the database designer’s discretion, be 
captured in the database. The dealing-time aspect of a 
database entity has a duration: from insertion to deletion, 
with multiple insertions and deletions being possible for 
the same entity. 
 In addition, some other times have been considered, 
e.g., decision time. But the desirability of building 
decision time support into temporal database 
technologies is limited, because the number and meaning 
of “the decision times” of a fact varies from application to 
application. 
 
3. Temporal data model 
 
Temporal data management is very difficult using 
conventional (non -temporal) data models and query 
languages. The first step to provide support for temporal 
data management is to extend the database structures of 
the data model supported by the DBMS to become 
temporal. More specifically, means must be given for 
capturing the legal and dealing times of the facts 
recorded by the relations, leading to temporal relations. 
 Subsequent steps are to provide support for temporal 
data modeling and database design, and to design 
temporal query languages that operate on the databases 
of the temporal data models. 
 As a simple example, consider a book library where 
customers, identified by CustomerIDs, rent books 
identified by BookIds. We consider a few rents during 
May 2007. On the 6th, customer C101 rents book B1001 
for three days. The book is subsequently returned on the 
9th. Also on the 10th, customer C102 rents book B1002 
with an open-ended return date. The book is eventually 
returned on the 14th. On the 15th, customer C103 rents 
book B1005 to be returned on the 18th. On the 16th, the 
rental period is extended to include the 19th, but this 

book is not returned until the 21st. The library keeps a 
record of these rentals in a relation termed Rented. 
 Figure 1 gives the relation instance in the Bitemporal 
Conceptual Data Model (BCDM) that describes the 
sample rental scenario. This data model timestamps 
tuples, corresponding to facts, with values that are sets of 
(dealing time, legal time) pairs, captured using attribute T 
in the figure. 
 The presence of a pair (dt, lt) in a timestamp of a tuple 
means that the current state of the database at time dt 
records that the fact represented by the tuple is valid at 
time lt. 
 

 
 

Fig: 1: Bitemporal conceptual Rental Instance 
 

The special value UC (“until changed”) serves as a marker 
indicating that its associated facts remain part of the 
current database state, and the presence of this value 
results in new time pairs being included into the sets of 
pairs at each clock tick. 
 The timestamp of the second tuple is explained as 
follows. On the 5th, it is believed that customer C102 has 
checked out tape T1002 on the 10th. Then, on the 11th, 
the rental period is believed to include the 10th and the 
11th. On the 12th, the rental period extends to also 
include the 12th. From then on, the rental period remains 
fixed. The current time is the 21st, and as time passes, the 
region grows to the right; the arrows indicate this and 
correspond to the UC values in the textual 
representation.  
 Figure 2 shows a graphical illustration of the three 
timestamps. The tuples correspond to facts and are times 
tamped with bitemporal elements, which are finite 
unions of intervals or, equivalently, sets of time points in 
the (finite and discrete) two-dimensional space spanned 
by valid and transaction time. 
 The idea behind the BCDM is to retain the simplicity of 
the relational model while also allowing for the capture of 
the temporal aspects of the facts stored in a database. 
Because no two tuples with mutually identical explicit 
attribute values (termed value-equivalent) are allowed in 
a BCDM relation instance, the full history of a fact is 
contained in exactly one single tuple. In addition, BCDM 
relation instances that are syntactically different have 
different information content, and vice versa. 
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However, in case of the internal representation and the 
display to users of temporal information, the BCDM falls 
short. Although it is arguably a first-normal-form relation, 
the non-fixed-length and voluminous timestamps of 
tuples are impractical to manage directly, and the 
timestamp values are also hard to comprehend in the 
BCDM format. Thus we required alternative 
representations of temporal information that may be 
better suited for these purposes. 
 Figure 3 illustrates the same temporal information as 
in Figure 1, in two different data models. The model 
illustrated in 3(a) uses a practical and popular (particularly 
when implementation is considered) fixed-length format 
for tuples. In this format, each tuple’s timestamp records 
a rectangular or stair-shaped region of times, and it may 
take several tuples to represent a single fact. The relation 
format in Figure 3(b) is a typical non-1NF format. In this 
format, a relation is thought of as recording information 
about some type of objects. The present relation records 
information about customers and thus holds one tuple for 
each customer in the example, with a tuple containing all 
information about a customer. Attributes Ds and De 
record starting and ending dealing times, and Ls and Le 
record starting and ending legal times 
 

Customer Id BookId Ds De Ls Le 

      

C101 B1001 6 UC 6 8 

      

C102 B1002 10 13 10 now 

      

C102 B1002 14 UC 10 13 

      

C103 B1005 15 15 15 17 

      

C103 B1005 16 18 15 18 

      

C103 B1005 19 20 15 now 

      

C103 B1005 21 UC 15 20 

      

(a) 

CustomerId  BookId  

[6,Now]×[6,8] C101 [6,Now]×[6,8] B1001 

*10,13+×*10,∞+ C102 *10,13+×*10,∞+ B1002 
[14,Now]×[10,13]  [14,Now]×[10,13]  

[15,15]×[15,17] C103 [15,15]×[15,17] B1005 
[16,18]×[15,18]  [16,18]×[15,18]  
*19,20+×*15,∞+  *19,20+×*15,∞+  

[21,Now]×[15,20]  [21,Now]×[15,20]  

(b) 
 
Fig 3: Alternative Representation of Rented Instance 
 
Unlike in the BCDM, where relations must be updated at 
every clock tick, relations in this format stay up- to- date; 
this is achieved by introducing variables (e.g., now) as 
database values that assume the (changing) current time 
value. The sample relation illustrate the two predominant 
choices for where to enter time values into relations, 
namely at the level of tuples (tuple timestamping) and at 
the level of attribute values (“attribute” timestamping). 
 
4. Designing Temporal Database 
 
The design of appropriate database schemas is critical to 
the effective use of database technology and the 
construction of effective information systems that exploit 
this technology. Database schemas capturing time-
referenced data are often particularly complex and thus 
difficult to design. 
 Database design is typically considered in two 
contexts. In conceptual design, a database is modeled 
using a high-level design model that is independent of the 
particular (implementation) data model of the DBMS that 
is eventually to be used for managing the database. The 
second context of database design is the implementation 
data model, which is assumed to conform to the ANSI 
three-level architecture. In this context, database design 
must thus be considered at the view level, the logical 
level (originally termed “conceptual”), and the physical 
(or, “internal”) level. Here we consider conceptual and 
logical design of temporal databases. In the second 
context, a database is modeled using a high-level, 
conceptual design model, typically the Entity-Relationship 
model. This model is independent of the particular 
implementation data model that is eventually to be used 
for managing the database, and it is designed specifically 
with data modeling as its purpose, rather than 
implementation or data manipulation, making it more 
attractive for data modeling than the variants of the 
relational model. 
 

4.1. Conceptual Design 
 

By far, most research on conceptual design of temporal 
databases has been in the context of the Entity-
Relationship (ER) model. This model, in its varying forms, 
is enjoying a remarkable, and increasing, popularity in 
industry. Building on the example introduced in Section 3, 
Figure 4 illustrates a conventional ER diagram for video 
rentals. 
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Fig. 4: Non Conventional ER Diagram of Book Rental 

 

The diagram in the figure 4 is non-temporal, capturing the 
mini-world at a single point in time. Attempting to 
capture the temporal aspects that are essential for this 
application clutters up the simple diagram. For example, 
since the same customer may check out the same tape at 
different times, the CustomerID and BookId attributes do 
not identify a single instance of Rented. Instead, it is 
necessary to make Rented a ternary relationship type, 
with the third entity type capturing start dates of rentals. 
There is also the issue of where to place the end-time 
attribute of rentals. Next, rental prices may vary over 
time, e.g., due to publications and books getting old. 
Finally, inclusion of dealing time complicates matters. 
 As a result, some industrial users simply choose to 
ignore all temporal aspects in their ER diagrams and 
supplement the diagrams with textual phrases to indicate 
that a temporal dimension to data exists, e.g., “full 
temporal support.” The result is that the mapping of ER 
diagrams to relations must be performed by hand; and 
the ER diagrams do not document well the temporally 
extended relational database schemas used by the 
application programmers. 
 One approach is to devise new notational shorthands 
that replace some of the patterns that occur frequently in 
ER diagrams when temporal aspects are being modeled. 
One example is the pattern that occurs when modeling a 
time-varying attribute in the ER model (e.g., the Rental 
Price in our example). With this approach, it is possible to 
retain the existing ER-model constructs with their old 
semantics. Another approach is to change the semantics 
of the existing ER model constructs, making them 
temporal. In its extreme form, this approach does not 
result in any new syntactical constructs—all the original 
constructs have simply become temporal. With this 
approach, it is also possible to add new constructs. 
 In brief, the ideal temporal ER model is easy to 
understand in terms of the ER model; does not invalidate 
legacy diagrams and database applications; and does not 
restrict the database to be temporal, but rather permits 
the designer to mix temporal and non-temporal parts. 
The existing models typically assume that their schemas 
are mapped to schemas in the relational model that 
serves as the implementation data model. The mapping 
algorithms are constructed to add appropriate time-

valued attributes to the relation schemas. None of the 
models have one of the many time-extended relational 
models as their implementation model. These models 
have data definition and query language capabilities that 
better support the management of temporal data and 
would thus constitute natural candidate implementation 
platforms. 
 
4.2. Logical design 
 
A central goal of conventional relational database design 
is to produce a database schema, consisting of a set of 
relation schemas. Normal forms constitute an attempt at 
characterizing “good” relation schemas. A wide variety of 
normal forms has been proposed, the most prominent 
being third normal form and Boyce-Codd normal form. An 
extensive theory has been developed to provide a solid 
formal footing. 
 In temporal databases, there is an even greater need 
for database design guidelines. However, the 
conventional normalization concepts are not applicable to 
temporal relational data models because these models 
employ relational structures different from conventional 
relations. New temporal normal forms and underlying 
concepts that may serve as guidelines during temporal 
database design are needed. 
 In response to this need, an array of temporal 
normalization concepts have been proposed including 
temporal dependencies, keys, and normal forms. 
Consider the Rented relation schema from Section 3, as 
illustrated in Figures 1 and Does Customer ID (temporally) 
determine BookId or vice versa? Looking at the first 
representation in Figure 3 and applying conventional 
dependencies directly, the answer to both questions is 
no. The second representation is so different from a 
regular relation that it makes little sense to directly apply 
conventional dependencies. The relation in Figure 1 also 
rules out any of the dependencies when we apply regular 
dependencies directly. 
 Considering that the different representations of the 
Rented relation model the same mini world and are 
capable of recording the same information, it may 
reasonably be assumed that these different 
representations would satisfy the same dependencies. At 
any point in time, a customer may have checked out 
several books. In contrast, a book can only be checked 
out by a single customer at a single point in time. With 
this view, BookId temporally determines CustomerID, but 
the reverse does not hold. 
 Temporal data models generally define time slice 
operators, which may be used to determine the 
snapshots contained in a temporal relation. Accepting a 
temporal relation as their argument and a time point as 
their parameter, these operators return the snapshot of 
the relation corresponding to the specified time point. For 
example, a time slice operator for temporal relations like 
the one in Figure 1 may take a point (dt, lt) in bitemporal 
space as its parameter. It returns the tuples of the 
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argument relation that contain this time point, but 
omitting the timestamp attribute. 
 This notion of dependency naturally generalizes 
conventional dependencies and may be applied to other 
dependencies than functional. With this notion of 
dependency, a temporal normalization theory may be 
built that parallels conventional normalization theory and 
that is independent of any particular representation of a 
temporal relation. 
 It is also relevant to consider dependencies and 
associated normal forms that effectively hold between 
time points. One approach to achieve this is to build the 
notion of time granularity into the normalization 
concepts. As a result, it not only is possible to consider 
snapshots computed at non-decomposable time points, 
but it is also possible to consider snapshots computed at 
coarser granularities. Another approach to taking the 
temporal aspects of data into account during database 
design is to introduce new concepts that capture the 
temporal aspects of data and may form the basis for new 
database design guidelines. 
 The concept of lifespan, that captures when an 
attribute of an entity has values, also has implications for 
database design. Specifically, if the lifespan of two 
attributes differ, null values of the unattractive “do not 
exist” variety result unless the attributes are stored in 
separate relations. Assuming that the temporal data 
model used timestamps tuples, attributes should also be 
stored separately when different temporal aspects need 
to be captured for them or when the temporal aspects 
are captured with differing precisions 
 

5. Adding time to query languages 
 

Given the prevalence of applications that currently 
manage time-varying data, one might ask why a temporal 
query language is even needed. Is the existence of all this 
SQL code not proof that SQL is sufficient for writing such 
applications? The reality is that in conventional query 
languages like SQL, temporal queries can be expressed, 
but with great difficulty. To illustrate the issue, consider 
the two relations S-Rented and V-Rented in Figure 5. The 
first is a snapshot relation that records which customers 
have currently checked out which video tapes; the 
second, a valid-time relation, records the check-out 
periods for rentals. The current time is 17, making the 
former relation a snapshot at the current time of the 
latter relation. 
 

CustomerId BookId 

  

C101 B1001 

  

C102 B1003 

  

C102 B1002 

  

C103 B1005 

  

CustomerId BookId Ls Le 

C101 B1001 2 Now 

C101 B1003 5 10 

C102 B1002 22 25 

C102 B1002 9 19 

C102 B1005 4 14 

C102 B1006 9 Now 

C103 B1004 7 21 

 
Fig 5: Realations (a) S-Rented and (b) V-Rented 

 
Using SQL, it is straightforward to express the number of 
current checkouts from S-Rented. For example, this can 
be expressed as follows. 
 
SELECT COUNT(bookid) AS CNT From S-Rented 
 
We proceed to consider the temporal generalization of 
this query, asking now for the time-varying count of tapes 
checked out as recorded in relation V-Rented. The result 
given in Figure 6 correctly gives the count of books rented 
at each point in time were a book is rented (assuming 
value 17 has been used for now). Expressing this query in 
SQL is exceedingly difficult, but possible if now is replaced 
with a fixed time value. 
 

CNT Ls Le 
   

1 2 3 
   

1 20 25 
   

2 4 4 
   

2 18 19 
   

3 5 6 
   

4 7 8 
   

4 15 17 
   

5 11 14 
   

6 9 10 
   

 
Fig 6: A Time-Varying Count on the BookId Attribute of V- 

Rented 

 
As another example, specifying a key constraint on the 
non-temporal relation S-Rented is trivial in SQL. 
 
Alter Table S-Rented Add Primary Key (BOOKID) 
 
This key constraint may be generalized to apply to a legal-
time relation, now meaning that BookId is a key at each 
point in time or, equivalently, in each snapshot that may 
be produced from the legal-time table. Specifying this 
constraint on relation V-Rented in SQL is again difficult. 
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Ordinary queries on non-temporal relations become 
extremely challenging when timestamp attributes are 
added. 
 In an another example in addition to the Rented 
relation from Section 3, we assume in this section a Book 
relation with attributes BookId, Title, and RentalPrice. 
Consider first this database with only current information. 
 To determine who has rented which titles, SQL 
provides a natural solution. SELECT CustomerID, Title 
FROM Rented, Book 
 
WHERE Rented.BookId = Book.BookId 
 
We then extend the Book and Rented relations to record 
also past and future states by adding to each relation two 
additional attributes, StartDate and EndDate, specifying 
the interval of validity of the tuples. To request the 
history of who checked out which titles requires huge size 
of SQL which is very difficult to execute. 
 With a temporal query language, simple queries 
should remain simple when time is added. The temporal 
join can be expressed in the variant of TSQL2 being 
proposed for inclusion into SQL3 as follows. 
 
VALIDTIME SELECT CustomerID, Title FROM Rented, Book 
WHERE Rented.BookId = Book.BookId 
 
Similarly, referential integrity can be expressed as 
“CONSTRAINT BookId VALIDTIME REFERENCES Book.” 
Even with this minimal explanation, the user should have 
no difficulty in expressing the average rental price query 
in this extension to SQL 
 
Recently a set of criteria for temporal query languages 
has emerged. These include temporal upward 
compatibility (that is, conventional queries and 
modifications on temporal relations should act on the 
current state), support for sequenced queries (that 
request the history of something, such as the temporal 
join above), adequate expressive power (a query 
language-independent test suite is useful for such 
evaluations), and the ability to be efficiently 
implemented. 
 
Conclusion 
 

A wide range of database applications manage time-
varying data. In contrast, existing database technology 
provides little support for managing such data. The 
research area of temporal databases aims to change this 
state of affairs by characterizing the semantics of 
temporal data and providing expressive and efficient 
ways to model, store, and query temporal data. 
 This paper has briefly introduced the concept of 
temporal data management, emphasizing what we 
believe are important concepts and surveying important 
results produced by the research community. In what 
remains, we first summarize the current state-of-the-art, 

then point to issues that remain challenges and which 
require further attention. A great amount of research has 
been conducted on temporal data models and query 
languages, which has shown itself to be an extraordinarily 
complex challenge with subtle issues. Many languages 
have been proposed for querying temporal databases, 
half of which have a formal basis. 
 Although many important insights and results have 
been reported, many research challenges still remain in 
temporal database management. The lack of 
consideration of some of these challenges has reduced 
the potential of earlier results. In many cases, core 
concepts have been established, but it remains to be 
shown how they may be combined and applied, to 
simplify and automate the management of time-
referenced data in practice. 
 The recent growth in database architectures, including 
the various types of middleware, prompts a need for 
increased architecture-awareness. Studies are needed 
that provide the concepts, approaches, and techniques 
necessary for third party developers to efficiently and 
effectively implement temporal database technology 
while maximally exploiting available architectural 
infrastructure, as well as the functionality already offered 
by existing DBMSs. The resulting temporal DBMS 
architectures will provide a highly relevant alternative to 
the standard integrated architecture that is generally 
assumed. As a next step, research is needed on how to 
exploit existing and novel performance-improving 
advances, such as temporal algebraic operator 
implementations and indices, in these architectures. Also, 
there has been little work on adding time to so-called 
fourth-generation languages that are revolutionizing the 
user interfaces of commercially available DBMSs. 
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