
 International Journal of Multidisciplinary and Current Research ISSN: 2321-3124

 Research Article Available at: http://ijmcr.com

1260|Int. J. of Multidisciplinary and Current research, Vol.4 (Nov/Dec 2016)

Multiple UAVs communication in Intelligent Environment

Sameer

Shah Satnam Ji P.G Boys College, Sirsa, India

Accepted 26 Dec 2016, Available online 30 Dec 2016, Vol.4 (Nov/Dec 2016 issue)

Abstract

Seamless mobility of the nodes in the multi-UAV cooperative causes the network topology to change frequently. As the
UAVs have limited sensor capabilities, cooperative control relies heavily on communication with appropriate neighbours.
The leashing problem is to physically or electronically constrain radio nodes within the network so that communication
can take place between designated end points. This problem is of interest in UAV applications, as communication is
often required between nodes that would not otherwise be able to communicate for instance because of range
constraints or line-of-site obstructions. Efficient, reliable, low latency communication is required to fully realize and
utilize the benefits of multi- vehicle teams. The need for communication is very vital in the performance of the UAV team
tasks. This survey paper deals with the comparison of shortest path finding algorithms for intelligent environment

Keywords: Seamless mobility of the nodes etc.

1. Introduction

As the UAVs have limited sensor capabilities, cooperative
control relies heavily on communication with appropriate
neighbours. Routing protocols use metrics to evaluate
what path will be the best for a packet to travel. A metric
is a standard of measurement, such as path bandwidth,
that is used by routing algorithms to determine the
optimal path to a destination. To aid the process of path
determination, routing algorithms initialize and maintain
routing tables, which contain route information. Routing
involves two basic activities: determining optimal routing
paths and transporting information groups through an
internetwork.

A. Example Network

Routing algorithms often have one or more of the design
goals such as optimality, simplicity and low overhead,
robustness, stability, rapid convergence and flexibility.

Figure 1 Example Network

The advantages of coordinating and collaborating UAV

teams are: to accomplish the missions in a shorter period,

to accomplish many goals simultaneously, teams of small

aircraft can be cheaper and less detectable than a single,

larger vehicle; or damage to a single UAV does not

necessarily affect the entire mission. Achieving the

leashing goal for instance in a more optimal way by

knowledge sharing is one of the research goals.

Optimality refers to the capability of the routing

algorithm to select the best route, which depends on the

metrics and metric weightings used to make the

calculation. For example, one routing algorithm may use a

number of hops and delays, but it may weigh delay more

heavily in the calculation. Naturally, routing protocols

must define their metric calculation algorithms strictly.

Efficiency is particularly important when the software

implementing the routing algorithm must fun on a

computer with limited physical resources.

 As shown in Figure 1, there is no direct radio channel

between A and F. Nodes B, D, E or G must serve as an

intermediate-router for communication between A and F.

A distinguishing feature of networks is that all nodes must

be able to function as routers on demand.

 As the UAVs have limited sensor capabilities,

cooperative control relies heavily on communication with

appropriate neighbours. Routing protocols use metrics to

evaluate what path will be the best-for a packet to travel.

A metric is a standard of measurement, , such as path

bandwidth, that is used by routing algorithms to

determine the optimal path to a destination.

Sameer Multiple UAVs communication in Intelligent Environment

1261 | Int. J. of Multidisciplinary and Current research, Vol.4 (Nov/Dec 2016)

B. Path Determination

To aid the process of path determination, routing
algorithms initialize and maintain routing tables, .which
contain route information. Routing involves two basic
activities: determining optimal routing paths and
transporting information groups through an internetwork.
The information about the target should reach the human
supervisors even in the presence of obstacles. A scalable,
reliable, efficient, low latency communication algorithm is
required for a heterogeneous, high speed network. For a
low latency communication the shortest path finding
algorithm is vital. The fastest, cheapest, or easiest route
to take is oftentimes more important than finding just any
path. That is where optimal search comes in
 Depending on the relevance of information the
information should be routed such that the information
reaches the control station in time and also uses the
bandwidth more efficiently. The weight of the path
depends on various factors like the distance, end-to-end
time delay, reliability of foe link etc. In wireless networks
where foe nodes seamlessly move, the weights can be
defined dynamically using learning technique. These
weights are passed on to foe router which decides foe
route so that foe target information reaches foe source
without any error and also in time. When there is an
image of foe source to be transmitted to foe control
station, then foe message or foe information could be
divided into packets which reach foe destination which is
foe control station with human supervision through foe
available shortest path.

2. Path Finding Algorithms

A. Literature Review

Path finding is to find foe possible routes from foe source
to the destination while path planning is deciding which
route to take based on foe terrain. The complete route to
be taken is created as a sequence of moves from foe
initial position. At each step, foe algorithm must decide
which way to move next. An efficient dynamic
implementation is obviously required if foe overhead is to
be minimized. The properties of foe path can be taken
into account by a deliberative thinking module,
responsible for making founded decisions. For example,
path lengths can be used to estimate travel-time, which
influences foe agent's decision to move to a particular
location. The various path finding algorithms[5-12] are
studied and compared
 The recent developments in Intelligent Transportation
Systems (ITS), particularly in foe field of in-vehicle Route
Guidance System (RGS) and real time Automated Vehicle
Dispatching System (AVDS) where there is a definite need
to find foe shortest paths from an origin to a destination
in a quick and accurate manner. Because foe travel times
are foe basic input to foe real-time routing and scheduling
process and are dynamic in most urban traffic

environments, there is an implicit requirement to use a
minimum path algorithm repeatedly during the
optimization procedure. Most of these heuristic search
strategies originated in the artificial intelligence (AI) field
(1-4), where the shortest path problem is often used as a
testing mechanism to demonstrate foe effectiveness of
these heuristics.
 Distance Vector is a decentralized routing algorithm
that requires that each router simply inform its
neighbours of its routing table. For each network path,
foe receiving routers pick foe neighbour advertising foe
lowest cost, then add this entry into its routing table for
re-advertisement. To find foe shortest path, Distance
Vector is based on one of two basic algorithms: the
 Bellman-Ford and foe Dijkstra’s algorithms (OSPF). In
RIP (The Routing Information Protocol), Distance Vector is
known as the Bellman-Ford algorithm. Open Shortest
Path First (OSPF) is a routing protocol developed for
Internet Protocol (IP) networks by foe Interior Gateway
Protocol (IGP) working group of the Internet Engineering
Task Force (IETF).
 Distance Vector algorithm is iterative as foe process of
exchanging information will continue until no more
information is exchanged between foe neighborhoods,
distributed as this algorithm enables each node receives
some information from one or more of its directly
attached neighbours and asynchronous as this algorithm
does not require all of the nodes to operate in lock step
with each other. Dijkstra’s algorithm creates labels
associated with vertices.
 These labels represent foe cost from foe source vertex
to that particular vertex. Within foe graph, there exists
two kinds of labels: temporary and permanent The
temporary labels are given to vertices that have not been
reached. The value given to these temporary labels can
vary. Permanent labels are given to vertices that have
been reached and their cost to foe source vertex is
known. The value given to these labels is foe cost of that
vertex to the source vertex. For any given vertex, there
must be a permanent label or a temporary label, but not
both. The algorithm begins at a specific vertex and
extends outward within foe graph, until all vertices have
been reached. More simply, Dijkstra’s algorithm stores a
summation of minimum cost edges whereas Prim’s
algorithm stores at most one minimum cost edge.
Dijkstra’s algorithm determines foe costs between a given
vertex and all other vertices in a graph. This may be useful
to determine alternatives in decision making.
 The algorithm begins by initializing any vertex in the
graph (vertex A, for example) a permanent label with the
value of 0, and all other vertices a temporary label with
the value of 0. The algorithm then proceeds to select the
least cost edge connecting a vertex with a permanent
label (currently vertex A) to a vertex with a temporary
label (vertex B, for example). Vertex B’s label is then
updated from a temporary to a permanent label. Vertex
B’s value is then determined by foe addition of foe cost of
the edge with vertex A’s value. This process is repeated

Sameer Multiple UAVs communication in Intelligent Environment

1262 | Int. J. of Multidisciplinary and Current research, Vol.4 (Nov/Dec 2016)

until the labels of all vertices in the graph are permanent,
Dijkstra’s Algorithm solves foe single-source shortest path
problem in weighted graphs. Dijkstra’s algorithm start
from a source node and in each iteration adds another
vertex to the shortest-pafo spanning tree. This vertex is
the point closest to foe root which is still outside the tree.
Watch as the tree grows by radiating out from the root.
As it is not a breadth-first search; we do not care about
the number of edges on foe tree path, only the sum of
their weights. The time required by Dijkstra’s algorithm is
O (|V|2).
 A graph can be represented as an adjacency matrix A
in which each element (i, j) represents the edge between
element i and j. A y = 1, if there is an edge between node i
and j, otherwise, A y = 0. Bellman-Ford algorithm solves
the single-source shortest-path problem in the general
case in which edges of a given digraph can have negative
weight as long as G contains no negative cycles. This
algorithm, like Dijkstra's algorithm uses the notion of
edge relaxation but does not use with greedy method.

The algorithm progressively decreases an estimate cost
on the weight of the shortest path from the source node
to each node in the network until it achieves the actual
shortest-path. The Bellman-Ford algorithm runs in O (E)
time. Routers that use this algorithm have to maintain the
distance tables, which tell the distances and shortest path
to sending packets to each node in the network. The
information in the distance table is always updated by
exchanging information with the neighboring nodes. The
number of data in the table equals to that of all nodes in
networks. The columns of table represent the directly
attached neighbours whereas the rows represent all
destinations in the network. Each data contains the path
for sending packets to each destination in the network
and distance/or time to transmit on that path or the cost.
The measurements in this algorithm are the number of
hops, latency, the number of outgoing packets, etc.
 Pathfinders let you look ahead and make plans rather
than waiting until the last moment to discover there's a
problem. Movement without path finding works in many
situations, and can be extended to work in more
situations, but path finding is a more general tool that can
be used to solve a wider variety of problems. Most path

finding algorithms from Artificial Intelligence or
Algorithms research are designed for arbitrary graphs.
 The Best-First-Search (BFS) algorithm works in a
similar way, except that it has some estimate called a
heuristic of how far from the goal any vertex is. Instead of
selecting the vertex closest to the starting point, it selects
the vertex closest to the goal. BFS is not guaranteed to
find a shortest path. However, it runs much quicker than
Dijkstra's algorithm because it uses the heuristic function
to guide its way towards the goal very quickly.

For example, if the goal is to the south of the starting
position, BFS will tend to focus on paths that lead
southwards. In the following diagram, yellow represents
those nodes with a high heuristic value (high cost to get
to the goal) and black represents nodes with a low
heuristic value (low cost to get to the goal). It shows that
BFS can find paths very quickly compared to Dijkstra's
algorithm. The trouble is that BFS is greedy and tries to
move towards the goal even if it's not the right path.
Since it only considers the cost to get to the goal and
ignores the cost of the path so far, it keeps going even if
the path it's on has become really long. A* was developed
to combine heuristic approaches like BFS and formal
approaches like Dijsktra's algorithm. Ifs a little unusual in
that heuristic approaches like BFS usually give you an
approximate way to solve problems without guaranteeing
that you get the best answer. However, A* is built on top
of the heuristic, and although the heuristic itself does not
give you a guarantee, A* can guarantee a shortest path.

3. Results

The A* is like other graph-searching algorithms in that it
can potentially search a huge area of the map. It's like
Dijkstra's algorithm in that it can be used to find a
shortest path. It's like BFS in that it can use a heuristic to
guide itself. In the simple case, it is as fast as BFS.
 Dynamic Programming [16] is a technique that takes
advantage of overlapping sub problems, optimal
substructure, and trades space for time to improve the
runtime complexity of algorithms. In Bottom Up Dynamic
Programming, we start from smaller cases and store the
calculated values in a table for future use, an effective
strategy to most dependency-based problems. This avoids
calculating the sub problem twice. Dynamic Programming
(DP) generates all enumerations, or rather, cases of the

Sameer Multiple UAVs communication in Intelligent Environment

1263 | Int. J. of Multidisciplinary and Current research, Vol.4 (Nov/Dec 2016)

smaller breakdown problems, leading towards the larger
cases, and eventually it will lead towards the final
enumeration of size n this will give the shortest distances
between any two nodes, from which shortest paths may
be constructed. The Floyd-Warshall Algorithm is an
application of Dynamic Programming. Given a directed
graph, the Floyd-Warshall All Pairs Shortest Paths
algorithm computes the shortest paths between each pair
of nodes in O (n

A
3).

References

[1] Halt EP, Nilsson NJ, Raphael B.A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transaction, System Science and Cybernetics 1968;SSC-4(2):
100-7.
[2] Nilsson JN. Problem-solving methods in artificial intelligence.
NewYoik: McGraw-Hill; 1971.

[3] Newell A, Simon HA Human problem solving. Englewood
Oifls, NJ: Prentice-Hall; 1972.
[4] Pearl J. Heuristics: intelligent search strategies for computer
problem solving. Addison-Wesley Publishing Company; 1984.
[5] Gallo G, Pallottino S. Shortest path methods. In: Florian M,
editor. Transportation planning models. Amsterdam: Elsevier
Science Publishers; 1984. p. 227-56.
[6] Hung SM, Divoky JJ. A computational study of efficient
shortest path algorithms. Computers and Operations Research
1988;15(6):567-76.
[7] VurenVT, JansenGRM.Recent developments in path finding
algorithms: a review.Transportation Planning andTechnology
1988;12:57-71.
[8] Cherkassky BV, Goldberg AV, Radzik T. Shortest paths
algorithms: theory and experimental evaluation. Mathematical
Programming 1996;73(2): 129-74.
[9] Zhan FB, Noon CE. Shortest path algorithms: an evaluation
using real road networks. Transportation Science 1998;32(1):
65-73.

