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Abstract  
   
In the domain of Cyber-Physical Systems (CPS), there is a significant concern regarding cybersecurity, especially for 
smart manufacturing systems, allegedly a target of numerous recent cyber attacks. Given this situation, this paper 
introduces a simulation-based model to assess the repercussions on manufacturing systems’ performance under the 
presence of cybersecurity issues. The objective is to validate countermeasures regarded as a Dynamic Intrusion 
Response, which could potentially reduce the adverse impact of specific malicious cyber attacks. The effectiveness of 
adjusting dynamic scheduling policies in response to cyber-attacks has been evaluated through a simulation study based 
on a manufacturing system. The results reveal that adaptive real-time scheduling policies such as dynamic resource 
allocation and rerouting of jobs will efficiently reduce the adverse impact of cyber attacks on an open-shop 
manufacturing environment.  
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Introduction 
 

The concept of Cyber-Physical Systems (CPS) is applied in 
manufacturing systems that incorporate the dynamics 
and characteristics of physical processes with commands 
originating from the computer software and 
communication platforms (Shi et al. 2011; Lee et al. 
2015). CPS’s are characterized by embedded systems, 
wireless sensor networks (WSN), and other software 
platforms when compared to traditional manufacturing 
systems. (Rajkumar et al. 2010). Since these types of 
systems provide tools for real-time analysis, coordination, 
and monitoring of the integrated architecture, the 
operational reliability of such automated processes is 
critical. In CPS’s, advanced feedback control technologies, 
known as Industrial Control Systems (ICS), will be 
governing the operability of these systems, and hence, its 
reliability and security are extremely critical.  

Over the last decade, the security of ICS has been 
investigated by numerous researchers. Most of them 
concentrated on presenting cybersecurity vulnerabilities’ 
assessments and recommending the imperative need of 
customized Information Technology (IT) security 
mechanisms to validate the proper execution and safety 
requirements for ICS (Knowles et al. 2015; McLaughlin et 
al. 2016; Chaves et al. 2017).   
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CPS has become exposed further to cyberthreats because 
of the increasing availability of software platforms and 
Internet-based capabilities joined into these controlling 
systems. Hence, the purpose of this paper is to develop a 
simulation-based model that will enable the 
manufacturing sector to assess systems' performance 
metrics under the potential presence of cyber-threats 
throughout their continuous operations.  

Manufacturing companies have been increasingly 
adopting these Cyber-Physical technologies for their 
processes, where software capabilities work in 
conjunction with human resources (i.e., Human-Machine 
Interface) as a multi-level architecture (Alguliyev et al. 
2018). This type of intelligent systems will promote real-
time and collaborative interactions by implementing 
information analytics and networked resources that will 
be able to drive results to the manufacturing industry 
more efficiently and collaboratively through internet-
based applications, including cloud computing. 
Unfortunately, these recent capabilities are also 
augmenting the risk of potential cyber-attacks from 
malicious outsiders in manufacturing systems.  

According to recent information, cybersecurity has 
become a critical concern for CPS operability for the last 
decade. A recent report published by the National 
Institute of Standards and Technology (NIST), indicates 
that cyber-attacks incurred more than $400B of direct 
costs per year for companies around the globe (Keith 
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Stouffer et al. 2015). Malicious attacks harm automated 
processes in many possible ways, and, as shown in several 
cyber-attack incidents, the manufacturing sector can be 
one of the main targets (Wells et al. 2014). Cyber-attacks 
on manufacturing systems not only can affect design 
parameters, overall performance or even quality control 
(QC) procedures, but also disrupt the product and system 
design process that makes an adverse impact on the 
design intent of the products for manufacturing 
companies.   

Nowadays, an important topic for the manufacturing 
companies is to evaluate the appropriate 
countermeasures (i.e., defense policies) that will promote 
an immunity threshold. Considering the fact that 
investing in protection against all types of malicious 
attacks is infeasible, a pratical goal for the manufacturers 
is to ensure proper functionality of their CPS to maintain a 
similar level of performance during a cyber attack while 
taking into consideration financial constraints. 

This study evaluates the impact of having different 
controllable defense policies from the company’s 
standpoint while having different security-based 
parameters from the attacker's perspective. It proposes a 
discrete-event simulation model that is proven reliable 
for evaluating the impact of specific circumstances in 
manufacturing systems and potentially enhancing 
business decisions (2015, 2016, 2017a; Chen et al. 2016).  

The main contributions of this paper will be as follows: 
(1) It demonstrates a method to model the behavior of a 
manufacturing system in a healthy condition and under 
security attacks, using a game-theoretic approach to 
mimic the interaction between the attacker and defender 
through simulation. (2) It examined how different 
controllable and uncontrollable factors, such as resource 
capacity and reorder policies, may affect the performance 
of the CPS in manufacturing. (3) It proposed and validated 
countermeasures regarded as Dynamic Intrusion 
Response, which could potentially reduce the adverse 
impact of certain malicious cyberattacks. 

The rest of this paper is organized as follows. Section 2 
summarizes related work in the fields of security of ICS, 
cybersecurity in manufacturing, and the open-shop 
scheduling problem. Section 3 describes the research 
methodology applied in this study. Section 4 presents a 
case study that is developed in order to validate the 
applicability of the model. Finally, Section 5 provides a 
discussion of the results, while Section 6 provides a 
summary of the main conclusions, the contributions for 
this paper, and the future research approach. 
 
Literature Review 
 
Security of Industrial Control Systems (ICS)  
 
Over the last decade, the presence of ICS for highly 
automated processes has been widely discussed. ICS is 
typically found in the main industrial sectors such as 
electricity, water and wastewater, oil and natural gas, 

transportation, chemical, pharmaceutical, food and 
beverage, and manufacturing. As ICS being a critical part 
of many advanced manufacturing systems, it is imperative 
to study ICS's classic topologies and vulnerabilities to 
cyber-threats (2017b).  

Supervisory control and data acquisition (SCADA) 
systems are the most common type of ICS, which are 
responsible for monitoring and controlling intelligent 
networks, thus making this type of infrastructure 
important targets for malicious attacks. The importance 
of identifying cybersecurity vulnerabilities and creating 
autonomous defense methods for these controlling 
systems have been extensively discussed before (Chen et 
al. 2015). A research study used a mathematical form of 
vectors for representing simple and complex attacks as 
potential industrial radio vulnerabilities (Reaves and 
Morris 2012). Likewise, other authors developed a 
method for analyzing uncertain network transmission 
time delays in real-time, while creating a closed-loop 
control of manufacturing plants through networks 
(Rahmani and Markazi 2012). In manufacturing, it is 
currently known that the increasing use of wireless 
networking technologies in ICS, have increased the risk 
from many adversaries who do not even have direct 
physical access to equipment on the shop floor. That 
being stated, risk assessment and possible defense 
policies implementation against attacks in Manufacturing 
Systems have been considered. Incorporating knowledge 
of the physical system under control has been discussed, 
so it could be possible to detect computer attacks that 
change the behavior of the targeted control system. For 
all that, Zhang et al.(2019) believed that the current 
efforts of ICS cybersecurity may not be sufficient for 
growing cyber threats. Thus, a cyber-attack detection 
system built on the concept of defense-in-depth is 
developed. This attack detection system provides a 
multiple-layer defense to gain the defender's precious 
time before unrecoverable consequences occur in the 
physical system.   
 

Cybersecurity in Manufacturing 
 

As many documented incidents exist for different 
industries over recent years, there is an emerging interest 
in evaluating the impact of these cyber-threats in 
manufacturing systems. Wells et al. (2014) highlighted 
some specific cybersecurity vulnerabilities for 
manufacturing systems while describing potential 
approaches that should be utilized for analyzing this type 
of issue. Bracho et al. (2017; 2018) suggest a simulation 
based with statistical analysis to measure the 
valunerabilies in manufacturing systems while Sturm et 
al. (2017) focused on the vulnerabilities of additive 
manufacturing (AM) technologies, mainly in using. STL 
files during its processes. Zeltmann et al. (2016) also 
demonstrated the significance of modifying the design 
intent of the products for manufacturing companies.  

In terms of vulnerabilities in manufacturing, DeSmit et 
al. (2016) proposed an approach for assessing cyber-
physical systems in the manufacturing sector, using 
decision tree analysis. Shih-Yuan Yu et al. (2020) 
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presented a multi-modal sabotage attack detection 
system for AM machines. They demonstrated that a 
sabotage attack detection system can detect various 
attacks by correlating multiple forms of physical-domain 
emissions of the AM system with cyber-domain 
information. Vincent et al. (Vincent et al. 2015) 
introduced a real-time detection approach for enhancing 
quality control in manufacturing environments affected 
by Trojan attacks. Zarreh et al. (2018, 2019a, b, 2020; 
2019) identified research gaps and challenges to improve 
overall equipment effectiveness (OEE) in presence of 
cybersecurity threats in critical manufacturing industries, 
besides they presented a method to create and solve a 
game theory model to address cybersecurity issues 
specifically for advanced manufacturing systems with 
high-level computer-controlled integration. Shahin et al. 
(2020) proposed a framework to address threats in 
industry 4.0 environment. Finally, the security of SCADA 
systems in advanced manufacturing has also been 
investigated recently (Portilla et al. 2014).      

In summary, researchers have been focused on the 
conceptual and final objective of the attack and potential 
vulnerabilities, and not on how the effects of these 
attacks can be quantified in automated processes. A 
general quantitative model to assess the impact of having 
cyber-threats in manufacturing environments has not 
been found in the literature. 
 
Open-Shop Scheduling Problem (OSSP) in Manufacturing 
 
Scheduling in manufacturing systems, which is a calendar 
for manufacturing products or components, is crucial for 
productivity. Anand and Panneerselvam (2015) provided 
a systematic literature review on open-shop scheduling 
problems, as one of the categories of scheduling 
problems. They classified the problem base on the open-
shop measures of performance, namely: minimization of 
makespan, minimization of the sum of completion times 
of jobs, minimization of the sum of weighted completion 
times of all jobs, minimization of total tardiness of all 
jobs, minimization of the sum of weighted tardiness of all 
jobs, minimization of the weighted sum of tardy jobs, and 
miscellaneous measures of the open shop scheduling 
problem.  

To address each or a combination of these problems, 
different methods are utilized. Panneerselvam et al.  
(2019) considered a Meta-heuristic genetic algorithm 
(GA) to minimize the makespan of the  OSSP. They 
proposed a new crossover operator, namely the Three 
Chromosome Juggling Crossover(TCJC) operator for the 
GA methods to determine whether the GA methods 
developed using TCJC operator provide better Makespan 
results when compared to those values given by the GA 
method developed using one-point crossover operator. 
Dror (1992) analyzed the minimizing both the mean flow 
time and the makespan in an open shop problem with 
machine-dependent processing time using an optimal 
algorithm with the complexity function. 
Haidar M. Harmanani et al.(Marrouche and Harmanani 
2018) resented two metaheuristic algorithms for solving 
the non-preemptive open-shop scheduling problem. The 

algorithms are based on cuckoo search and dynamic ant 
optimization. Furthermore, Shareh et al. (2020) 
investigated the task scheduling problem in open shops 
using the Bat Algorithm (BA) based on ColReuse and 
substitution meta-heuristic functions to reduce total 
execution time. 

Mahapatra et al. (2017) addressed the waiting time in 
task scheduling problems by minimizing the waiting time 
variance of a task which is an NP-hard problem to achieve 
the quality of service in a single or parallel processor.  
They applied five heuristic-based solutions to minimize 
the waiting time variance.   

In contrast with deterministic approaches used by 
most researchers, Nasiri et al. (2017) developed a 
simulation-based real-time scheduling composite 
dispatching rule to mimic realistic circumstances in open 
shop scheduling problems which consist of uncertainty 
and stochastic parameters. They minimized the mean 
waiting time of jobs in a non-preemptive open shop with 
stochastic ready times using a multi-response 
optimization approach based on computer simulation for 
scheduling. 
 
Research Methodology 
 
In this research, the effect of cybersecurity threats on the 
performance of a manufacturing system with highly 
integrated cyber and physical subsystems has been 
studied. A quantitative study is proposed to evaluate the 
impact of implementing different countermeasures 
regarded as a Dynamic Intrusion Response, and attacker-
related factors under the presence of potential cyber-
threats that cause delays in processing times of the 
production system. A case of manufacturing is modeled 
and simulated using Arena® from Rockwell Automation to 
illustrate the method. The selected manufacturing system 
consists of an open-shop environment with different 
types of jobs that need to be scheduled. Then, three 
potential scenarios have been developed to evaluate the 
overall performance of the system in the presence of 
cyber-attacks while different dynamic intrusion responses 
have been implemented. 
 

Model Description 
 

A model of a cyber-physical manufacturing system was 
developed using Arena® simulation software. It includes 
the arrival of attacks, which will be modeled as entities 
that will impact the cyber-system, and therefore, the 
physical workstations’ processing time. Components of 
the simulation model are explained further in the 
following sub-sections. The flowchart of the created 
simulation logic for this case study can be seen in  
Figure 1 and  

Figure 2. Again, the objective is using simulation for 

revealing the average long-run performance metrics of 

the system for the entire simulation length, which will 

permit to have a quantitative assessment of the breach 

impact for a CPS in this type of physical manufacturing 

environment.  
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Figure 1. Flowchart logic for the cyber system 
 

 
 

Figure 2. Flowchart logic for the physical system 
 
Arrival of Cyber-attacks 
 

Cyber-attacks are modeled as entities that will arrive 
following an exponential distribution with a mean time 
between arrivals of 5 hours. Again, these attacks can be 
successful or defused, which will maintain or modify the 
current status of the cyber-system. The CPS will either 
behave in a “Normal (G)”, “Compromised (C)”, “Partially 
Active (PA)” or “Failed (F)” state depending on the levels 
of impact from cyber-attacks. The outcome of the attacks 
for this case study will be probabilistic with the following 
considerations: 30% chance of ending in (G) (i.e. attack 
defused), 30% chance of ending in (C), 20% chance of 
ending in (PA) and 20% chance of ending in (F).  Finally, 
based on the current status of the system, the processing 
times of physical workstations will be multiplied by a 
stochastic “speed factor”, which will cause delays in the 
overall production performance of the manufacturing 
system. 

The Cyber System  
 

This portion of the model represents the Intrusion 
Detection System (IDS) of the whole networked CPS, and 
it has the same considerations as Case Study #1. Once 
attacks affect the cyber-system, the impact will be 
induced on its physical operations. Then, the IDS will 
deploy a Dynamic Intrusion Response in order to reduce 
the adverse impact on the system’s performance. The 
system will need a certain period of time (MRT) to return 
to a “Normal” state. The MRT for affected states will 
follow an exponential distribution with the following 
mean values: 1.5 hours for “Compromised”, 3 hours for 
“Partially Active” and 15 hours for “Failedharm  
 
The Physical System 
 
This portion of the model represents the material’s flow 
layout throughout the physical manufacturing system. In 
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this case, the physical system represents an automated 
Order Picking Operations system in a manufacturing 
warehouse, which is equivalent to an open-shop 
manufacturing system. The data for this model follow the 
considerations described in Nasiri et al. (2017). These are 
described as follows: 
 

• The physical manufacturing system consists of an 
open-shop environment with five types of jobs as 
entities and five different workstations. Being an 
open-shop scheduling problem (OSSP), all jobs have 
to visit all five stations in order to be completed, yet, 
there is no specific sequence for these operations.  

• Workstations are not identical. Each workstation 
consists of a single machine that performs a different 
type of operation. 

• Each job type has a different arrival rate and 

processing time at each workstation. Arrival rates for 

each job type and Processing Time of each job at 

each workstation is modeled as stochastic and can be 

seen in Table 1 and Table 2, respectively.  

• Once jobs arrive into the system, station selection 

will be made based on the Queue Length. 

• Once a job has visited a specific station, it does not 

need to be revisited by that same entity. 

• Once a job enters a Queue, the dispatching priority of 

these jobs will be based on the score from a 

combined equation. This equation will be further 

discussed in section 4.2. 

• The performance metrics selected for assessing the 

impact of cyber-attacks will be the average waiting 

time for each job type and the average flow time of 

jobs. Therefore, the objective is to determine what 

could be the best dynamic intrusion responses that 

will reduce the overall value of these averaged 

metrics. 

 
The OSSP is considered to be an NP-hard problem. 
Therefore, mathematical modeling is not efficient for 
capturing the behavior of this type of system since most 
of the parameters are stochastic. For this reason, 
simulation software is an excellent fit for modeling this 
type of complex systems. 
 

Table 1. The time between arrivals for each Job type 

 

Job Type The time between arrivals (minutes) 

1 Uniform(40,60) 

2 Triangular(50,51,62) 

3 Normal(45,6) 

4 Normal(35,3) 

5 Exponential(43) 

Table 2. Processing times of each Job in each Station 
 

Job Type Station (Machine) Processing Time (minutes) 

1 M1 Normal(6,0.2) 

1 M2 Uniform(4,6) 

1 M3 Triangular(4,5,6) 

1 M4 Normal(6,0.4) 

1 M5 Normal(4,0.1) 

2 M1 Normal(6,0.1) 

2 M2 Triangular(5,6,7) 

2 M3 Normal(8,0.5) 

2 M4 Triangular(3,4,5) 

2 M5 Triangular(5,6,8) 

3 M1 Exponential(7) 

3 M2 Exponential(6) 

3 M3 Normal(6,0.5) 

3 M4 Uniform(4,8) 

3 M5 Triangular(7,8,10) 

4 M1 Uniform(8,9) 

4 M2 Normal(7,0.2) 

4 M3 Triangular(6,7,8) 

4 M4 Normal(4,0.1) 

4 M5 Normal(7,0.5) 

5 M1 Exponential(6) 

5 M2 Normal(8,0.5) 

5 M3 Uniform(6,8) 

5 M4 Exponential(4) 

5 M5 Uniform(6,9) 

 
Run Setup 
 
For each scenario, the simulation model was run for 30 
days, 8 hours a day, with 10 replications. At the end, the 
long-run average values of selected performance metrics 
were collected. 
 
Evaluation of Dynamic Intrusion Responses 
 

Once the model is built as the original scenario, “what-if” 

scenarios are created to elucidate the best responses 

among different countermeasures. Different 

manufacturing scheduling policies will be used as 

parameters for the scenarios; thus the benefit of 

implementing these potential countermeasures will be 

assessed through the performance of the system under 

the presence of cyber-attacks that impact the processing 

times of jobs for each scenario. The average waiting time 

for each job type, the average utilization of workstations, 

and the average flow time per job will be collected as 

performance metrics for each scenario. 

The policies that will be implemented in the original 
manufacturing system as countermeasures against cyber-
threats are described as follows: 
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Optimization of Dispatching Priority rule for Jobs waiting 
in a Queue 
 
In this case study, the priority of jobs to be processed in a 

queue will be determined by the score of a combined 

dispatching priority rule, which is a revised version of the 

equation introduced by Nasiri et al. (Nasiri et al. 2017). 

The value of this rule is computed by the weighted sum of 

the two standardized dispatching rules: (1) processing 

time of a current job on the current machine and (2) 

remaining processing time of the job to be entirely 

completed. This combined dispatching rule is calculated 

for each job that enters a queue, and the jobs with a 

higher score will be considered as prior jobs to be 

processed on the machine. The combined dispatching 

rule (CDR) is calculated by the following equation: 

 

𝐶𝐷𝑅 = 𝑊1 ∗  (1 −  (
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝑛
𝑗=1

)) + 𝑊2 ∗  (
𝑅𝑖

∑ 𝑃𝑖𝑗
𝑛
𝑗=1

)           (1) 

 

where 𝑊1 is the weight of processing time of the job in 

the combined dispatching priority rule, 𝑊2 is the weight 

of the remaining time of the job in the combined 

dispatching priority rule, Ri is the remaining processing 

time of the job i to be completed, and Pij is the processing 

time of job i on machine j. 

This countermeasure is used to find the optimal value 

of the weights in the CDR, so that the mean waiting time 

of jobs can be minimized. Instead of finding the optimal 

value from a brute-force enumeration, we use a 

simulation optimization package, OptQuest, in searching 

solution space efficiently. For this purpose, differently, 

from their approach, Arena ® simulation software 

package in conjunction with its optimization tool called 

“OptQuest” was used, because it is a user-friendly tool 

included in the Arena Software application that can 

search throughout the solution space universe much 

more efficiently than brute force enumeration.  

 

On-call for additional resources 

 

The purpose of this policy is to temporarily compensate 

for the impact on processing times caused by cyber-

attacks by adding additional resources on affected 

machines until the system is fully recovered. 

 

Dynamic Resource Allocation (DRA) 

 

The purpose of this policy is to temporarily compensate 

for the impact on processing times caused by cyber-

attacks by relocating existing resources among stations 

until the system is fully recovered. The concept of DRA 

has been implemented by many researchers in many 

areas related to manufacturing before. For example, the 

studies of Saygin & Tamma (Saygin and Tamma 2012) and 

Gunn (Gunn 2010) have already been mentioned in 

section 2.  

However, in terms of smart manufacturing systems 
that heavily rely on automated processes, it might not be 
that simple to find real-world applications that are 
suitable for this type of policy. In other words, the 
concept of DRA may be more suitable with service 
industries where human resources can be redistributed in 
real-time among different locations of the whole system 
in order to compensate for current bottlenecks or 
variability.  

Nevertheless, DRA is not unique to service or 
production processes. Having an open-shop environment 
case study where cyber-attacks can compromise the 
operability of the system, makes possible to imagine 
different applications where tools, operators, or even 
computing servers can be seen as resources that could 
move throughout the system, therefore, the results of 
implementing this policy as a potential countermeasure 
should be analyzed. Previous research work on the topic 
of dynamic resource allocation has addressed the 
optimization of computing and parallel servers, where it is 
vital to obtain the maximum computing capacity available 
with existing resources. 
 

Rerouting of Jobs among Stations 
 

The purpose of this policy is that, in situations where the 
security of the system has been compromised, some of 
the jobs that were waiting in an affected machine’s queue 
are rerouted to a different alternative machine that is not 
affected by the attack. With this, the possibility of jobs 
waiting in a machine’s queue with a higher processing 
time is shortened, and therefore, the mean waiting time 
of jobs can also be reduced.  

This policy has been extensively discussed in the 

literature before. To give a few examples, Nof & Grant 

(Nof and Hank Grant 1991) provided a survey of adaptive 

scheduling policies in manufacturing systems, where they 

highlighted the importance of rerouting jobs to 

alternative machines motivated by stochastic events. 

Similarly, Kim & Kim (Kim and Kim 1994) and Belz & 

Mertens (Belz and Mertens 1996) used simulation 

software to reschedule jobs in flexible manufacturing 

systems effectively. Finally, Kutanoglu & Sabuncouglu 

(Kutanoglu and Sabuncuoglu 2001) examined different 

reactive scheduling policies based on the rerouting of jobs 

for machine breakdowns in a dynamic job shop 

environment.  
 

Experimental Scenarios 
 

In order to evaluate these dynamic intrusion responses in 
our model, the cyber-attacks will be modeled as random 
events that affect the availability of machines according 
to the current status of the system described in Section 
3.1.1. As shown in Table 3, several experimental scenarios 
have been created and are described in the following sub-
sections.  



Alejandro Bracho Avila et al                            Evaluation of Dynamic Scheduling Policies against Cyber-attacks on an Open-Shop Manufacturing System…  

 

401|Int. J. of Multidisciplinary and Current research, Vol.9 (July/Aug 2021) 

 

Table 3. Overview of experimental scenarios 
 

Setting 1: Original System with No Attacks 

Scenario 1: Baseline Model with No Attacks 

Setting 2: Original System under Attacks 

Scenario 2-0: No Defense to Attacks 

Scenario 2-1: Dispatching Priority Rule 

Scenario 2-2: On-call for Additional Resource 

Setting 3: Dual-Capacity System under Attacks 

Scenario 3-0: No Defense to Attacks 

Scenario 3-1: Dynamics Resource Allocation 

Scenario 3-2: Rerouting of Jobs 

Scenario 3-3: Hybrid Policy of 3-1 and 3-2 

 
Scenario 2-1: Optimization of Dispatching Priority rule  

 
From the result of the simulation optimization, the 
optimal values of the weights in the combined 
dispatching rule should be 0.9025 and 0.0267 for W1 and 
W2, respectively. For future scenarios, the optimal values 
of the Weights for the dispatching priority rule will be 
considered. 
 

Scenario 2-2: On-call for additional resources  
 
For this scenario, an on-call logic for additional resources 
during recovery from attacks have been implemented. 
The affected machines’ capacity will be temporarily 
increased by one while the system is not working under 
normal conditions. 

 
Scenario 3-0: The Physical System has been revised  
 

At this point, even though the policies applied in Scenario 

1 and 2 have shown considerable improvement on 

performance metrics, they are not considered as dynamic 

reactive policies for real-time stochastic events in a 

manufacturing system, but as fixed solutions that 

ultimately will improve the system's performance for the 

long-run. The reality is that, for a considerably small 

open-shop environment like this (i.e., 5 jobs x 5 

machines), there is not enough flexibility of resources and 

alternative machines for implementing dynamic 

scheduling policies such as DRA and rerouting of jobs; 

thus the results of examining these potential intrusion 

responses in such system's size will be barely influential.  

For this scenario and further, the physical system will 
be modeled as an open-shop environment with five types 
of jobs and five workstations, but each workstation will 
consist of two alternative machines in parallel for the 
same operation (i.e., 5 jobs and 10 machines). This 

consideration also implies that the total resource capacity 
of the system has been increased to 10, instead of 5; 
where we will have two alternative machines for each 
operation needed. The arrival rates of the jobs have also 
been doubled so that all scenarios can be consistent and 
comparable.  
 
Scenario 3-1: Dynamic Resource Allocation (DRA)  
 
For this scenario, a DRA policy during recovery from 
attacks has been implemented. The resources will be 
temporarily moving throughout the system to 
compensate for the increase in utilization rates for 
affected machines while the system is not working under 
normal conditions. 
 
Scenario 3-2: Rerouting of jobs  
 
Under this scenario, cyber-attacks do not cause a 
complete breakdown of machines but a temporary 
increase of its processing times. For this reason, once the 
system is affected by cyber-attacks, the approach for this 
scenario is that affected machines will maintain a fixed 
buffer of jobs waiting in the queue. The new arrivals that 
exceed this cap will be rerouted to an alternative machine 
that: (1) was not affected by the attack, (2) has not been 
visited before and (3) has the smallest queue length. 
These machines only would be utilized in case of failure of 
production machines.  

 
Scenario 3-3: Dynamic Resource Allocation + Rerouting of 
jobs  

 
For this scenario, a combination of both policies applied 
in scenarios 3-1 and 3-2 will be implemented as a way of 
validating its overall effect on the system’s performance 
under the presence of cyber-attacks. 

 
Results and Discussions  
 
In this section, the validation of the proposed method as 

a countermeasure of cyber-attack is discussed. As can be 

seen, the attack could drastically change the waiting time 

and flow time in the system which could lead to 

considerable harm in company's financial income as well 

as its reputation.  

The performance of the physical system under the 

presence of potential cyber-attacks will be assessed by 

comparing the results obtained in the experimental 

scenarios mentioned in the previous section. Specifically, 

an ANOVA statistical test was applied to all scenarios 

where intrusion responses are being executed, based on 

the average flow time of jobs for each scenario. Overall, 

the experimental scenarios have revealed that all 

dynamic intrusion responses applied are significant for 

the performance of the system, as in Table 3., A 

comparison of results among scenarios is shown in Table 

4, Table 5, Figure 3, and  Figure 4.  
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Table 3. Analysis of Variance for Average Flow Time among scenarios 
 

Source DF Adj SS Adj MS F-Value P-Value 
Scenarios 5 374.6 74.915 24.20 0.0000 

Error 54 167.2 3.096   

Total 59 541.8    

 
Table 4 summarizes performance of the original system with 5 jobs and 5 machines, i.e., Scenario 1 and 2. Although 
Scenario 2-1 is effective, Scenario 2-2 shows the most significant improvement compared to the no defense system 

under attack (Scenario 2-0) with a 58.49% decrease in the average flow time of jobs.  
 

Table 4. Performance comparison among scenarios for setting 1 and 2 (5 jobs, 5 machines) 
 

 Job 
Type 

Scenario 1 
Scenario 2-

0 
Scenario 2-

1 
% Change 

Scenario 
2-2 

% Change 

Waiting Time 
(Hrs) 

J1 0.22 9.77 7.95 -18.63 2.67 -72.67 

J2 0.20 9.13 3.26 -64.29 0.79 -91.35 

J3 0.19 7.57 7.72 1.98 4.60 -39.23 

J4 0.18 8.51 4.16 -51.12 1.04 -87.78 

J5 0.27 8.74 14.84 69.79 7.19 -17.73 

Average Flow 
Time (Hrs) 

 0.74 9.42 7.90 -16.14 3.91 -58.49 

 
For Scenario 3, the revised physical system with alternative machines (5 jobs and 10 machines) shown in Table 5, the 

best results are encountered in Scenario 3-3 where dynamic scheduling policies related to both resource allocation and 
rerouting of jobs are applied. This was translated into 64.88% of improvement in terms of average flow times for jobs, 

consequently making it possible to compensate for the adverse impact of process delays caused by cyber-attacks. 
 

Table 5. Performance comparison among scenarios for setting 3 (5 jobs, 10 machines) 

 
 Job Type 

Scenario 
3-0 

Scenario 
3-1 

% Change 
Scenario 

3-2 
% 

Change 
Scenario 

3-3 
% Change 

Waiting Time 
(Hrs) 

J1 0.49 0.34 -30.61 0.39 -20.41 0.19 -61.22 

J2 0.54 0.32 -40.74 0.40 -25.93 0.19 -64.81 

J3 3.11 0.33 -89.39 2.10 -32.48 0.20 -93.57 

J4 0.78 0.27 -65.38 0.51 -34.62 0.17 -78.21 

J5 2.32 0.43 -81.47 1.42 -38.79 0.22 -90.52 

Average Flow 
Time (Hrs) 

 2.05 0.86 -58.05 1.57 -23.41 0.72 -64.88 

 
Even though the outcome of the first two scenarios (Tabel 

5) are less significant in comparison with the revised 

system (Table 6) since their deployment would need no 

extra cost, they could be considered by some company. 

Every company should have a threshold for their security. 

If the system cannot afford the cost of implementing 

scenario 3 (extended system) and the first two scenarios 

could satisfy this security limit, they could be utilized to 

reduce the effect of a cybersecurity attack (Figure 3). 

Moreover, the effectiveness of these scenarios will be 

higher for more complex systems with a higher number of 

jobs and more machines to process them when only a few 

of the machines are under attack and cannot perform 

with standard capacity and speed.  

On the other side, if the consequences of an attack 

are too devastating, or the recovery of such an attack is 

expensive, the impact of the attack could be almost 

entirely compensated in terms of average flow time, as 

can be seen with implementing the third scenario and 

providing backup machines (Figure 4), which would be 

ideal for a sensitive system with mass production.  
 

 
 

Figure 3. Average flow time comparison among scenarios, 
setting 1 and 2 
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Figure 4. Average flow time comparison among scenarios, 
setting 

 
Furthermore, when dynamic scheduling policies are 
compared, it is observed that the DRA policy outperforms 
the possibility of rerouting jobs as a potential 
countermeasure during security breaches in 
manufacturing systems for this specific case study.  One 
of the reasons for this finding could be attributed to the 
flexibility of the system determined by the quantity of 
alternatives machines. Finally, as the expanded system 
also considers doubling arrival rates for jobs, it can be 
concluded that the best performance among all scenarios 
is found in 3-3, where the system has enough capacity to 
apply dynamic scheduling policies as potential 
countermeasures against cyber-threats that affect 
processing times of machines. 
 
Conclusions 
 
In this paper, a simulation study was developed as a way 
to quantify the impact of potential cybersecurity threats 
on the manufacturing system’s performance. In order to 
elucidate an effective set of scheduling policies that will 
reduce the adverse impact of cyber-threats, several 
experimental scenarios have been created through the 
development of two case studies for the manufacturing 
sector.   

For the case study, the potential arrival of cyber-
attacks in an open-shop manufacturing environment was 
modeled. Again, finding the most effective set of 
scheduling policies was the objective, which was 
addressed by comparing the performance results 
obtained in the experimental scenarios created for this 
case. Overall, the scenarios have revealed that all 
dynamic intrusion responses applied, such as 
optimization of the dispatching rule, dynamic resource 
allocation, and rerouting of jobs, can significantly reduce 
the adverse impact on the performance of the system. 
Subsequently, the original physical system configuration 
was revised to analyze the benefit of implementing 
dynamic scheduling policies in this type of manufacturing 
system by having on-call resources as in scenarios 3-1, 3-2 
and 3-3.  In fact, since the expanded system also 
considers the increase of the arrival rates for jobs, it can 
be concluded that the best performance among all 

scenarios is scenario 3-3, where dynamic resources 
allocation in conjunction with a dynamic rerouting of jobs 
are applied as countermeasures, which achieved 64.88% 
reduction in average flow times. Mainly for this case 
study, a suitable immunity threshold can be found when 
the physical layout has enough capacity and flexibility to 
apply dynamic scheduling policies as potential intrusion 
responses against cyber-threats that affect processing 
times of machines in smart manufacturing systems. 

One limitation of this research is that it focuses on the 
availability of equipment and capability to fulfill customer 
demand, while in practice, manufacturers are also 
concerned about Cost and Quality as the primary 
performance metrics. This limitation leads to an 
opportunity to improve the accuracy of modeling and 
analysis. 

In summary, these directions can be considered for 
future research: i) incorporating a cost function for the 
implementation of the scheduling policies, which will 
permit to introduce an optimization approach to find the 
best combination of effective scheduling policies while 
minimizing costs for the manufacturing company, ii) 
assessing the impact of information delays in the 
integrated management software platform (e.g. ERP 
systems) of a whole supply chain environment caused by 
cyber-attacks, iii) modeling the impact of cyber-attacks in 
manufacturing, by using a client-server architecture for 
the cyber-system and evaluating performance metrics 
from a computer information systems point of view using 
simulation and iv) introduce a simulation study for 
analyzing the evolution of cyber-attacks overtime in 
manufacturing.  
 

References 
 

[1]. Alguliyev R, Imamverdiyev Y, Sukhostat L (2018) Cyber-
physical systems and their security issues. Comput Ind 
100:212–223. 
https://doi.org/10.1016/j.compind.2018.04.017 

[2]. Anand E, Panneerselvam R Development of efficient 
genetic algorithm for open shop scheduling problem to 
minimise makespan. 35 

[3]. Anand E, Panneerselvam R (2015) Literature review of open 
shop scheduling problems. Intell Inf Manag 7:33 

[4]. Belz R, Mertens P (1996) Combining knowledge-based 
systems and simulation to solve rescheduling problems. 
Decis Support Syst 17:141–157 

[5]. Bracho A (2017) Assessing the Impact of Cyber-Threats on 
Smart Manufacturing Systems through a Simulation Study - 
ProQuest 

[6]. Bracho A, Saygin C, Wan H, et al (2018) A simulation-based 
platform for assessing the impact of cyber-threats on smart 
manufacturing systems. Procedia Manuf 26:1116–1127. 
https://doi.org/10.1016/j.promfg.2018.07.148 

[7]. Chaves A, Rice M, Dunlap S, Pecarina J (2017) Improving 
the cyber resilience of industrial control systems. Int J Crit 
Infrastruct Prot 17:30–48 

[8]. Chen Q, Abercrombie RK, Sheldon FT (2015) Risk 
assessment for industrial control systems quantifying 
availability using mean failure cost (MFC). J Artif Intell Soft 
Comput Res 5:205–220 

2.05

0.86

1.57

0.72

0.00

0.50

1.00

1.50

2.00

2.50

Senario 3-0 Senario 3-1 Senario 3-2 Senario 3-3

A
ve

ra
ge

 F
lo

w
 T

im
e 

o
f 

Jo
b

s



Alejandro Bracho Avila et al                            Evaluation of Dynamic Scheduling Policies against Cyber-attacks on an Open-Shop Manufacturing System…  

 

404|Int. J. of Multidisciplinary and Current research, Vol.9 (July/Aug 2021) 

 

[9]. Chen Q, Trivedi M, Abdelwahed S, et al (2016) Model-based 
autonomic security management for cyber-physical 
infrastructures. Int J Crit Infrastruct 12:273–294 

[10]. DeSmit Z, Elhabashy AE, Wells LJ, Camelio JA (2016) Cyber-
physical vulnerability assessment in manufacturing 
systems. Procedia Manuf 5:1060–1074 

[11]. Dror M (1992) Openshop scheduling with machine 
dependent processing times. Discrete Appl Math 39:197–
205. https://doi.org/10.1016/0166-218X(92)90176-B 

[12]. Gunn G (2010) Maximizing throughput using dynamic 
resource allocation and discrete event simulation. PhD 
Thesis, Clemson University 

[13]. Keith Stouffer, Victoria Pillitteri, Suzanne Lightman, et al 
(2015) Guide to Industrial Control Systems (ICS) Security 

[14]. Kim MH, Kim Y-D (1994) Simulation-based real-time 
scheduling in a flexible manufacturing system. J Manuf Syst 
13:85–93 

[15]. Knowles W, Prince D, Hutchison D, et al (2015) A survey of 
cyber security management in industrial control systems. 
Int J Crit Infrastruct Prot 9:52–80 

[16]. Kutanoglu E, Sabuncuoglu I (2001) Routing-based reactive 
scheduling policies for machine failures in dynamic job 
shops. Int J Prod Res 39:3141–3158 

[17]. Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems 
architecture for industry 4.0-based manufacturing systems. 
Manuf Lett 3:18–23 

[18]. Mahapatra S, Dash RR, Pradhan SK (2017) Heuristics 
Techniques for Scheduling Problems with Reducing Waiting 
Time Variance. In: Heuristics and Hyper-Heuristics-
Principles and Applications. InTech 

[19]. Marrouche W, Harmanani HM (2018) Heuristic Approaches 
for the Open-Shop Scheduling Problem. In: Latifi S (ed) 
Information Technology – New Generations. Springer 
International Publishing, Cham, pp 691–699 

[20]. McLaughlin S, Konstantinou C, Wang X, et al (2016) The 
cybersecurity landscape in industrial control systems. Proc 
IEEE 104:1039–1057 

[21]. Nasiri MM, Yazdanparast R, Jolai F (2017) A simulation 
optimisation approach for real-time scheduling in an open 
shop environment using a composite dispatching rule. Int J 
Comput Integr Manuf 30:1239–1252 

[22]. Nof SY, Hank Grant F (1991) Adaptive/predictive 
scheduling: review and a general framework. Prod Plan 
Control 2:298–312 

[23]. Portilla NB, de Queiroz MH, Cury JE (2014) Integration of 
supervisory control with SCADA system for a flexible 
manufacturing cell. In: Industrial Informatics (INDIN), 2014 
12th IEEE International Conference on. IEEE, pp 261–266 

[24]. Rahmani B, Markazi AHD (2012) Networked control of 
industrial automation systems—a new predictive method. 
Int J Adv Manuf Technol 58:803–815 

[25]. Rajkumar RR, Lee I, Sha L, Stankovic J (2010) Cyber-physical 
systems: the next computing revolution. In: Proceedings of 
the 47th design automation conference. ACM, pp 731–736 

[26]. Reaves B, Morris T (2012) Analysis and mitigation of 
vulnerabilities in short-range wireless communications for 
industrial control systems. Int J Crit Infrastruct Prot 5:154–
174 

[27]. Saygin C, Tamma S (2012) RFID-enabled shared resource 
management for aerospace maintenance operations: a 
dynamic resource allocation model. Int J Comput Integr 
Manuf 25:100–111 

[28]. Shahin M, Chen FF, Bouzary H, Zarreh A (2020) Frameworks 
Proposed to Address the Threat of Cyber-Physical Attacks 

to Lean 4.0 Systems. Procedia Manuf 51:1184–1191. 
https://doi.org/10.1016/j.promfg.2020.10.166 

[29]. Shareh MB, Bargh SH, Hosseinabadi AAR, Slowik A (2020) 
An improved bat optimization algorithm to solve the tasks 
scheduling problem in open shop. Neural Comput Appl. 
https://doi.org/10.1007/s00521-020-05055-7 

[30]. Shi J, Wan J, Yan H, Suo H (2011) A survey of cyber-physical 
systems. In: Wireless Communications and Signal 
Processing (WCSP), 2011 International Conference on. IEEE, 
pp 1–6 

[31]. Sturm LD, Williams CB, Camelio JA, et al (2017) Cyber-
physical vulnerabilities in additive manufacturing systems: 
A case study attack on the. STL file with human subjects. J 
Manuf Syst 44:154–164 

[32]. Vincent H, Wells L, Tarazaga P, Camelio J (2015) Trojan 
detection and side-channel analyses for cyber-security in 
cyber-physical manufacturing systems. Procedia Manuf 
1:77–85 

[33]. Wells LJ, Camelio JA, Williams CB, White J (2014) Cyber-
physical security challenges in manufacturing systems. 
Manuf Lett 2:74–77 

[34]. Yu S-Y, Malawade AV, Chhetri SR, Al Faruque MA (2020) 
Sabotage Attack Detection for Additive Manufacturing 
Systems. IEEE Access 8:27218–27231. 
https://doi.org/10.1109/ACCESS.2020.2971947 

[35]. Zarreh A (2019) Proactive Evaluation and Risk Analysis for 
Cybersecurity in Manufacturing Systems Using Game 
Theory Method - ProQuest 

[36]. Zarreh A, Lee Y, Janahi RA, et al (2020) Cyber-Physical 
Security Evaluation in Manufacturing Systems with a 
Bayesian Game Model. Procedia Manuf 51:1158–1165. 
https://doi.org/10.1016/j.promfg.2020.10.163 

[37]. Zarreh A, Saygin C, Wan H, et al (2018) A game theory 
based cybersecurity assessment model for advanced 
manufacturing systems. Procedia Manuf 26:1255–1264. 
https://doi.org/10.1016/j.promfg.2018.07.162 

[38]. Zarreh A, Wan H, Lee Y, et al (2019a) Cybersecurity 
Concerns for Total Productive Maintenance in Smart 
Manufacturing Systems. Procedia Manuf 38:532–539. 
https://doi.org/10.1016/j.promfg.2020.01.067 

[39]. Zarreh A, Wan H, Lee Y, et al (2019b) Risk Assessment for 
Cyber Security of Manufacturing Systems: A Game Theory 
Approach. Procedia Manuf 38:605–612. 
https://doi.org/10.1016/j.promfg.2020.01.077 

[40]. Zeltmann SE, Gupta N, Tsoutsos NG, et al (2016) 
Manufacturing and security challenges in 3D printing. Jom 
68:1872–1881 

[41]. Zhang F, Kodituwakku HADE, Hines JW, Coble J (2019) 
Multilayer Data-Driven Cyber-Attack Detection System for 
Industrial Control Systems Based on Network, System, and 
Process Data. IEEE Trans Ind Inform 15:4362–4369. 
https://doi.org/10.1109/TII.2019.2891261 

[42]. (2017a) Cyber risk in advanced manufacturing | Deloitte 
US. In: Deloitte U. S. 
https://www2.deloitte.com/us/en/pages/manufacturing/ar
ticles/cyber-risk-in-advanced-manufacturing.html 

[43]. (2016) Manufacturing - Cyber Executive Briefing | Deloitte 
| Analysis. In: Deloitte Belg. 
https://www2.deloitte.com/be/en/pages/risk/articles/Man
ufacturing.html 

[44]. (2015) Dell Security Annual Threat Report 2015 
[45]. (2017b) Framework for Improving Critical Infrastructure 

Cybersecurity 
 


