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Abstract  
   
Composite is the special kind of engineered materials. The mechanics of the composite are a little bit complicated. In the 
present work, the classical laminate theory (CLT) and first-order shear deformation theory (FSDT) is used for the finding 
the deformation/deflection in the simply supported composite plate loaded with the uniformly distributed load. The 
Navier solution applied to find the desired result. 
 
Keywords: Composite, Lamina, Laminate, Stacking Sequence 
 
 
1. Introduction 
 

Composite materials are those that are made by 
combining two or more materials on a macroscopic scale 
in such a way that they have enhanced engineering 
qualities than the standard materials, such as metals. 
These materials are known as "composite materials." 
Stiffness, strength, resistance to corrosion, thermal 
characteristics, fatigue life, wear resistance [1-28], and 
effective decrease in weight are some of the attributes 
that may be enhanced. The vast majority of man-made 
composite materials are constructed using two different 
kinds of materials: a substance known as fibre for 
providing reinforcement and a material known as matrix 
material serving as the foundation or parent material. A 
typical sheet made of composite material is referred to as 
a lamina or ply. It is a vital component that makes up the 
whole. Numerous fibres are implanted in a matrix material 
to create a fiber-reinforced lamina [29-43]. This matrix 
material may be made of a metal, such as aluminium, or it 
can be made of a non-metal, such as thermoset or 
thermoplastic polymer. A laminate is a collection of lamina 
that have been layered in order to obtain the necessary 
stiffness and thickness. For example, lamina that are 
reinforced with unidirectional fibres may be stacked in 
such a way that the fibres in each lamina are orientated in 
the same or opposite directions. Both the laminates and 
the materials benefit from an improvement in their 
tribological characteristics as a result of the orientation 
[44-86]. Gears and other machine components often make 
use of the composite material. There have been a number 
of researches [87-159] conducted on the topic of gear 
failure as well as design and dependability. As a result, it is 
essential to do research on composites since they are a 
potential future material.  
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The orientation of the plies determines the two distinct 
kinds of laminates that may be created. [160] 

A. Angle Ply 

Angle-ply laminates have ply configurations of θ and - θ 
where 0° ≤ θ ≤90°, and at least one stack has an 
alignment other than 0° or 90°, as shown in Fig. 1. 

 

 
Fig.1 Angle ply laminates 

 
B. Cross Ply 

 

Cross-ply laminates are those which have ply orientations 
of 0° or 90° as shown in Fig. 2 
 

 
Fig. 2 Cross-ply laminate 
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2. Theories of analysis and their mathematical modelling 

Calculating the deflection and stress in a composite plate 
may be done using a variety of different theories, such as 
the classical laminate plate theory, the first order shear 
deformation theory, the higher order shear deformation 
theory [8], and so on. In this part, we will construct the link 
between the classical laminate theory (CLT) and the first-
order shear deformation theory (FSDT) utilising these two 
theories. and Navier solution is applied to find the desired 
result. [161] 

A. Classical Laminate Plate Theory and Mathematical 
Modelling of CLT 

 
Any orthotropic continuous fibre laminated composites 
may be explained by the Classical Lamination Theory 
(CLT), which is described in this article. The method that 
was used while developing CLT is quite comparable to the 
one that was applied when developing load-stress 
relationships in the fundamental courses on the strength 
of materials. It is presumed that there was an initial 
displacement field with loads that were applied. It is 
possible to characterise a state of stress by using the 
strain-displacement fields in conjunction with an 
appropriate constitutive connection. After ensuring that 
the criteria of static equilibrium are met, one may 
establish a load-strain relation and, as a consequence of 
this, one can define a state of stress for each lamina 
[162]. 

Fundamental Presuppositions of the Traditional 
Lamination Theory (CLT) 

 

• The laminate has layers that are each quasi-
homogeneous and orthotropic in nature. 

• When compared to the lateral dimensions, the 
laminate is rather thin, and it bears load in its plane. 

• State of stress is plane stress. 

• Any and all displacements are negligible in 
comparison to the thickness of the laminate. 

• There is no break in the displacements anywhere 
inside the laminate. 

• After deformation, straight lines that are normal to 
the centre surface keep their straightness and 
maintain their normality to that surface.  

• In-plane displacements vary linearly through the 
thickness,  

• Transverse shear strains (γxz & γyz) are negligible. 

• Transverse normal strain εz is negligible compared to 
the in-plane strains εx and εy. 

• Strain-displacement and stress-strain relations are 
linear. 

 
The centre of the plate, also known as z = 0, serves as the 
point of origin for the plate. Assume that u0, v0, and w0 
are the displacements in the x, y, and z directions, 
respectively, at the midplane, and that u, v, and w are the 
displacements at any point in the x, y, and z directions, 
respectively. u, v, and w are the displacements at any 

point in the x, y, and z directions, respectively. The two 
displacements in the x–y plane at any point other than 
the midplane will rely on the axial position of the point as 
well as the slope of the laminate midplane with respect to 
the x and y directions [163].  
 

 
 

Fig. 3 Bending of the ply 
 
Displacement in x and y-direction  
  

𝑢 = 𝑢0 − 𝑧
𝜕𝑤0

𝜕𝑥
           (1) 

   

𝑣 = 𝑣0 − 𝑧
𝜕𝑤0

𝜕𝑦
           (2) 

 
Strain-displacement equation can be written in matrix 
form as in equation (3).  
 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{
 
 

 
 
𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑥
+
𝜕𝑣0

𝜕𝑦}
 
 

 
 

+ 𝑧

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

             (3) 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝜀𝑥
𝑜

𝜀𝑦
𝑜

𝛾𝑥𝑦
𝑜
} + 𝑧 {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}        (4) 

 
The governing equations consist of the behavior of the 
boundary conditions as well as the behavior of the plate 
internally. The governing differential equations will be 
derived by summing the forces and moments on the 
plate. 
 

 
 

Fig. 4 Forces in z-direction 
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Fig. 5 Moment on the plate 
 
The governing equation can be obtained by the summing 
up the forces and moment in x and y-direction 
 
𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
= 0                    (5) 

 
𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦

𝜕𝑥
= 0                    (6) 

 
𝜕2𝑀𝑥

𝜕𝑥2
+

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑥

𝜕𝑦2
+ 𝑞 = 0            (7) 

 
The equilibrium equation in terms of displacement is as 
 

𝐴11
𝜕2𝑢𝑜

𝜕𝑥2
+ 2𝐴16

𝜕2𝑢𝑜

𝜕𝑥𝜕𝑦
+ 𝐴66

𝜕2𝑢𝑜

𝜕𝑦2
+ (𝐴12 + 𝐴66)

𝜕2𝑣𝑜

𝜕𝑥𝜕𝑦
 

+𝐴26
𝜕2𝑢𝑜

𝜕𝑦2
− 𝐵11

𝜕3𝑤𝑜

𝜕𝑥3
− 3𝐵16

𝜕3𝑤𝑜

𝜕𝑥2𝜕𝑦
− 

(𝐵12 + 𝐵66)
𝜕3𝑤𝑜

𝜕𝑦2𝜕𝑥
− 𝐵26

𝜕3𝑤𝑜

𝜕𝑦3
= 0      (8) 

 

𝐴16
𝜕2𝑢𝑜

𝜕𝑥2
+ (𝐴12 + 𝐴66)

𝜕2𝑢𝑜

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑢𝑜

𝜕𝑦2
+ 𝐴66

𝜕2𝑣𝑜

𝜕𝑥2
+ 

2𝐴26
𝜕2𝑣𝑜

𝜕𝑥𝜕𝑦
+ 𝐴22

𝜕2𝑢𝑜

𝜕𝑦2
− 𝐵6

𝜕3𝑤𝑜

𝜕𝑥3
− (𝐵12

+ 2𝐵66)
𝜕3𝑤𝑜

𝜕𝑥2𝜕𝑦
 

−3𝐵26
𝜕3𝑤𝑜

𝜕𝑦2𝜕𝑥
− 𝐵26

𝜕3𝑤𝑜

𝜕𝑦3
= 0        (9) 

 
 

𝐷11
𝜕4𝑤0

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤0

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4𝑤0

𝜕𝑥2𝜕𝑦2
 

+4𝐷26
𝜕4𝑤0

𝜕𝑥𝜕𝑦3
+ 𝐷22

𝜕4𝑤0

𝜕𝑦4
− 𝐵11

𝜕3𝑢𝑜

𝜕𝑥3
− 3𝐵16

𝜕3𝑢𝑜

𝜕𝑥2𝜕𝑦
 

−(𝐵12 + 2𝐵66)
𝜕3𝑢𝑜

𝜕𝑦2𝜕𝑥
− 𝐵26

𝜕3𝑢𝑜

𝜕𝑦3
− 𝐵16

𝜕3𝑣𝑜

𝜕𝑥3
 

−(𝐵12 + 2𝐵66)
𝜕3𝑣𝑜

𝜕𝑥2𝜕𝑦
− 3𝐵26

𝜕3𝑣𝑜

𝜕𝑦2𝜕𝑥
− 𝐵22

𝜕3𝑣𝑜

𝜕𝑦3
= 0   (10) 

 
Navier solution for CLT  

 
Load and the displacement are considered in the form of 
furrier transform   

 
 
Fig. 6 Boundary condition for CLT 

 
 

Boundary condition  
 
𝑤0(𝑥, 0) = 0  𝑤0(𝑥, 𝑏) = 0 
 
𝑤0(0, 𝑦) = 0  𝑤0(𝑎, 𝑦) = 0 
 
𝑀𝑦𝑦(𝑥, 0) = 0  𝑀𝑥𝑥(0, 𝑦) = 0 

 
𝑀𝑦𝑦(𝑥, 𝑏) = 0  𝑀𝑥𝑥(𝑎, 𝑦) = 0      (11) 

 

𝑤0(𝑥, 𝑦) = ∑ ∑ 𝑊𝑚𝑛
∞
𝑚=1

∞
𝑛=1 𝑠𝑖𝑛

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦   (12) 

 

𝑞0(𝑥, 𝑦) = ∑ ∑ 𝑄𝑚𝑛
∞
𝑚=1

∞
𝑛=1 𝑠𝑖𝑛

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦   (13) 

 
Where q0(x,y) represent the load value. 
 

𝑄𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑞(𝑥, 𝑦)

𝑎

0

𝑏

0
𝑠𝑖𝑛

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦𝑑𝑥𝑑𝑦 (14) 

 
 
The forces and moments can be expressed as  
 
 

{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴13 𝐵11 𝐵12 𝐵13
𝐴22 𝐴21 𝐴23 𝐵22 𝐵21 𝐵23
𝐴13 𝐴32 𝐴33 𝐵13 𝐵32 𝐵33
𝐵11 𝐵12 𝐵13 𝐷11 𝐷12 𝐷13
𝐵22 𝐵21 𝐵23 𝐷22 𝐷21 𝐷23
𝐵13 𝐵32 𝐵33 𝐵13 𝐵32 𝐵33]

 
 
 
 
 

{
  
 

  
 
𝜀𝑥
𝑜

𝜀𝑦
𝑜

𝛾𝑥𝑦
𝑜

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦}

  
 

  
 

(15) 

 
B. First-Order Shear Deformation Theory and 
Mathematical Modelling of FSDT 

 
During the mathematical modeling of the CLT we take 
many assumptions, now for FSDT some of the 
assumptions are relaxed to get more practical 
results.[163] 

The only assumption relaxed for FSDT is that the 
perpendicular to the mid-surface plane is not remained 
normal after the deformation [164-167]. 
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Fig. 7 Bending of ply in FSDT the normal is not remain 
normal to mid surface after deformation 

 
Displacements are given by  
 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑜(𝑥, 𝑦, 𝑧, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝑦, 𝑡) (16) 
𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣𝑜(𝑥, 𝑦, 𝑧, 𝑡) + 𝑧𝜑𝑦(𝑥, 𝑦, 𝑡) (17) 

𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝑧𝑜(𝑥, 𝑦, 𝑧, 𝑡)       (18) 
 

𝜑𝑥 =
𝜕𝑢

𝜕𝑧
   𝜑𝑦 =

𝜕𝑣

𝜕𝑧
       (19) 

 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

=

{
 
 
 
 

 
 
 
 
𝜕𝑢0

𝜕𝑥
+

1

2
(
𝜕𝑤0

𝜕𝑥
)
2

𝜕𝑣0

𝜕𝑦
+

1

2
(
𝜕𝑤0

𝜕𝑦
)
2

𝜕𝑤0

𝜕𝑦
+ 𝜑𝑦

𝜕𝑤0

𝜕𝑥
+ 𝜑𝑥

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
+

𝜕𝑤0

𝜕𝑦

𝜕𝑤0

𝜕𝑥 }
 
 
 
 

 
 
 
 

+ 𝑧

{
  
 

  
 
𝜕𝜑𝑥

𝜕𝑥
𝜕𝜑𝑦

𝜕𝑦

0
0
𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥 }
  
 

  
 

 

(20) 

 
The equilibrium equation in terms of displacement is as 
 
𝜕

𝜕𝑥
[𝐴11

𝜕𝑢0
𝜕𝑥

+ 𝐴12
𝜕𝑣0
𝜕𝑦

+ 𝐴16 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) + 𝐵11

𝜕𝜑𝑥
𝜕𝑥

 

+𝐵12
𝜕𝜑𝑦

𝜕𝑦
+ 𝐵16 (

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
)] +

𝜕

𝜕𝑦
[𝐴16

𝜕𝑢0
𝜕𝑥

 

+𝐴26
𝜕𝑣0
𝜕𝑦

+ 𝐴66 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) + 𝐵16

𝜕𝜑𝑥
𝜕𝑥

 

+𝐵26
𝜕𝜑𝑦

𝜕𝑦
+ 𝐵66 (

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
)] 

−(
𝜕𝑁𝑥𝑥

𝑇

𝜕𝑥
+

𝜕𝑁𝑥𝑦
𝑇

𝜕𝑦
) = 𝐼𝑜

𝜕2𝑢0

𝜕𝑡2
+ 𝐼1

𝜕2𝜑𝑥

𝜕𝑡2
       

(21) 
 
𝜕

𝜕𝑥
[𝐴16

𝜕𝑢0
𝜕𝑥

+ 𝐴26
𝜕𝑣0
𝜕𝑦

+ 𝐴66 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) + 𝐵16

𝜕𝜑𝑥
𝜕𝑥

 

+𝐵26
𝜕𝜑𝑦

𝜕𝑦
+ 𝐵66 (

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
)] +

𝜕

𝜕𝑦
[𝐴12

𝜕𝑢0
𝜕𝑥

 

+𝐴22
𝜕𝑣0
𝜕𝑦

+ 𝐴26 (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) + 𝐵12

𝜕𝜑𝑥
𝜕𝑥

 

+𝐵22
𝜕𝜑𝑦

𝜕𝑦
+ 𝐵26 (

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
)] 

−(
𝜕𝑁𝑥𝑦

𝑇

𝜕𝑥
+

𝜕𝑁𝑦𝑦
𝑇

𝜕𝑦
) = 𝐼𝑜

𝜕2𝑣0

𝜕𝑡2
+ 𝐼1

𝜕2𝜑𝑦

𝜕𝑡2
      (22) 

𝜕

𝜕𝑥
[𝐾𝐴45(

𝜕𝑤0
𝜕𝑦

+ 𝜑𝑦) + 𝐾𝐴55(
𝜕𝑤0
𝜕𝑥

+ 𝜑𝑥)] 

+
𝜕

𝜕𝑦
[𝐾𝐴44(

𝜕𝑤0
𝜕𝑦

+ 𝜑𝑦) + 𝐾𝐴45(
𝜕𝑤0
𝜕𝑥

+ 𝜑𝑥)] 

+�̂�𝑥𝑥
𝜕2𝑤0
𝜕𝑥2

+ �̂�𝑦𝑦
𝜕2𝑤0
𝜕𝑦2

+ 2�̂�𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑞 

= 𝐼𝑜
𝜕2𝑤0

𝜕𝑡2
             (23) 

𝜕

𝜕𝑥
[𝐵11

𝜕𝑢0
𝜕𝑥

+ 𝐵12
𝜕𝑣0
𝜕𝑦

+ 𝐵16(
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) 

+𝐷11
𝜕𝜑𝑥
𝜕𝑥

+ 𝐷12
𝜕𝜑𝑦

𝜕𝑦
+ 𝐷16(

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
) 

+
𝜕

𝜕𝑦
[𝐵16

𝜕𝑢0
𝜕𝑥

+ 𝐵26
𝜕𝑣0
𝜕𝑦

+ 𝐵66(
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) 

+𝐷16
𝜕𝜑𝑥
𝜕𝑥

+ 𝐷26
𝜕𝜑𝑦

𝜕𝑦
+ 𝐷66(

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
) 

−[𝐾𝐴45(
𝜕𝑤0
𝜕𝑦

+ 𝜑𝑦) + 𝐾𝐴55(
𝜕𝑤0
𝜕𝑥

+ 𝜑𝑥)] 

−(
𝜕𝑀𝑥𝑥

𝑇

𝜕𝑥
+

𝜕𝑀𝑥𝑦
𝑇

𝜕𝑦
) = 𝐼2

𝜕2𝜑𝑥

𝜕𝑡2
+ 𝐼1

𝜕2𝑢0

𝜕𝑡2
      (24) 

 
𝜕

𝜕𝑥
[𝐵16

𝜕𝑢0
𝜕𝑥

+ 𝐵26
𝜕𝑣0
𝜕𝑦

+ 𝐵66(
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) 

+𝐷16
𝜕𝜑𝑥
𝜕𝑥

+ 𝐷26
𝜕𝜑𝑦

𝜕𝑦
+ 𝐷66(

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
) 

+
𝜕

𝜕𝑦
[𝐵12

𝜕𝑢0
𝜕𝑥

+ 𝐵22
𝜕𝑣0
𝜕𝑦

+ 𝐵26(
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) 

+𝐷12
𝜕𝜑𝑥
𝜕𝑥

+ 𝐷22
𝜕𝜑𝑦

𝜕𝑦
+ 𝐷26(

𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
) 

−[𝐾𝐴44(
𝜕𝑤0
𝜕𝑦

+ 𝜑𝑦) + 𝐾𝐴45(
𝜕𝑤0
𝜕𝑥

+ 𝜑𝑥)] 

−(
𝜕𝑀𝑥𝑦

𝑇

𝜕𝑥
+

𝜕𝑀𝑦𝑦
𝑇

𝜕𝑦
) = 𝐼2

𝜕2𝜑𝑦

𝜕𝑡2
+ 𝐼1

𝜕2𝑣0

𝜕𝑡2
      (25) 

 
Navier solution for FSDT  
 
Load and the displacement are considered in the form of 
furrier transform   
 

 
 

Fig. 8 Boundary condition for FSDT 
 

Boundary condition  
 

𝑤0(𝑥, 0, 𝑡) = 0 𝑤0(𝑥, 𝑏, 𝑡) = 0 
𝑤0(0, 𝑦, 𝑡) = 0 𝑤0(𝑎, 𝑦, 𝑡) = 0 
𝑢0(𝑥, 0, 𝑡) = 0 𝑢0(𝑥, 𝑏, 𝑡) = 0 
𝑣0(0, 𝑦, 𝑡) = 0 𝑣0(𝑎, 𝑦, 𝑡) = 0 
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𝑀𝑦𝑦(𝑥, 0, 𝑡) = 0 𝑀𝑦𝑦(𝑥, 𝑏, 𝑡) = 0 

𝑀𝑥𝑥(0, 𝑦, 𝑡) = 0 𝑀𝑥𝑥(𝑎, 𝑦, 𝑡) = 0 
𝑁𝑦𝑦(𝑥, 0, 𝑡) = 0 𝑁𝑦𝑦(𝑥, 𝑏, 𝑡) = 0 

𝑁𝑥𝑥(0, 𝑦, 𝑡) = 0 𝑁𝑥𝑥(𝑎, 𝑦, 𝑡) = 0 
𝜑𝑥(𝑥, 0, 𝑡) = 0 𝜑𝑥(𝑥, 𝑏, 𝑡) = 0 
𝜑𝑦(𝑜, 𝑦, 𝑡) = 0 𝜑𝑦(𝑎, 𝑦, 𝑡) = 0      (26) 

 

𝑤0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛
∞
𝑚=1

∞
𝑛=1 (𝑡) 𝑠𝑖𝑛

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦    (27) 

 

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑈𝑚𝑛(𝑡)
∞
𝑚=1

∞
𝑛=1 𝑐𝑜𝑠

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦     (28) 

 

𝑣0(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑉𝑚𝑛
∞
𝑚=1

∞
𝑛=1 𝑠𝑖𝑛

𝑚𝜋

𝑎
𝑥 𝑐𝑜𝑠

𝑛𝜋

𝑏
𝑦             (29) 

 

𝜑𝑥(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑋𝑚𝑛
∞
𝑚=1

∞
𝑛=1 𝑐𝑜𝑠

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦   (30) 

 

𝜑𝑦(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑌𝑚𝑛
∞
𝑚=1

∞
𝑛=1 𝑐𝑜𝑠

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦         (31) 

 

𝑞(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑄𝑚𝑛(𝑡)
∞
𝑚=1

∞
𝑛=1 𝑠𝑖𝑛

𝑚𝜋

𝑎
𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
𝑦        (32) 

 
The deflection can be expressed as  
 

[
 
 
 
 
 
�̂�11 �̂�12 0 �̂�14 �̂�15
�̂�12 �̂�22 0 �̂�24 �̂�25
0 0 �̂�33 �̂�34 �̂�35
�̂�14 �̂�24 �̂�34 �̂�44 �̂�45
�̂�15 �̂�25 �̂�35 �̂�45 �̂�55]

 
 
 
 
 

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝑋𝑚𝑛
𝑌𝑚𝑛 }

 
 

 
 

=

{
 
 

 
 
0
0
𝑄𝑚𝑛
0
0 }

 
 

 
 

  (33) 

 
Where stiffness matrix is the function of the A, B and D 
matrix, Qmn is load coefficient.[165] 
 
3. Result and discussion 

The analysis of simply supported composite plate is done 
with the Matlab programming. The mathematical 
modeling is done for the plate and Navier solution is found 
out. The non-dimensional parameters are plotted against 
each other like the ratio of plate width to thickness plotted 
against the deflection, modulus ratio also plotted against 
deflection, the effect of the ply angle and the number of 
layers also plotted. 

  

Fig.9 Variation of non-dimensional deflection with respect 
to modulus ratio for CLT 

 

In above Fig. 9 as the number of layers are increasing the 
non-dimensional deflection is decreasing, Also, as the 
modulus ratio is increasing the non-dimensional deflection 
is decreasing. If the modulus ratio is less the 20 the non-
dimensional deflection is high and considerable variation 
with respect to the number of layers. 

 

Fig. 10 Non- dimensional deflection variation with 
respect to modulus ratio for FSDT 

From Fig.10 as the number of layers are increasing the 
deflection is decreasing and also as the modulus ratio is 
increasing the deflection is also decreasing. 

 

Fig. 11 Non- dimensional deflection variation with 
respect to ply angle for CLT 

From Fig.11 the non-dimensional deflection is decreasing 

as the ply angle is increasing. As the number of layers is 

increasing the deflection is affected less or there is less 

amount of deflection. 
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Fig. 12 Non- dimensional deflection variation with respect 
to width to thickness ratio for antisymmetric angle-ply 

laminate for CLT and FSDT 
From the Fig.12 the variation in the deflection is less 
when the ratio(a/h) is more the 20. If the ratio is less than 
20 the variation of deflection For FSDT is higher than the 
CLT. When two stacking sequence and the more are taken 
the variation shown by the CLT is remains constant means 
not such a considerable change is there but as for the 
FSDT the change is considerable if the side to thickness 
ratio (a/h) is below 20.  
 
Conclusions 

The above analysis shows that the first order shear 
deformation theory gives better results than classical 
laminate theory. The difference is very high for the side to 
thickness ratio if less than 20. The deflection should 
increase as the modulus ratio increase. If the number of 
layers increasing the deflection decreasing. The program 
made for this is generalized one the output trend will be 
always same for the inputs. 
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