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Abstract  
   
The present work focuses on classifying different gearbox faults based on neural networks. Efforts are made to include 
all the faults and classifiers based on the neural network of transmission systems reported in the literature. Fault 
classification is essential for reliable and quick protective digital protection. Hence, a suitable review is needed. So, the 
work concentrates on the different faults in the gearbox and available neural network-based approaches reported in the 
field.   
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Introduction 
 
The gearbox is a essential part of the transmission system 

and transfers motion and power. The gearbox found its 

application in various sectors like industrial, military and 

wind turbine etc.[1]. Any failure in system elements 

causes the system to shut down. A gearbox failure results 

in downtime, costly repair and living causalities[2–4]. So, 

it is essential to detect these faults at an early stage. 

Many studies have been reported in the direction of the 

failure of different machine elements like bearing and 

Gear [5-62]. Many techniques are used to design the 

experiments and collect the data, like Taguchi [63-77] and 

so on. Different techniques like vibration[78], acoustic, 

wear monitoring, noise signature, and temperature 

analysis can diagnose gearbox faults [79]. As mentioned 

above, vibration is used widely due to its cost-

effectiveness and easy information processing [80]. The 

vibration signature starts changing as the faults develop 

in the system[4,81]. The vibration data is preprocessed to 

get the feature vector to train the model. In literature, 

many signal processing techniques are available to extract 

helpful information from the vibration signal. The signal 

processing techniques are classified into time, frequency, 

and time-frequency domains [82]. The signal is 

demodulated, noise is reduced, and valuable information 

is kept using the signal processing techniques. A survey of 

these techniques is found in the literature [79,83,84]. 

NASA uses the wear debris-based technique to develop a 

complete framework for gearbox diagnosis [85].  
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In literature, many algorithms are used to detect and 
diagnose the faults in gearboxes[86]; these are the 
support vector machine and neural networks. To reduce 
the dimensions of the failure feature vector, the 
technology of principal component analysis[87,88] is 
adopted to transform the original failure feature vector 
into a smaller set of variables. In literature, artificial 
neural networks combined with the empirical mode 
decomposition, fuzzy logic and support vector 
classification family attracted most of the attention as 
these results are good compared to other available 
methods[89]. Deep learning also succeeded in 
classification as it owns deeper representations for faulty 
features. Neural networks based on deep learning are 
also in practice.  

This paper is structured on the different faults of the 
Gear and the use of different neural network-based 
techniques to classify the faults.  
 
2. Failure modes of the gearbox and diagnostics  

 
2.1 Failure modes and diagnosis 
  
Due to its complex tribological interaction, Gear has to 
degrade over time. Gear failure is the function of tooth 
geometry, kinematics, forces, material, lubrication, and 
environmental characteristics. The gear tooth failure is 
classified based on strength and non-strength basis. The 
failure may occur gradually or sudden. The AGMA F14 
[90]standard classifies failure into seven categories and 
36 failures. In literature main focus is on the crack, pitting, 
flank wear and root fracture of the gears. Failure is 
defined as the termination of the ability of the element to 
perform the desired function. Failure is associated with 
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the desired function. The failure mode describes different 
ways of an item's failure. The failure may be random or 
systematic. A failure result in the loss of production or 
services and safety. The failure may be detected or 
undetected. The failures may be design-related faults or 
operational errors. Detection is both localized and 
distributed.  

Maintenance is a complex set of operations that 
compromise the diagnosis, scheduling, budgeting, and 
execution of decisions. The execution of the gearbox 
maintenance is a combination of planning, budgeting, and 
material and a group of personnel and organizations. The 
condition-based maintenance is a request-based 
upkeeping of machine availability. Timely actions are 
dependent upon the early detection of the damage. The 
damage detection process is divided into the following 
steps: 
 
Step 1: Data collection 
 
The data is measured with the help of the proper sensor 
like vibration, acoustic, wear debris etc. For example, the 
vibration sensor is mounted on the gear casing or bearing 
positions to measure the acceleration data of the 
gearbox. 
 
Step 2: Processing  
 
The acquired data is processed to reduce the noise and 
other modulation components to detect the fault feature 
of the Gear. For example, the vibration signal is averaged 
about the shaft rotation by time-synchronous averaging 
(TSA). Different features are extracted and stored in the 
feature vector from this averaged data. Further, this 
feature vector is reduced in the dimension by principal 
component analysis (PCA).  
 
Step 3: Classification of the fault.  
 
The reduced vector of the feature is used to train the 
model by using SVM or NN. The unknown vector is then 
given as the input, and the trained model provides the 
diagnostic results. 
 
 

2.2 Vibration-based failure indicator 
 

Around 90% of faults are related to the unbalancing and 
misalignment of the rotating parts. Two main 
characteristics of vibration signals are frequency and 
amplitude. Table 1 summarizes the vibration-based fault 
indicator and various gear failure modes based on time, 
frequency and time-frequency modes. The performance 
of these indicators depends on the severity of the faults. 

The indicators developed or chosen for the fault 
diagnosis should possess the following features: 

 
a) Monotonicity - shows the trend over time 
b) Robustness – tolerance to the outliers 

c) Trendability/correlation – correlation with the other 
available indicators. 

 

 
Table 1. Summary of fault indicator of various gear failure 

modes [79] 
 

Type Indicator Fault identified 

Ti
m

e 

RMS Fault progression 

Kurtosis Pitting 

Crest factor Tooth fault localization 

Energy operator Scuffing, severe pitting 

FM0 Distributed wear, tooth breakage 

NA4 Pitting 

NA4* Progressing damage 

CCR Pitting 

FM4 Crack, pitting 

M6A Flank Wear 

Energy ratio Uniform wear 

Fr
eq

u
en

cy
 

GMF harmonic 
amplitude 

Wear 

Sideband amplitude Pitting 

Sideband ratio Pitting 

ALR Crack, wear 

Cepstrum All kinds of fault 

Spectral kurtosis Pitting, crack 

Phase modulation Crack 

Ti
m

e-
fr

eq
u

en
cy

 

NP4 All faults 

Wavelet All faults 

EMD All faults 

STFT Early-stage faults 

WVD Early-stage faults 

 
3. Neural Network 
 

The detection of localized and distributed defects is 
essential. The fault indicators are chosen to measure sure 
the deviation in the signature of the machinery's health. 
These selected fault indicators are further processed 
using classifier algorithms for classification based on the 
severity of the faults.  

Preventive maintenance is used to delay the 
machinery shutdown. The available data is processed 
using data analytics and machine learning.  

The fault classification techniques to classify different 
types of faults in the Gear, such as pitting, crack, wear 
etc., are classified based on the selected fault indicators. 
The classification approaches separate the different fault-
based on some statistical criteria. For each type of failure, 
the evolution/ trend of a particular fault indicator may be 
different. Hence, so different techniques need to be 
applied for the classification. Table 2 summarizes the 
various classification approaches discussed. 

Out of these techniques, Neural network-based 
techniques are discussed in the following text. The idea of 
a neural network mimics the biological nervous system. 
The artificial neural network (ANN) model is trained 
similarly to biological learning by experience. Various 
researchers train different types of ANN models for fault 
and severity classification.  
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Table 2. Fault classification models and used for the type of faults [79,91] 
 

Classification Algorithm Type of Gear Type of fault Fault indicator or process 

Neural Network Spur Wear severity, tooth breakage Wavelet 

 Bevel Crack, worn, tooth breakage  Wavelet, EMD 

 Helical Tooth breakage  Taguchi’s  

Fuzzy rule Spur Broken and worn gear tooth Decision tree 

Neuro-fuzzy Spur Crack  Wavelet, kurtosis, phase modulation 

SVM Spur Pitting Amplitude ratios of the frequency band 
(PCA), RMS, peak, kurtosis, average signal CC 

 Planetary Pitting Frequency domain-based 

 Compounded spur Crack, missing tooth % Energy of IMF of EMD 

Random forest Spur Crack, pitting, wear, misaligned Time-domain and frequency domain, time-
frequency domain 

Deep learning Spur Wear, pitting, crack, broken 
and chipped tooth 

Time, frequency and time-frequency domain 
indicators  

 
A neural network represents deep learning using artificial 

intelligence. An artificial neural network consists of 

various layers of interconnected artificial neurons 

powered by activation functions that help switch them 

on/off. Like traditional machine algorithms, neural nets 

learn specific values in the training phase. For each 

neuron, the inputs and random weights are compounded 

and a static bias value (unique to each neuron layer) is 

added; this is then transferred to a suitable activation 

function which determines the final output value. 

Backpropagation is used to modify the weights of the last 

neural network layer in order to minimise the loss 

function (input vs. output) after the output is created. 

Weights are numeric values multiplied by inputs. They are 

used to minimize the loss.  

 
The different types of Neural networks are as 
follows[89,92–94]: 
 
- Perceptron 
- Feed-forward neural network 
- Multilayer perceptron 
- Convolutional neural network 
- Radial basis functional neural network 
- Recurrent neural network 
- Long short-term memory 
- Sequence to sequence models 
- Modular neural network 

 
Perceptron 
 
Neuronal networks include several smaller units that do 
specific calculations in order to identify characteristics or 
business information in the data. Weighted inputs may be 
entered into the system and applies the activation 
function to obtain the output as the final result. It is 
known as a threshold logic unit. It is a binary classifier. It 
can be implemented with logic gates like AND, OR, or 
NAND. It is helpful for linearly separable problems such as 
Boolean AND problem. It does not work on the non-linear 
problem. 

Feed-forward neural networks 
 
It is used where machine learning-based classification, 
face recognition, computer vision where target classes 
are challenging to classify, and speech algorithms have 
limitations. The simplest systems are forward-biased. And 
hidden layers may or may not be present in the model. 
The number of the layer depends on the complexity of 
the function. This does not have backward propagation. 
Weights are static. These are less complex, easy to design, 
fast and speedy, and highly responsive to noisy data. It 
cannot be used for deep learning.  
 
Multiple perceptron 
 
Work better for speech recognition, machine translation, 
and complex classification. Has multiple layer structure. 
The backpropagation is allowed to reduce the loss. Self-
adjustment depends on the difference between predicted 
outputs Vs training inputs. It can be used for deep 
learning purposes. The only disadvantage is a slow speed. 
 
Convolutional neural network 
 

It is the three-dimensional arrangement of neurons. The 
first layer is called the convolutional layer. Each neurone 
in the convolutional layer processes information. A batch-
wise input is allowed to speed up the process. The 
network understands the images into parts and can 
compute these operations multiple times to complete the 
full image processing. Processing involves the RGB 
correction and pixel change. It can be used for deep 
learning. It works bidirectional.  
 

Radial basis function neural networks 
 
It is multiple category input connected to followed by a 
layer of RBF neurons and an output layer with one node 
per category. Classification is performed by measuring the 
input's similarities to data points from the training set 
where each neuron stores a prototype when new data 
needs to be classified by measuring the Euclidean 
distance between input and its prototype.  
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Recurrent neural networks (RNN) 
 
It is used to backpropagate to help in predicting the 
output layer. The first layer is feed-forward based and 
uses stored information of the last layer to input into the 
next layer and future. It is used for text processing, 
grammar check, and sequential inputs and depends on 
the historical data. It is not easy to train such an 
algorithm. 
 
Long short-term memory network 
 
It is an updated or improved version of RNN. The gates 
are used to store the information. It makes the 
information last longer than expected. 
 
Sequence to sequence model 
 
It consists of two RNNs; an encoder that processes the 
input and a decoder that processes the output. Both can 
be used in similar or different parameters. The input and 
output data vectors must be equal.   
 
Modular neural network 
 
It has multiple networks that function independently and 
perform sub-tasks. Network work independently during 
the computation process. It is fast in working due to 
independency.  
 
The different types of faults in Gear are used to classify 
different kinds of faults in the Gear. The accuracy of the 
ANN model was tested with several neurons 2 to 30. The 
number of layers which shows the slightest deviation is 
selected for building the structure of ANN. The optimum 
network structure and number of nodes are difficult to 
determine[89,92–96].  
 
Conclusions  
 

The paper has presented a summary of the different 

failure modes, their diagnostic indicator and neural 

network-based classification and different types of neural 

networks. The ANN can classify the defects based on 

other faults diagnosis techniques like acoustic, wear 

debris, lubrication-related parameters, etc. In a few works 

of literature, the oil-based neural network classification is 

used[97]. But they are used for the unloaded condition. 

So, it is essential to study the effect of load. It is also 

suggested to use multiple algorithms to find the best 

algorithm for the particular type of fault.  
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