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Abstract

We obtain, in closed form, a family of frieze sequences that corresponds to a certain type vertex labeling of a
generalized version of the classical 2x2 Kronecker quiver. We also calculate explicitly, for the obtained family of
sequences, a rational “PC friendly” subfamily sample, via Mathematica .
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1. Introduction

A quiver is a directed acyclic (possibly multi-edged) graph.
When a quiver is given, under a specific and suitable
initial condition , a labeling of its vertices can be
recursively defined thus leading to a so called frieze
associated to the quiver which is a unique (due to the
acyclicity ) sequence of labels .For simplicity we will call it
a frieze sequence (for a given particular quiver).

A classical example is that of the 2x2 Kronecker
quiver (i.e. two vertices and two edges from one to
another): if V is the set of its vertices, starting with the
labeling (v,0)=v(0)=>(v,1)=v(1) e.t.c., for each vertex veV,
we obtain as a frieze sequence the even rank Fibonacci
numbers (see e.g. [1]). A more general frieze can be
produced when v(0) is taken to be a variable and then
with the first two labels v(0) and v(1) taken to be a and
b, respectively, this 2x2 Kronecker quiver is associated
with the frieze sequence defined through the recursive
formula un:2=2(a, b)un+1-un for uo=a and ui=b, ab+0, which
evidently generalizes the recursion of the even rank
Fibonacci numbers.

It has been proved that for z (a, b) = (a%+ b2+1)/ab,
ab=0, (see e.g. [2])

2
u, =ﬁ (1,b) M™2 [lj, n> 2 with M=(a *l bz]
a"'b b b b
(0.1)
2. Main description and closed form calculations

Let M= (aj;) be any 2x2 matrix. An elementary and direct
use of the Cayley-Hamilton theorem gives us the formula

M2- (trM) M+ |[M] 1=0 (1.1)

where trM and |M| indicate, respectively, the trace and
the determinant of M and O the 2x2 zero matrix. In

particular, for A1 = a241, 42 =%21=p and 322 =h?, with a,
b real numbers, by repeated use of (1), we obtain with
the evident abuse of notation

M"= @, M-|M| o, ; fornz1with ©,=0, 0, =1 (1.2)

where @, = (3% b*+1) o, -(ab)’ o, ,

The classical theory for recursive sequences of the form
®, = C ®,*c,®,; (e.g. see [3]) leads to the
expression

o, =AN +B X}, (1.3)
where A, B are arbitrary constants and A, L, the roots
of the equation A%-(a?+ b2+1)A+(ab)? =0. Note that (1.3)
is the appropriate formula here since the discriminant A is
nonzero (in fact A>1).

For wy=0 and ®,=1 we obtain also that A= 1/ (A,-4,)
and B=-A. We conclude that

(ab)™! n n
@y = = { (@) - (@)},
2"y
where we have set z=(a?+ b%+1)/ab and y = z2-4.Note
also that |Z|>2 and due to symmetry ,in the rest of our
work we will focus only upon the case a>0,b>0, a domain
where clearly z=z(a,b) lacks minimum but it has
infimum=2.

(1.4)
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It is now evident that when (1.2) is combined with (1.4)

we have a closed form description of M" in terms of M,
for any given n and any real pair a, b, and thus using (0.1),
we have a computer friendly formula to work with that
can provide the frieze sequence unf

3. Ramifications

For reasons that will immediately become clear in the
calculations that follow, we parameterize the initial terms
Uo=a and ui=b (and thus sequences un, wn and the matrix
2
+1 2
3 and b= 2p
1 1

powers Mn) via a= P , with p>1. In
paragraph 4 we limit ourselves to rational values of p and
we provide the image of the surface mesh z=z(a,b) using
mainly a sample of rational points in 3D (Appendix A). For

2 2
+1 -1
this parameterization z= P , Y = p and now (1.4)
p

can be put in to an even more “PC friendly” form:
_2p’ )" p™-1)

O‘)n (p2_1)2n-1 (2.1)
We then conclude that, for n > 3,
u, = (p*"2+1)/(p>1) p™? (2.2)

Remarks:

1. Note that for n=2, as an immediate result of (0.1)
combined with our parameterization that leads to
a’=b%+1, we obtain uz=a.

2. One could, evidently, combine the outcome of
paragraph 2 and establish a rather cumbersome formula
for the sum of the first N terms of {un}.In the frame of the
above particular parametric formulation though the sum
is simple and we can easily check that, for N>3,

N IN-1, A N N-I
Su, L P 23y
0 p T (p~-D(p-1)

4. Numerical (rational) calculations via Mathematica
(Tables 1, 2, Appendices A,B)

p uo=a ui=b z(a, b)
11/10 221/21 220/21 221/110
6/5 61/11 60/11 61/30
13/10 269/69 260/69 269/130
7/5 37/12 35/12 74/35
3/2 13/5 12/5 13/6
8/5 89/39 80/39 89/40
17/10 389/189 340/189 389/170
9/5 53/28 45/28 106/45
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19/10 461/261 380/261 461/190
2 5/3 4/3 5/2
21/10 541/341 420/341 541/210
11/5 73/48 55/48 146/55
23/10 629/429 460/429 629/230
12/5 169/119 120/119 169/60
5/2 29/21 20/21 29/10
13/5 97/72 65/72 194/65
27/10 829/629 540/629 829/270
14/5 221/171 140/171 221/70
29/10 941/741 580/741 941/290
3 5/4 3/4 10/3
31/10 1061/861 620/861 1061/310
16/5 281/231 160/231 281/80
33/10 1189/989 660/989 1189/330
17/5 157/132 85/132 314/85
7/2 53/45 28/45 53/14
18/5 349/299 180/299 349/90
37/10 1469/1269 | 740/1269 1469/370
19/5 193/168 95/168 386/95
39/10 1621/1421 | 780/1421 1621/390
4 17/15 8/15 17/4

Table 2: indicative un for p=11/10 (rounding up for n>15)

" u e o] ] =/ et a)em
a"b" b
2 522422872400
4084101
3 30707204213842
224625555
5 202124980347430361
1358984607750

10 4464201682802640772535710961
21886583006274525000000

15 0.306412X106

20 0.479768X106

25 | 0.764157X106

30 | 1.2254X106

40 | 3.17104X106

50 | 8.22203X106
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Appendix B: Calculations via Mathematica 8

~ <2 Jryz +1
Appendix A: Plot of Z = X , =2, y=b For[n=2,n<15,n++,
y p=11/10;
m=n-1;

a=((p"2+1)/(p"2-1));

b=(2*p/(p"2-1));

wnk=2-1+n (-1+p~2)1-2 *n (1+p"2)-1+n (-1+ p2*n);

wnpk=2-1+m (-1+p~2)1-2 *m (1+p”2)-1+m (-1+ p2*m);
mat={{a"2+1,b},{b,b"2}};

mati={{1,0},{0,1}};

mn=wnk*mat-(a*b)*2*wnpk*mati;

Print[n," ",wnk," ",mn //NJ];
Print[(1/(a*(n-1)*b"(n-2)))*({1,b}.mn.{{1},{bH)];
Print[(1/(a”(n-1)*bA(n-2)))*({1,b}.MatrixPower[mat,n].{{1},{b}})];]
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