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Abstract  
   
The recognition of lung nodules through 3D CT imaging is an important and highly precise task that facilitates early 
diagnosis of lung cancer.  In this paper, an IoT-based signal processing framework has been suggested that integrates 
3D convolutional neural networks (3D CNNs) using advanced feature selection methods for the detection of lung 
nodules.  The system processes the medical images in steps: dimensionality reduction, contrast enhancement, and noise 
removal, after which the derived features go to the 3D CNN for classification.  In this process, for improved performance 
of the model, feature selection techniques like wrappers and hybrid filters are used in such a way as to ensure that the 
most relevant features support the detection of abnormalities. By means of the insightful clinical timelines of faster 
decision-making and real-time image transmission and processing thanks to IoT integration, the performance evaluation 
of the system gave great study-like recall, accuracy, precision, and AUC-ROC values indicative of promise in lung nodule 
diagnosis in an automated and real-time framework.  With the aforementioned, this study provides great insight into 
how IoT, deep learning, and feature selection can be synergistically brought together to complement lung nodule 
diagnosis in medical imaging. 
 
Keywords: IoT-based Signal Processing, Lung Nodule Detection, 3D CT Images, 3D Convolutional Neural Networks (3D 
CNNs), Medical Imaging, Noise Reduction, Contrast Enhancement, Early Diagnosis, Medical Decision Support. 
 
 
1. Introduction 
 

The continuous evolution of the Internet of Things (IoT) is 
revolutionizing the healthcare sector by enabling the 
development of smart, connected systems capable of 
delivering personalized therapy and facilitating early 
disease detection [1]. These technologies provide a 
robust framework for integrating, transmitting, and 
analyzing vast volumes of medical data in real-time, 
ultimately enhancing diagnostic precision and 
accelerating clinical decision-making [2]. Among the many 
medical challenges benefiting from this transformation is 
the early detection of lung nodules—small masses in the 
lungs that can be indicative of lung cancer, a leading 
cause of cancer-related deaths globally [3]. Advanced 
imaging technologies, particularly 3D computed 
tomography (CT) scans, play a pivotal role in identifying 
lung nodules at an early stage, which is critical for 
improving patient prognosis and survival rates [4].  
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However, not all lung nodules are cancerous, making it 
essential to accurately distinguish between benign and 
malignant formations to devise appropriate treatment 
strategies. Traditional diagnostic workflows often rely on 
manual analysis of 2D scans, a process that is both time-
consuming and susceptible to human error [5]. 

To overcome these limitations, the adoption of 
artificial intelligence, particularly deep learning 
techniques like 3D Convolutional Neural Networks (3D 
CNNs), has markedly improved the accuracy and 
efficiency of lung nodule detection [6]. These models 
excel at processing volumetric data and identifying 
complex spatial patterns within CT images, making them 
well-suited for detecting nodules embedded deep within 
lung tissue [7]. Furthermore, dimensionality reduction 
techniques such as Principal Component Analysis (PCA) 
and Recursive Feature Elimination (RFE) can be integrated 
with deep learning frameworks to enhance classification 
accuracy by isolating the most relevant features [8]. 
Despite these advancements, existing systems still face 



Sri Harsha Grandhi et al                   IoT-Based Signal Processing for Lung Nodule Detection using 3D CT Images..  

 

243|Int. J. of Multidisciplinary and Current research, Vol.10 (March/April 2022) 

 

significant challenges, including high computational 
demands and difficulty generalizing across diverse CT 
image qualities, patient demographics, and nodule types 
[9]. These factors can lead to increased rates of false 
positives and false negatives, limiting the reliability of 
automated diagnostic systems [10]. Additionally, many 
current feature selection methods rely on manual or 
heuristic approaches that are inefficient and may not 
adapt well to varying clinical scenarios. 

To address these challenges, this work proposes a 
novel IoT-enabled signal processing system designed for 
the precise detection of lung nodules [11]. The system 
leverages advanced automated feature selection 
techniques, including hybrid filter-wrapper methods, in 
combination with 3D CNNs [12]. By utilizing cloud-based 
computation and real-time data transmission, the 
proposed framework minimizes latency and 
computational bottlenecks, facilitating rapid clinical 
assessments [13]. IoT integration ensures seamless device 
communication and continuous patient monitoring, 
enabling healthcare professionals to make timely, 
informed decisions [14]. Ultimately, this approach aims to 
enhance the accuracy, scalability, and operational 
performance of lung nodule detection systems across a 
wide range of healthcare settings [15]. 

In parallel, the emergence of deep learning—
especially Convolutional Neural Networks (CNNs)—has 
revolutionized the field of medical image analysis [16]. 
While traditional 2D imaging techniques provide valuable 
diagnostic information, they often fall short when dealing 
with the complex three-dimensional structures of lung 
nodules [17]. In contrast, 3D CNNs are uniquely equipped 
to process volumetric CT scan data, capturing intricate 
spatial hierarchies and subtle textural patterns in lung 
tissues [18]. This enables more accurate differentiation 
between benign and malignant nodules, reducing false 
positives and minimizing unnecessary biopsies or 
interventions [19]. Despite these advancements, several 
challenges persist. High computational demands, 
variability in CT image quality, and differences in patient 
demographics and anatomical structures can affect the 
robustness and generalizability of deep learning models 
[20]. Moreover, many existing approaches rely on 
manually selected or heuristic-based feature extraction 
methods, which may overlook critical data patterns and 
contribute to misclassification [21]. These limitations 
underscore the need for more intelligent, scalable, and 
automated systems that can process large-scale imaging 
data efficiently and accurately. 

To address these issues, this study proposes a cloud-
based, IoT-enabled lung nodule detection framework that 
leverages advanced signal processing techniques and 
automated feature selection in conjunction with 3D CNN 
architectures [22]. The system is designed to enhance 
real-time detection performance by minimizing 
computational overhead, reducing diagnostic latency, and 
improving classification accuracy [23]. By incorporating 
hybrid feature selection methods—such as Principal 

Component Analysis (PCA) and Recursive Feature 
Elimination (RFE)—into the 3D CNN pipeline, the model 
identifies the most relevant features for classification, 
thereby optimizing performance across diverse clinical 
scenarios [24]. This framework enables continuous 
monitoring and intelligent decision-making in clinical 
settings, offering scalable and adaptable solutions for 
modern healthcare systems [25]. The integration of IoT 
technologies ensures seamless communication between 
imaging devices, cloud platforms, and diagnostic models, 
creating an end-to-end intelligent system capable of 
supporting early lung cancer detection and improved 
patient care [26]. The proposed approach represents a 
significant step toward the development of fully 
autonomous, AI-driven diagnostic tools that align with the 
future vision of precision medicine and smart healthcare 
ecosystems [27]. 
 
1.1. Objective 
 

• Analyze the effectiveness of 3D Convolutional Neural 
Networks (3D CNNs) in detecting lung nodules from 
3D CT images to improve accuracy and efficiency. 

• Evaluate the impact of advanced feature selection 
techniques, such as hybrid filters and wrappers, in 
enhancing the performance of lung nodule detection 
systems. 

• Integrate IoT-based signal processing and cloud-
based real-time data transmission to optimize 
computational delays and enable faster decision-
making in clinical environments. 

The rest of the paper is organized as follows. Section 1 
with the introduction. Section 2 will discuss the 
Theoretical Background. Section 3 presents the 
Methodology and Section 4   highlights the results. 
Section 5 concludes. 
 
2. Literature review 
 

Recent advancements in cloud-based and IoT-integrated 
technologies have significantly enhanced healthcare 
systems, particularly in the domains of disease prediction, 
data security, and intelligent decision-making [28]. One 
prominent trend is the use of ensemble machine learning 
models within cloud infrastructures to improve the 
accuracy and interpretability of healthcare data 
predictions [29]. These models are often supplemented 
by AI-driven techniques for data validation, cleansing, and 
governance to ensure the reliability and quality of vast 
and complex medical datasets [30]. In the context of 
chronic disease diagnosis, particularly for conditions like 
chronic kidney disease, hybrid models that integrate 
convolutional neural networks (CNNs) with long short-
term memory (LSTM) and neuro-fuzzy logic have been 
employed [31]. These architectures are designed to 
operate efficiently in edge AI environments, allowing real-
time processing and decision-making close to the data 
source [32]. Similarly, graph theory has been leveraged to 
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enhance the structural understanding of disease 
mechanisms, such as those in cancer, thereby supporting 
the development of personalized treatment plans [33]. 
To address growing concerns about data security and 
latency in healthcare cloud systems, various 
cryptographic and optimization techniques have been 
integrated into system architectures [34]. The 
incorporation of lightweight encryption methods such as 
AES-CBC and optimized Blowfish algorithms ensures 
secure and efficient transmission of sensitive patient 
information across cloud platforms [35]. More 
sophisticated privacy-preserving mechanisms, including 
Zero-Knowledge Proofs (ZKP) and Multi-Authority 
Attribute-Based Encryption (MA-ABE), have also been 
proposed to manage access control while maintaining 
data integrity and confidentiality [36]. Additionally, 
artificial intelligence has been deployed in multi-cloud 
environments to detect abnormalities in real time, 
adhering to healthcare regulations such as HIPAA [37]. 
Privacy-preserving federated AI models have emerged to 
support decentralized data processing, enabling cities and 
healthcare systems to function with enhanced inclusivity, 
scalability, and energy efficiency [38]. These systems not 
only protect sensitive data but also facilitate large-scale 
coordination across various domains [39]. 

Innovative security frameworks have also been 
explored. For example, the application of Oblivious 
Random Access Memory (ORAM) within secure 
healthcare access control systems helps obfuscate access 
patterns, ensuring privacy and resilience against cyber 
threats [40]. The integration of Automated Threat 
Intelligence (ATI) into such systems allows for the 
dynamic prediction and mitigation of evolving 
cybersecurity risks [41]. For secure IoT data 
authentication, adaptive clustering methods such as 
Affinity Propagation have been combined with robust 
cryptographic algorithms like Multivariate Quadratic 
Cryptography [42]. These hybrid systems aim to reduce 
computational overhead while enhancing scalability, 
clustering efficiency, and data confidentiality [43]. 
Meanwhile, intelligent resource management and 
predictive analytics are being applied across IoT-enabled 
health systems to minimize operational inefficiencies and 
optimize decision-making [44]. 

Efforts to optimize network performance in IoT 
environments have led to the exploration of energy-
efficient communication protocols such as RPMA, BLE, 
and LTE-M, coupled with machine learning models like 
Gaussian Mixture Models [45]. These combinations 
support real-time applications in domains such as smart 
agriculture and urban infrastructure [46]. Additionally, 
Self-Organizing Maps (SOMs) and Device Management 
Platforms (DMPs) are being used for anomaly detection, 
efficient data communication, and real-time system 
monitoring. Hybrid optimization frameworks that merge 
techniques such as fuzzy C-means, density-based 
clustering (DBSCAN), and artificial bee colony (ABC) 
algorithms with differential evolution (DE) are being 

proposed to enhance resource allocation and secure data 
transfer [47]. Cutting-edge cryptographic solutions like 
PLONK’s zero-knowledge proofs have been used to 
ensure secure data sharing, while Infinite Gaussian 
Mixture Models enable dynamic load balancing in 
scalable IoT networks [48]. 

Furthermore, the role of digital financial inclusion 
powered by Cloud IoT technologies is being investigated 
for its potential to reduce the income disparity between 
urban and rural populations [49]. Data-driven strategies 
utilizing explainable AI and strategic management 
perspectives like the Resource-Based View are proving 
instrumental in this regard [50]. Lastly, secure anomaly 
detection and privacy preservation in decentralized IoT 
environments are being addressed through the 
integration of federated learning, K-nearest neighbor 
algorithms, generative adversarial networks (GANs), and 
distributed ledger technologies like IOTA Tangle [51]. The 
integration of Artificial Intelligence (AI), Software-Defined 
Networking (SDN), and Internet of Things (IoT) 
technologies is rapidly transforming intelligent systems 
across domains such as healthcare, transportation, e-
commerce, and urban infrastructure [52]. Various AI-
driven architectures have been proposed to handle high-
volume data processing, decision-making, and real-time 
control in smart environments [53]. However, while these 
innovations demonstrate domain-specific success, 
challenges remain in scalability, latency, data privacy, and 
cross-domain adaptability [54]. 

An LSTM-based AI-SDN framework has been 
introduced to enable predictive traffic analysis and 
dynamic flow control in smart cities [55]. This approach 
enhances cybersecurity by mitigating Distributed Denial-
of-Service (DDoS) attacks through sequential pattern 
recognition [56]. However, the inherent sequential nature 
of LSTM models introduces processing latency, which 
limits their suitability in ultra-low-latency applications like 
vehicular routing in the Internet of Vehicles (IoV) [57]. For 
real-time systems that demand immediate response, such 
latency becomes a critical bottleneck. In the healthcare 
sector, hybrid deep learning models combining Fuzzy 
Adaptive Convolutional Neural Networks (FA-CNN) and 
Differential Evolution-based Extreme Learning Machines 
(DE-ELM) have been developed to detect diseases by 
processing noisy, high-dimensional IoT data [58]. These 
cloud-based solutions show strong predictive capabilities, 
but the detection phase suffers from computational 
overhead and a dependency on high-quality metadata 
[59]. These limitations constrain their deployment in 
time-sensitive and mobility-aware domains such as IoV. 
 
3. Problem statement 
 
Despite notable advancements in AI and medical imaging, 
accurate and real-time lung nodule detection using 3D CT 
scans remains a major challenge, particularly in resource-
limited healthcare settings [60]. Existing detection 
techniques are burdened by high computational costs 
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[61], making them impractical for real-time clinical use 
[62]. Furthermore, many AI-driven models suffer from 
high false positive and false negative rates due to their 
inability to effectively handle variations in CT image 
quality, patient demographics, and diverse nodule 
characteristics. These inaccuracies can delay diagnosis, 
lead to inappropriate treatments, or miss early-stage 
cancer altogether. Compounding the problem is the 
dependence on conventional feature selection methods, 
which often fail to extract the most relevant diagnostic 
features from high-dimensional data, leading to 
suboptimal model performance. As a result, current 
systems struggle to deliver timely and reliable diagnoses, 
highlighting the urgent need for a lightweight, intelligent, 
and adaptable framework that can provide accurate lung 
nodule detection while maintaining computational 
efficiency and scalability across diverse clinical 
environments. 
 
4. Proposed methodology 

 
 

Figure 1:  IoT-Based Lung Nodule Detection 
System Using 3D CT Images and 3D CNN 

 
4.1 Data Pre-processing 
 
4.1.1 Contrast Enhancement 
 
Contrast enhancement is very important for emphasizing 
abnormal areas which may not be visible due to poor 
contrast, for example, lung nodules or opacities.  One of 
the most widely used methods to enhance contrast of 
images is histogram equalization, which operates by 
redistributing the pixel intensity values.  

Histogram Equalization: Here, emphasis is given to a 
transformation that seeks to make the histogram 
uniformly distributed by mapping the most frequent 
intensity values of the image.  The procedure intends to 
improve the contrast in an image, making its internal 
structure easier to identify.  After estimating the 
cumulative distribution function or CDF, the 
transformation of pixel data is given as follows: 

𝑠𝑘 = (
∑𝑘

𝑖=0  ℎ𝑖

𝑁
) ⋅ (𝐿 − 1) 

 
where: The new pixel value is 𝑠𝑘,The intensity 𝑖 histogram 
value is represented by ℎ𝑖, 𝑁 is the total number of pixels. 
The number of intensity levels is denoted by 𝐿, which in 
the case of an 8-bit image is 256. 
 
The changes in the pixel values with respect to 𝑠𝑘  
enhance the equal distribution of the histogram, thus 
making the relevant characteristics like nodules more 
apparent. 
 
4.1.2 Image Normalization 
 
The consistency of the pixel values of an image renders it 
suitable for deep learning purposes. In order to avoid 
causing the model to favor certain pixel intensity levels, 
normalization sometimes modifies the pixel values to fall 
within a predetermined range or distribution. 
 
Min-Max Scaling: The pixels are standardized in a 
predetermined range, typically between 0 and 1, by an 
affine scaling. In consequence, a standard rule of thumb 
provides the trade-off penalty for this, defined as the 
alteration of the pixels or its intensity by some 
insignificant value. 
 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

 

 
The parameters 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥  specify the minimum and 
maximum pixel values in the image. 
 
4.1.3 Image Resizing:  
 
The process of resizing changes the dimensions of the 
image while keeping the aspect ratio (or distorting 
equally). Resizing is achieved through: 

It is often necessary to preprocess images to bring 

them into a format that is the norm for deep learning 

model input - which obviously means resizing. Most deep 

learning models expect the same size of images, which, in 

turn, are often reduced to a common size, such as for 

example 224 × 224 pixels, so that they can use pre-

trained networks such as VGG16 or ResNet. 

Resizing: This process alters the dimensions of an 

image while maintaining the aspect ratio or uniformly 

distorting it. The formula for resizing is: 

 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑 (𝑥, 𝑦) = 𝐼 (⌊
𝑥

𝑊𝑜𝑟𝑖𝑔 

⋅ 𝑊𝑛𝑒𝑤 ⌋, ⌊
𝑦

𝐻𝑜𝑟𝑖𝑔 

⋅ 𝐻𝑛𝑒𝑤 ⌋) 

 
where, 𝑊𝑜𝑟𝑖𝑔  and 𝐻𝑜𝑟𝑖𝑔  are initial widths and the heights 

of the image, 𝑊𝑛𝑒𝑤  and 𝐻𝑛𝑒𝑤  symbolize the desired 
width and height, for instance, 224 X 224 pixels. 
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4.2 Feature Selection 
 
4.2.1 Dimensionality Reduction: Linear Discriminant 
Analysis (LDA) 
 
In high-dimensional datasets, such as medical imaging, 
dimensionality reduction is an important preprocessing 
step. In high-dimensional scenarios, there is always a 
redundancy or irrelevant information present and 
therefore, the machine-learning algorithms become less 
effective and less efficient. One of the methods for 
reducing dimensionality is linear discriminant analysis 
(LDA), which, while reducing dimensionality, also 
improves the class-separation capabilities of the model. 
Therefore, it finds its application where classification is 
involved, like in the case of discriminating between 
normal and abnormal lung tissue in 3D CT images. 

LDA Overview: There are many supervised 
dimensionality reduction techniques, among which LDA 
has the property of maximization with respect to 
between-class separability at a lower dimension. Where 
PCA tries to maximize the variance of the data, using the 
combination of linear transformation variables, LDA 
wants to maximize inter-class variation whilst reducing 
intra-class variance. Hence, it is important for supervised 
learning where the projection gets the best separation 
among different classes. 

LDA will have the effect of reducing the 
dimensionality of feature vectors gathered from CT 
images in the context of lung nodules detection while 
preserving the most discriminative characteristics in the 
distinction between normal tissue and tissue that was 
pathological. 
Within-Class Scatter Matrix (𝑆𝑊): The scatter matrix 
within the class calculates the variance and hence the 
spread of the data points that hopefully would fall into 
the same class. This is computed by taking the covariance 
matrices of the individual classes and summing them up. 
By our definition, 𝑋𝑖  is the set of data points from class 𝑖, 
while 𝜇𝑖  is the mean of class 𝑖. 
 
The scatter matrix 𝑆𝑊, within the class, is given by: 

𝑆𝑊 = ∑

𝑐

𝑖=1

  ∑

𝑥∈𝑋𝑖

  (𝑥 − 𝜇𝑖)(𝑥 − 𝜇𝑖)
𝑇 

(4) 

 
where, c is defined as the count of classification types, i.e. 
normal and abnormal, 𝜇𝑖 represents mean of Class 𝑖, 𝑥 
denotes sample of class 𝑖, (𝑥 − 𝜇𝑖)(𝑥 − 𝜇𝑖)

𝑇 outer 
product of every sample to its class means. 
 

Benefits of LDA to Identify Lung Nodules 
 

Increased Class Separability: LDA is particularly meant for 
increasing class separability. It also ensures retention and 
improvement of characteristics necessary for 
differentiating normal and abnormal tissue, which, in 
turn, increases the classification performance in lung 
nodule identification. 

Decreased Overfitting: For instance, if the features 
outnumber the number of training examples, LDA will 
normally reduce the dimensionality of the feature space, 
thus reducing the chance of overfit. 
Computational efficiency: LDA serves in real-time 
application for medical image analysis particularly in IoT 
based applications because of the reduced number of 
features in subsequent classification problems, resulting 
in faster and lesser time-consuming computational 
overheads. 
 
4.3 Abnormality Detection: Classification of Lung Images 
Using Deep Learning 
 
Deep learning methods used for lung image 
interpretation include the identification of abnormalities 
in the images.  Finding abnormalities in lung images is 
useful for the diagnosis of various diseases such as 
tumors, pneumonia, and others afflicting the lungs.  
Depending on the features that were extracted during 
pre-processing and feature selection phases, in this 
phase, deep learning classifiers such as Convolutional 
Neural Networks (CNNs) or Attention-based CNNs will be 
used to classify the lung images.  These classifiers can 
learn complex patterns and hierarchically organized 
features from the data to differentiate between normal 
and pathological conditions.  The subsequent sections 
discuss the deep learning classifiers for the detection of 
anomalies in lung images in detail, including the relevant 
equations and concepts.  
 
Convolutional Neural Networks and Attention-based 
Convolutional Neural Networks for Deep Learning   
Classifiers 
 
Convolutional Neural Networks (CNN): The popularity of 

CNNs in image classification applications is due to their 

ability to automatically learn spatial hierarchies of 

information in images. CNNs use various layers of 

convolution for feature extraction from raw images. 

Subsequently, it reduces the spatial dimensions by 

pooling layers and finally classifies the entire feature set 

using fully connected layers. 

 
The essential components of a CNN are as follows: 
 
Convolution Layer: This layer uses filters (kernels) to 
extract low-level components from the input image, such 
as corners, edges, and textures. This shows how the 
convolution operation is defined: 
 

(𝐼 ∗ 𝐾)(𝑥, 𝑦) = ∑  

 

𝑚

 ∑  

 

𝑛

 𝐼(𝑚, 𝑛)𝐾(𝑥 − 𝑚, 𝑦 − 𝑛) 

 
where, the input image is 𝐼,The kernel or filter, is 𝐾, Once 
the filter has been applied to the image, the pixel outputs 
coordinates can be given as (𝑥, 𝑦). 
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Attention-based CNN 
 
Attention based CNNs have been recently combined with 
CNN for increasing the efficacy of models in focusing on 
the relevant aspects into the neural input. An attention-
based CNN creates a way for the network to concentrate 
more on portions of the image that are important for 
detecting lung nodules in CT scans by applying attention 
layers to assign different weights to different parts of the 
image. 
 
An instance of attention mechanism may be: 
 
𝐴(𝑥) = 𝜎(𝑊𝑥𝑋 + 𝑏) (6) 
 
The input 𝑋 is receiving an attention weight 𝐴(𝑥),The 
weight matrix that is learned is 𝑊𝑥,The bias term will be 
𝑏,And the activation function-such as sigmoid or softmax-
will be denoted by 𝜎 . 

Has a centralised intervention mechanism that 
automatically focuses on the important parts of the 
image that are relevant to the task, e.g. identifying the 
location of a lesion or nodule. 
 
5. Output and Decision Support 
 
The classification output of our suggested method is deep 
learning model-based and utilizes the 3D CT image 
processing to classify lung images into normal or 
abnormal categories. The input data is processed with IoT 
and NN dimensionality reduction followed by deep 
learning classifiers such as attention-based CNNs or 3D 
CNNs. Our main features of output and decision support 
for this system are given below: 
 
5.1 Classification Output 
 
5.1.1 Confidence Score 
 
A confidence score is generated with classification output 
by the system to reflect the probability that the      input 
image falls under the predicted class (normal/abnormal) . 
Clinicians use the score to evaluate the reliability of the 
prediction. For example,  
 
o The higher the confidence level (95%), the more 

confident one is in the classification. 
o A lower prediction score (say 65%) indicates less 

certainty and may require further testing or expert 
validation.     

 

𝑃( ∣ 𝑋) =
𝑒𝑧 

𝑒𝑧 + 𝑒𝑧 
 

(7) 

 
There is a likelihood of the image 𝑋 to be classified as 
abnormal which is represented as 𝑃 ∣ 𝑋),   Thus, the 
output logits (scores) for abnormal and normal classes are 
𝑒𝑧 and 𝑧 respectively. 

5.2 Decision Support 
 
Clinical Decision Support Dashboard: The clinicians shall 
have a dashboard that is simple for them to navigate, 
reflecting the outcome of the abnormality detection 
process, which includes: 
Visualization of the Nodule or the Abnormality: 
Bounding boxes or heatmaps are imposed on the CT scan 
to draw focus on a region of concern, for example, a lung 
nodule. 
Prediction and Confidence Score: Confidence Score and 
Classification Result (Normal/Abnormal) are displayed to 
ensure transparency. 
Historical Notations: To monitor the evolution of any 
identified anomalies, historical comparative information 
such as prior CTs done on the same patient can be 
provided by the system. 
 

 
 

Figure 2: Architecture of the Convolutional Neural 
Network (CNN) for Lung Nodule Detection 

 

The architecture of convolution neural network (CNN) is 
shown in FIG2, which is designed in way to classify images 
for detecting abnormalities in lung pictures taken from 3D 
CT scans. This architecture has layers consisting of 
convolution, pooling, and fully connected (FC) layers that 
are strategically positioned to extract information from 
input images at different stages of extraction and 
categorization. 
Input Layer: The input constitutes a 3D picture of 
dimensions m×n×8, wherein the terms m and n denote 
the mark of height and width with 8 indicating the 
number of channels (like RGB or multi-dimensional 
features). 
First Convolution Layer: The first operation is 3x3 
convolution. It detects the low-level features such as 
edges and textures by convolving the image with a 3x3 
filter (or kernel). As a result of this, 32 feature maps-
outputted, each representing the learnt features of the 
image, will have the dimensions 𝑛×𝑚×8n×m×8. 
First Pooling Layer: The first pooling layer consists of a 
pooling 1x2 area that follows the convolution layer. 
Pooling retains the major parts while reducing the two-
dimensional space of feature mappings. This helps lessen 
computational complexity while highlighting key 
attributes. 
The Second Convolution Layer: After a second 
convolution of 3 x 3 is applied on the pooled feature 
maps, 32 feature maps of dimensions n x m x 4 are 
generated. This stage is useful in detecting more 
complicated features in an image and in further learning 
the trained features. 
Second Pooling Layer: Another 1x2 pooling operation 
downscales the feature maps, allowing the network to 
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focus on the most salient features even more while at the 
same time minimizing the size.  
Third Convolution Layer: These apply another 3x3 
convolution to the pooled feature maps generating 64 
feature maps with dimensions of n x m x 2. Thus, even 
more sophisticated and abstract patterns out of the 
image are extracted by this layer. 
Third Pooling Layer: Here, the spatial size of the feature 
maps is again reduced while maintaining the significance 
of all information by a last 1x2 pooling operation. 
Fully Connected Layer: The output from the last pooling 
layer is flattened and passed through the FC layer with 64 
units. Following this passes the result to another FC layer 
to obtain the final classification decision. 
Final Output Layer: This layer generates the prediction 
for the task of classifying images. The output has c units, 
where c is the number of classes (normal vs. abnormal, 
for example). The result is then passed through a softmax 
activation function to produce class probabilities. 
 
6. Results and discussions 
 
Results from the IoT-based lung nodule detection system, 
which utilized CT 3D-one images with 3D CNNs and 
advanced feature selection techniques have achieved 
great improvements in terms of computational efficiency 
and classification accuracy. The model was able to detect 
anomalies, such as tumors and nodules, while 
suppressing false positives and false negatives. The 
integration of IoT enabled the real-time transmission of 
data and timely decisions, thus contributing to the 
improvement of clinical workflow. In general, the system 
exhibited reliable performance guaranteeing prompt 
diagnosis and giving medical personnel useful decision 
support. 
 

 
 

Figure 3: Confusion Matrix for Lung Nodule Detection 
 
The confusion matrix relating to lung nodule detection is 
displayed in FIG 3, thus giving detailed insight into the 
actual classification accuracy performance of the model. 
The matrix illustrates the capacity of the model to 
differentiate between normal and pathological lung 

conditions by correlating the predicted labels on a 
collection of images with the actual labels. 
True positive (533): In 533 cases, the model correctly 
classified abnormal status (i.e., lung nodules found). 
False positive (19): 19 normal cases were misclassified as 
abnormal by the model (Type I error).  
False negatives (14): In 14 instances, the model failed to 
identify abnormal status and hence classified these as 
normal (Type II error).  
True negative (826): The model correctly identified 
normal status in 826 cases. 
This confusion matrix, being a vital tool in model 
performance evaluation, is used in computing accuracy, 
precision, recall, and F1-score of the model. By analyzing 
such numbers to identify areas for improvement, the 
model can be made clinically more reliable for lung 
nodule detection-for example, in reducing false positives 
or false negatives. 

 
Figure 4: Model Accuracy During Training and Validation 

for Lung Nodule Detection 
 
The accuracy of the model during 50 epochs regarding 
training and validation accuracy is depicted in FIG 4. The 
model performs remarkably well on training and unseen 
data, as demonstrated by the respective training accuracy 
(represented in purple) of 98.82% and the validation 
accuracy (represented in green) of 98.78%. Consistent 
growth in accuracy by the plot demonstrates effective 
learning and generalization during training. 

 
 

Figure 5: Model Loss During Training and Validation for 
Lung Nodule Detection 

 
The model's loss across 50 training epochs can be seen in 
FIG 5 together with the corresponding validation loss. The 
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training loss (purple) dipped gradually from 0.170 about 
two epochs to 0.05797 at termination, indicating the 
model's efficient learning with low overfitting, 
culminating in a validation loss (green) of 0.05736. This 
shows that the model generalizes well to new data. 

The performance metrics of the lung nodule detection 
model are as shown in Table 1. The model's classification 
performance is thus evaluated using these measures that 
are most useful to distinguish between normal and 
pathological lung conditions. 

 
Table 1: Performance Metrics for Lung Nodule Detection 

 

Metric Accuracy Precision Recall F1-Score Specificity AUC-ROC 
IOU (Intersection Over 

Union) 
Dice 

Coefficient 

Result 0.976293 0.96558 0.974406 0.969973 0.977515 0.978986 0.941696 0.969972 

 
Accuracy (0.976293): The overall proportion of accurate 
predictions, or accuracy (0.976293), indicates that almost 
97.63% of the classifications were accurate. 
 
Precision (0.96558): The percentage of true positive 
predictions out of all anticipated positive cases is shown 
by this statistic.  According to the model ability to predict 
abnormal cases, it has a precision of 96.56% precision. 
 
Recall (0.974406): Recall refers to the percent of true 
positive (abnormal) cases detected correctly.  However, 
the recalls, which have 97.44% in itself, significate that it 
detects worth of anomalous situations. 
 
F1-Score (0.969973): The harmonic mean of the two 
measures, precision and recall, is the F-o measure 
(0.969973), with which the trade off between the two is 
achieved.  Indeed, precision and recall appear to balance 
each other well as indicated by this F-score of 96.99%. 
Specificity (0.977515): Specificity checks how the model 
can value normal instances.  The model warrants false    
positive results with a specificity of preventing detection 
with 97.75%. 
 
AUC-ROC (0.978986): The Area Under the Receiver 
Operating Characteristic Curve (AUC-ROC) is a measure of 
the model's efficacy at differentiating classes with an AUC 
value of 0.978986. An AUC of 0.979 would therefore 
indicate excellent discriminating performance.  
 
IOU (Intersection Over Union) (0.941696): This metric 
describes the overlap of actual and predicted areas of 
abnormality, and a high IOU of 94.17% by the model 
indicates that it could detect lung nodules. 
 

Dice Coefficient (0.969972): Gauge the similarity between 
actual abnormal area and area predicteded abnormality. 
The nodule segmentation of the model in the lung is 
thereby very accurate with a score of 96.99%. 

 
The performance metrics of the lung nodule detection 
model are found in Figure 6. Consistently high values for 
all relevant measures in the graph prove that the model is 
indeed robust and reliable in accurately identifying lung-
related problems. 

 
Figure 6: Performance Metrics for Lung Nodule Detection 
 
Conclusion 
 
In this investigation, an IoT based system for the 
identification of lung nodules was made using 3D CT scans 
and state-of-the-art deep learning techniques, 
particularly through the application of 3D CNNs and 
further feature selection techniques. The model proposed 
has shown tremendous improvement in classification 
performance by yielding decent accuracy and 
generalization in identifying anomalies like lung nodules, 
cancer, and pneumonia. When considering the F1-score, 
precision, recall, specificity, and AUC-ROC and so on, the 
high results observed suggest that the system was 
substantially effective in marking the identification of 
anomalous situations as well as reducing false negative 
and false-positive outcomes. Incorporation of IoT enabled 
real processing and transfer of data, thereby increasing 
the efficiency and clinical applicability of any system.  
Results indicate the promise of deep learning-based 
medical imaging systems as a reliable solution for 
automated detection of lung nodules. Future work will 
explore further enhancement of model generalization, 
expanding knowledge input, and fine-tuning the system 
for use within real healthcare settings. 
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