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Abstract

The recognition of lung nodules through 3D CT imaging is an important and highly precise task that facilitates early
diagnosis of lung cancer. In this paper, an loT-based signal processing framework has been suggested that integrates
3D convolutional neural networks (3D CNNs) using advanced feature selection methods for the detection of lung
nodules. The system processes the medical images in steps: dimensionality reduction, contrast enhancement, and noise
removal, after which the derived features go to the 3D CNN for classification. In this process, for improved performance
of the model, feature selection techniques like wrappers and hybrid filters are used in such a way as to ensure that the
most relevant features support the detection of abnormalities. By means of the insightful clinical timelines of faster
decision-making and real-time image transmission and processing thanks to loT integration, the performance evaluation
of the system gave great study-like recall, accuracy, precision, and AUC-ROC values indicative of promise in lung nodule
diagnosis in an automated and real-time framework. With the aforementioned, this study provides great insight into
how IoT, deep learning, and feature selection can be synergistically brought together to complement lung nodule
diagnosis in medical imaging.

Keywords: loT-based Signal Processing, Lung Nodule Detection, 3D CT Images, 3D Convolutional Neural Networks (3D
CNNs), Medical Imaging, Noise Reduction, Contrast Enhancement, Early Diagnosis, Medical Decision Support.

1. Introduction However, not all lung nodules are cancerous, making it

The continuous evolution of the Internet of Things (loT) is
revolutionizing the healthcare sector by enabling the
development of smart, connected systems capable of
delivering personalized therapy and facilitating early
disease detection [1]. These technologies provide a
robust framework for integrating, transmitting, and
analyzing vast volumes of medical data in real-time,
ultimately  enhancing  diagnostic  precision and
accelerating clinical decision-making [2]. Among the many
medical challenges benefiting from this transformation is
the early detection of lung nodules—small masses in the
lungs that can be indicative of lung cancer, a leading
cause of cancer-related deaths globally [3]. Advanced
imaging technologies, particularly 3D computed
tomography (CT) scans, play a pivotal role in identifying
lung nodules at an early stage, which is critical for
improving patient prognosis and survival rates [4].
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essential to accurately distinguish between benign and
malignant formations to devise appropriate treatment
strategies. Traditional diagnostic workflows often rely on
manual analysis of 2D scans, a process that is both time-
consuming and susceptible to human error [5].

To overcome these limitations, the adoption of
artificial  intelligence, particularly deep learning
techniques like 3D Convolutional Neural Networks (3D
CNNs), has markedly improved the accuracy and
efficiency of lung nodule detection [6]. These models
excel at processing volumetric data and identifying
complex spatial patterns within CT images, making them
well-suited for detecting nodules embedded deep within
lung tissue [7]. Furthermore, dimensionality reduction
techniques such as Principal Component Analysis (PCA)
and Recursive Feature Elimination (RFE) can be integrated
with deep learning frameworks to enhance classification
accuracy by isolating the most relevant features [8].
Despite these advancements, existing systems still face
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significant challenges, including high computational
demands and difficulty generalizing across diverse CT
image qualities, patient demographics, and nodule types
[9]. These factors can lead to increased rates of false
positives and false negatives, limiting the reliability of
automated diagnostic systems [10]. Additionally, many
current feature selection methods rely on manual or
heuristic approaches that are inefficient and may not
adapt well to varying clinical scenarios.

To address these challenges, this work proposes a
novel loT-enabled signal processing system designed for
the precise detection of lung nodules [11]. The system
leverages advanced automated feature selection
techniques, including hybrid filter-wrapper methods, in
combination with 3D CNNs [12]. By utilizing cloud-based
computation and real-time data transmission, the
proposed framework minimizes latency and
computational bottlenecks, facilitating rapid clinical
assessments [13]. IoT integration ensures seamless device
communication and continuous patient monitoring,
enabling healthcare professionals to make timely,
informed decisions [14]. Ultimately, this approach aims to
enhance the accuracy, scalability, and operational
performance of lung nodule detection systems across a
wide range of healthcare settings [15].

In parallel, the emergence of deep learning—
especially Convolutional Neural Networks (CNNs)—has
revolutionized the field of medical image analysis [16].
While traditional 2D imaging techniques provide valuable
diagnostic information, they often fall short when dealing
with the complex three-dimensional structures of lung
nodules [17]. In contrast, 3D CNNs are uniquely equipped
to process volumetric CT scan data, capturing intricate
spatial hierarchies and subtle textural patterns in lung
tissues [18]. This enables more accurate differentiation
between benign and malignant nodules, reducing false
positives and minimizing unnecessary biopsies or
interventions [19]. Despite these advancements, several
challenges persist. High computational demands,
variability in CT image quality, and differences in patient
demographics and anatomical structures can affect the
robustness and generalizability of deep learning models
[20]. Moreover, many existing approaches rely on
manually selected or heuristic-based feature extraction
methods, which may overlook critical data patterns and
contribute to misclassification [21]. These limitations
underscore the need for more intelligent, scalable, and
automated systems that can process large-scale imaging
data efficiently and accurately.

To address these issues, this study proposes a cloud-
based, loT-enabled lung nodule detection framework that
leverages advanced signal processing techniques and
automated feature selection in conjunction with 3D CNN
architectures [22]. The system is designed to enhance
real-time detection performance by minimizing
computational overhead, reducing diagnostic latency, and
improving classification accuracy [23]. By incorporating
hybrid feature selection methods—such as Principal
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Component Analysis (PCA) and Recursive Feature
Elimination (RFE)—into the 3D CNN pipeline, the model
identifies the most relevant features for classification,
thereby optimizing performance across diverse clinical
scenarios [24]. This framework enables continuous
monitoring and intelligent decision-making in clinical
settings, offering scalable and adaptable solutions for
modern healthcare systems [25]. The integration of loT
technologies ensures seamless communication between
imaging devices, cloud platforms, and diagnostic models,
creating an end-to-end intelligent system capable of
supporting early lung cancer detection and improved
patient care [26]. The proposed approach represents a
significant step toward the development of fully
autonomous, Al-driven diagnostic tools that align with the
future vision of precision medicine and smart healthcare
ecosystems [27].

1.1. Objective

e Analyze the effectiveness of 3D Convolutional Neural
Networks (3D CNNs) in detecting lung nodules from
3D CT images to improve accuracy and efficiency.

e Evaluate the impact of advanced feature selection
techniques, such as hybrid filters and wrappers, in
enhancing the performance of lung nodule detection
systems.

e Integrate loT-based signal processing and cloud-
based real-time data transmission to optimize
computational delays and enable faster decision-
making in clinical environments.

The rest of the paper is organized as follows. Section 1

with the introduction. Section 2 will discuss the

Theoretical Background. Section 3 presents the

Methodology and Section 4 highlights the results.

Section 5 concludes.

2. Literature review

Recent advancements in cloud-based and loT-integrated
technologies have significantly enhanced healthcare
systems, particularly in the domains of disease prediction,
data security, and intelligent decision-making [28]. One
prominent trend is the use of ensemble machine learning
models within cloud infrastructures to improve the
accuracy and interpretability of healthcare data
predictions [29]. These models are often supplemented
by Al-driven techniques for data validation, cleansing, and
governance to ensure the reliability and quality of vast
and complex medical datasets [30]. In the context of
chronic disease diagnosis, particularly for conditions like
chronic kidney disease, hybrid models that integrate
convolutional neural networks (CNNs) with long short-
term memory (LSTM) and neuro-fuzzy logic have been
employed [31]. These architectures are designed to
operate efficiently in edge Al environments, allowing real-
time processing and decision-making close to the data
source [32]. Similarly, graph theory has been leveraged to

243 |Int. J. of Multidisciplinary and Current research, Vol.10 (March/April 2022)



Sri Harsha Grandhi et al

enhance the structural understanding of disease
mechanisms, such as those in cancer, thereby supporting
the development of personalized treatment plans [33].

To address growing concerns about data security and
latency in  healthcare cloud systems, various
cryptographic and optimization techniques have been
integrated into system architectures [34]. The
incorporation of lightweight encryption methods such as
AES-CBC and optimized Blowfish algorithms ensures
secure and efficient transmission of sensitive patient
information across cloud platforms [35]. More
sophisticated privacy-preserving mechanisms, including
Zero-Knowledge Proofs (ZKP) and Multi-Authority
Attribute-Based Encryption (MA-ABE), have also been
proposed to manage access control while maintaining
data integrity and confidentiality [36]. Additionally,
artificial intelligence has been deployed in multi-cloud
environments to detect abnormalities in real time,
adhering to healthcare regulations such as HIPAA [37].
Privacy-preserving federated Al models have emerged to
support decentralized data processing, enabling cities and
healthcare systems to function with enhanced inclusivity,
scalability, and energy efficiency [38]. These systems not
only protect sensitive data but also facilitate large-scale
coordination across various domains [39].

Innovative security frameworks have also been
explored. For example, the application of Oblivious
Random Access Memory (ORAM) within secure
healthcare access control systems helps obfuscate access
patterns, ensuring privacy and resilience against cyber
threats [40]. The integration of Automated Threat
Intelligence (ATI) into such systems allows for the
dynamic prediction and mitigation of evolving
cybersecurity risks [41]. For secure IloT data
authentication, adaptive clustering methods such as
Affinity Propagation have been combined with robust
cryptographic algorithms like Multivariate Quadratic
Cryptography [42]. These hybrid systems aim to reduce
computational overhead while enhancing scalability,
clustering efficiency, and data confidentiality [43].
Meanwhile, intelligent resource management and
predictive analytics are being applied across loT-enabled
health systems to minimize operational inefficiencies and
optimize decision-making [44].

Efforts to optimize network performance in loT
environments have led to the exploration of energy-
efficient communication protocols such as RPMA, BLE,
and LTE-M, coupled with machine learning models like
Gaussian Mixture Models [45]. These combinations
support real-time applications in domains such as smart
agriculture and urban infrastructure [46]. Additionally,
Self-Organizing Maps (SOMs) and Device Management
Platforms (DMPs) are being used for anomaly detection,
efficient data communication, and real-time system
monitoring. Hybrid optimization frameworks that merge
techniques such as fuzzy C-means, density-based
clustering (DBSCAN), and artificial bee colony (ABC)
algorithms with differential evolution (DE) are being
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proposed to enhance resource allocation and secure data
transfer [47]. Cutting-edge cryptographic solutions like
PLONK’s zero-knowledge proofs have been used to
ensure secure data sharing, while Infinite Gaussian
Mixture Models enable dynamic load balancing in
scalable 10T networks [48].

Furthermore, the role of digital financial inclusion
powered by Cloud loT technologies is being investigated
for its potential to reduce the income disparity between
urban and rural populations [49]. Data-driven strategies
utilizing explainable Al and strategic management
perspectives like the Resource-Based View are proving
instrumental in this regard [50]. Lastly, secure anomaly
detection and privacy preservation in decentralized loT
environments are being addressed through the
integration of federated learning, K-nearest neighbor
algorithms, generative adversarial networks (GANs), and
distributed ledger technologies like IOTA Tangle [51]. The
integration of Artificial Intelligence (Al), Software-Defined
Networking (SDN), and Internet of Things (loT)
technologies is rapidly transforming intelligent systems
across domains such as healthcare, transportation, e-
commerce, and urban infrastructure [52]. Various Al-
driven architectures have been proposed to handle high-
volume data processing, decision-making, and real-time
control in smart environments [53]. However, while these
innovations demonstrate  domain-specific  success,
challenges remain in scalability, latency, data privacy, and
cross-domain adaptability [54].

An LSTM-based AI-SDN framework has been
introduced to enable predictive traffic analysis and
dynamic flow control in smart cities [55]. This approach
enhances cybersecurity by mitigating Distributed Denial-
of-Service (DDoS) attacks through sequential pattern
recognition [56]. However, the inherent sequential nature
of LSTM models introduces processing latency, which
limits their suitability in ultra-low-latency applications like
vehicular routing in the Internet of Vehicles (loV) [57]. For
real-time systems that demand immediate response, such
latency becomes a critical bottleneck. In the healthcare
sector, hybrid deep learning models combining Fuzzy
Adaptive Convolutional Neural Networks (FA-CNN) and
Differential Evolution-based Extreme Learning Machines
(DE-ELM) have been developed to detect diseases by
processing noisy, high-dimensional loT data [58]. These
cloud-based solutions show strong predictive capabilities,
but the detection phase suffers from computational
overhead and a dependency on high-quality metadata
[59]. These limitations constrain their deployment in
time-sensitive and mobility-aware domains such as loV.

3. Problem statement

Despite notable advancements in Al and medical imaging,
accurate and real-time lung nodule detection using 3D CT
scans remains a major challenge, particularly in resource-
limited healthcare settings [60]. Existing detection
techniques are burdened by high computational costs
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[61], making them impractical for real-time clinical use
[62]. Furthermore, many Al-driven models suffer from
high false positive and false negative rates due to their
inability to effectively handle variations in CT image
quality, patient demographics, and diverse nodule
characteristics. These inaccuracies can delay diagnosis,
lead to inappropriate treatments, or miss early-stage
cancer altogether. Compounding the problem is the
dependence on conventional feature selection methods,
which often fail to extract the most relevant diagnostic
features from high-dimensional data, leading to
suboptimal model performance. As a result, current
systems struggle to deliver timely and reliable diagnoses,
highlighting the urgent need for a lightweight, intelligent,
and adaptable framework that can provide accurate lung
nodule detection while maintaining computational

efficiency and scalability across diverse clinical
environments.
4. Proposed methodology
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Figure 1: loT-Based Lung Nodule Detection
System Using 3D CT Images and 3D CNN

4.1 Data Pre-processing
4.1.1 Contrast Enhancement

Contrast enhancement is very important for emphasizing
abnormal areas which may not be visible due to poor
contrast, for example, lung nodules or opacities. One of
the most widely used methods to enhance contrast of
images is histogram equalization, which operates by
redistributing the pixel intensity values.

Histogram Equalization: Here, emphasis is given to a
transformation that seeks to make the histogram
uniformly distributed by mapping the most frequent
intensity values of the image. The procedure intends to
improve the contrast in an image, making its internal
structure easier to identify. After estimating the
cumulative  distribution  function or CDF, the
transformation of pixel data is given as follows:
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K
skz(i:OThi)-(L—l)

where: The new pixel value is si,The intensity i histogram
value is represented by h;, N is the total number of pixels.
The number of intensity levels is denoted by L, which in
the case of an 8-bit image is 256.

The changes in the pixel values with respect to s,
enhance the equal distribution of the histogram, thus
making the relevant characteristics like nodules more
apparent.

4.1.2 Image Normalization

The consistency of the pixel values of an image renders it
suitable for deep learning purposes. In order to avoid
causing the model to favor certain pixel intensity levels,
normalization sometimes modifies the pixel values to fall
within a predetermined range or distribution.

Min-Max Scaling: The pixels are standardized in a
predetermined range, typically between 0 and 1, by an
affine scaling. In consequence, a standard rule of thumb
provides the trade-off penalty for this, defined as the
alteration of the pixels or its intensity by some
insignificant value.

I(x» y) - Imin

Imax

Liorm (x,¥) =

- Imin

The parameters I;;, and I,4, specify the minimum and
maximum pixel values in the image.

4.1.3 Image Resizing:

The process of resizing changes the dimensions of the
image while keeping the aspect ratio (or distorting
equally). Resizing is achieved through:

It is often necessary to preprocess images to bring
them into a format that is the norm for deep learning
model input - which obviously means resizing. Most deep
learning models expect the same size of images, which, in
turn, are often reduced to a common size, such as for
example 224 x 224 pixels, so that they can use pre-
trained networks such as VGG16 or ResNet.

Resizing: This process alters the dimensions of an
image while maintaining the aspect ratio or uniformly
distorting it. The formula for resizing is:

L : Hnew J)

Horig

Lresizea (X,¥) = 1<l “Waew | |

Worig

where, W,,;; and H,,;, are initial widths and the heights
of the image, Wy, and H,., symbolize the desired
width and height, for instance, 224 X 224 pixels.
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4.2 Feature Selection
Linear Discriminant

4.2.1 Dimensionality Reduction:
Analysis (LDA)

In high-dimensional datasets, such as medical imaging,
dimensionality reduction is an important preprocessing
step. In high-dimensional scenarios, there is always a
redundancy or irrelevant information present and
therefore, the machine-learning algorithms become less
effective and less efficient. One of the methods for
reducing dimensionality is linear discriminant analysis
(LDA), which, while reducing dimensionality, also
improves the class-separation capabilities of the model.
Therefore, it finds its application where classification is
involved, like in the case of discriminating between
normal and abnormal lung tissue in 3D CT images.

LDA Overview: There are many supervised
dimensionality reduction techniques, among which LDA
has the property of maximization with respect to
between-class separability at a lower dimension. Where
PCA tries to maximize the variance of the data, using the
combination of linear transformation variables, LDA
wants to maximize inter-class variation whilst reducing
intra-class variance. Hence, it is important for supervised
learning where the projection gets the best separation
among different classes.

LDA will have the effect of reducing the

dimensionality of feature vectors gathered from CT
images in the context of lung nodules detection while
preserving the most discriminative characteristics in the
distinction between normal tissue and tissue that was
pathological.
Within-Class Scatter Matrix (Sy,): The scatter matrix
within the class calculates the variance and hence the
spread of the data points that hopefully would fall into
the same class. This is computed by taking the covariance
matrices of the individual classes and summing them up.
By our definition, X; is the set of data points from class i,
while y; is the mean of class i.

The scatter matrix Sy, within the class, is given by:
c
Sw=) Y GG =)
i=1

XEX;
where, c is defined as the count of classification types, i.e.
normal and abnormal, y; represents mean of Class i, x
: T
denotes sample of class i, (x —pu;)(x — ;)" outer
product of every sample to its class means.

Benefits of LDA to Identify Lung Nodules

Increased Class Separability: LDA is particularly meant for
increasing class separability. It also ensures retention and
improvement  of  characteristics  necessary  for
differentiating normal and abnormal tissue, which, in
turn, increases the classification performance in lung
nodule identification.
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Decreased Overfitting: For instance, if the features
outnumber the number of training examples, LDA will
normally reduce the dimensionality of the feature space,
thus reducing the chance of overfit.

Computational efficiency: LDA serves in real-time
application for medical image analysis particularly in loT
based applications because of the reduced number of
features in subsequent classification problems, resulting
in faster and lesser time-consuming computational
overheads.

4.3 Abnormality Detection: Classification of Lung Images
Using Deep Learning

Deep learning methods wused for Ilung image
interpretation include the identification of abnormalities
in the images. Finding abnormalities in lung images is
useful for the diagnosis of various diseases such as
tumors, pneumonia, and others afflicting the lungs.
Depending on the features that were extracted during
pre-processing and feature selection phases, in this
phase, deep learning classifiers such as Convolutional
Neural Networks (CNNs) or Attention-based CNNs will be
used to classify the lung images. These classifiers can
learn complex patterns and hierarchically organized
features from the data to differentiate between normal
and pathological conditions. The subsequent sections
discuss the deep learning classifiers for the detection of
anomalies in lung images in detail, including the relevant
equations and concepts.

Networks and Attention-based
Networks for Deep Learning

Neural
Neural

Convolutional
Convolutional
Classifiers

Convolutional Neural Networks (CNN): The popularity of
CNNs in image classification applications is due to their
ability to automatically learn spatial hierarchies of
information images. CNNs use various layers of
convolution for feature extraction from raw images.
Subsequently, it reduces the spatial dimensions by
pooling layers and finally cla(slﬂ'fies the entire feature set
using fully connected layers.

in

The essential components of a CNN are as follows:

Convolution Layer: This layer uses filters (kernels) to
extract low-level components from the input image, such
as corners, edges, and textures. This shows how the
convolution operation is defined:

K@Y =) > 1mmK=my -n)

m n
where, the input image is I, The kernel or filter, is K, Once
the filter has been applied to the image, the pixel outputs
coordinates can be given as (x, y).
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Attention-based CNN

Attention based CNNs have been recently combined with
CNN for increasing the efficacy of models in focusing on
the relevant aspects into the neural input. An attention-
based CNN creates a way for the network to concentrate
more on portions of the image that are important for
detecting lung nodules in CT scans by applying attention
layers to assign different weights to different parts of the
image.

An instance of attention mechanism may be:
A(x) =oc(W, X + b)

The input X is receiving an attention weight A(x),The
weight matrix that is learned is W,,The bias term will be
b,And the activation function-such as sigmoid or softmax-
will be denoted by o .

Has a centralised intervention mechanism that
automatically focuses on the important parts of the
image that are relevant to the task, e.g. identifying the
location of a lesion or nodule.

5. Output and Decision Support

The classification output of our suggested method is deep
learning model-based and utilizes the 3D CT image
processing to classify lung images into normal or
abnormal categories. The input data is processed with loT
and NN dimensionality reduction followed by deep
learning classifiers such as attention-based CNNs or 3D
CNNs. Our main features of output and decision support
for this system are given below:

5.1 Classification Output
5.1.1 Confidence Score

A confidence score is generated with classification output
by the system to reflect the probability that the input
image falls under the predicted class (normal/abnormal) .
Clinicians use the score to evaluate the reliability of the
prediction. For example,

o The higher the confidence level (95%), the more
confident one is in the classification.

o A lower prediction score (say 65%) indicates less
certainty and may require further testing or expert
validation.

z

P(lX)zeZ+ez

There is a likelihood of the image X to be classified as
abnormal which is represented as P | X), Thus, the
output logits (scores) for abnormal and normal classes are
e?and z respectively.
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5.2 Decision Support

Clinical Decision Support Dashboard: The clinicians shall
have a dashboard that is simple for them to navigate,
reflecting the outcome of the abnormality detection
process, which includes:

Visualization of the Nodule or the Abnormality:
Bounding boxes or heatmaps are imposed on the CT scan
to draw focus on a region of concern, for example, a lung
nodule.

Prediction and Confidence Score: Confidence Score and
Classification Result (Normal/Abnormal) are displayed to
ensure transparency.

Historical Notations: To md¢6jtor the evolution of any
identified anomalies, historical comparative information
such as prior CTs done on the same patient can be
provided by the system.

Y T .
I F= ¥ '

.V[| ;
1

Figure 2: Architecture of the Convolutional Neural
Network (CNN) for Lung Nodule Detection

The architecture of convolution neural network (CNN) is
shown in FIG2, which is designed in way to classify images
for detecting abnormalities in lung pictures taken from 3D
CT scans. This architecture has layers consisting of
convolution, pooling, and fully connected (FC) layers that
are strategically positioned to extract information from
input images at different stages of extraction and
categorization.

Input Layer: The input constitutes a 3D picture of
dimensions mxnx8, wherein the terms m and n denote
the mark of height and width with 8 indicating the
number of channels (like RGB or multi-dimensional
features).

First Convolution Layer: The first operation is 3x3
convolution. It detects the low-level features such as
edges and textures by convolving the image with a 3x3
filter (or kernel). As a result of this, 32 feature maps-
outputted, each representing the learnt features of the
image, will have the dimensions nxmx8nxmx8.

First Pooling Layer: The first pooling layer consists of a
pooling 1x2 area that follows the convolution layer.
Pooling retains the major parts while reducing the two-
dimensional space of feature mappings. This helps lessen

computational complexity while highlighting key
attributes.
The Second Convolution Layer: After a second

convolution of 3 x 3 is apgligd on the pooled feature
maps, 32 feature maps of dimensions n x m x 4 are
generated. This stage is useful in detecting more
complicated features in an image and in further learning
the trained features.

Second Pooling Layer: Another 1x2 pooling operation
downscales the feature maps, allowing the network to
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focus on the most salient features even more while at the
same time minimizing the size.

Third Convolution Layer: These apply another 3x3
convolution to the pooled feature maps generating 64
feature maps with dimensions of n x m x 2. Thus, even
more sophisticated and abstract patterns out of the
image are extracted by this layer.

Third Pooling Layer: Here, the spatial size of the feature
maps is again reduced while maintaining the significance
of all information by a last 1x2 pooling operation.

Fully Connected Layer: The output from the last pooling
layer is flattened and passed through the FC layer with 64
units. Following this passes the result to another FC layer
to obtain the final classification decision.

Final Output Layer: This layer generates the prediction
for the task of classifying images. The output has c units,
where c is the number of classes (normal vs. abnormal,
for example). The result is then passed through a softmax
activation function to produce class probabilities.

6. Results and discussions

Results from the loT-based lung nodule detection system,
which utilized CT 3D-one images with 3D CNNs and
advanced feature selection techniques have achieved
great improvements in terms of computational efficiency
and classification accuracy. The model was able to detect
anomalies, such as tumors and nodules, while
suppressing false positives and false negatives. The
integration of loT enabled the real-time transmission of
data and timely decisions, thus contributing to the
improvement of clinical workflow. In general, the system
exhibited reliable performance guaranteeing prompt
diagnosis and giving medical personnel useful decision
support.

Confusion Matrix for Lung Nodule Detection

Actual Positive

Actual

Actual Negative

Predicted Positive

Predicted Negative
Predicted

Figure 3: Confusion Matrix for Lung Nodule Detection

The confusion matrix relating to lung nodule detection is
displayed in FIG 3, thus giving detailed insight into the
actual classification accuracy performance of the model.
The matrix illustrates the capacity of the model to
differentiate between normal and pathological lung
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conditions by correlating the predicted labels on a
collection of images with the actual labels.

True positive (533): In 533 cases, the model correctly
classified abnormal status (i.e., lung nodules found).

False positive (19): 19 normal cases were misclassified as
abnormal by the model (Type | error).

False negatives (14): In 14 instances, the model failed to
identify abnormal status and hence classified these as
normal (Type Il error).

True negative (826): The model correctly identified
normal status in 826 cases.

This confusion matrix, being a vital tool in model
performance evaluation, is used in computing accuracy,
precision, recall, and F1-score of the model. By analyzing
such numbers to identify areas for improvement, the
model can be made clinically more reliable for lung
nodule detection-for example, in reducing false positives
or false negatives.

Model Accuracy

M—em"‘w‘”@”‘w ’

0.95 NS

i

1.00

Accuracy

i
0.75 ‘/ﬁ
i
]
0.70 ] —»~- Training Accuracy: 0.988167
i - .
0.65 W Validation Accuracy: 0.987813
0 1 20 30 40 s0
Epoch

Figure 4: Model Accuracy During Training and Validation
for Lung Nodule Detection

The accuracy of the model during 50 epochs regarding
training and validation accuracy is depicted in FIG 4. The
model performs remarkably well on training and unseen
data, as demonstrated by the respective training accuracy
(represented in purple) of 98.82% and the validation
accuracy (represented in green) of 98.78%. Consistent
growth in accuracy by the plot demonstrates effective
learning and generalization during training.

Model Loss

0.7 g —>¢- Training Loss: 1057968
K Validation Loss: 0.057357
0.6 X
0.5
2 04
z
0.3
0.2
[IN] ’ M’é‘i{\g/ .
[} 10 20 30 40 50
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Figure 5: Model Loss During Training and Validation for
Lung Nodule Detection

The model's loss across 50 training epochs can be seen in
FIG 5 together with the corresponding validation loss. The
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training loss (purple) dipped gradually from 0.170 about
two epochs to 0.05797 at termination, indicating the
model's efficient learning with low overfitting,
culminating in a validation loss (green) of 0.05736. This
shows that the model generalizes well to new data.

loT-Based Signal Processing for Lung Nodule Detection using 3D CT Images..

The performance metrics of the lung nodule detection
model are as shown in Table 1. The model's classification
performance is thus evaluated using these measures that
are most useful to distinguish between normal and
pathological lung conditions.

Table 1: Performance Metrics for Lung Nodule Detection

. . e I0U (Intersection Over Dice
Metric Accuracy Precision Recall F1-Score Specificity AUC-ROC Union) Coefficient
Result | 0.976293 0.96558 0.974406 0.969973 0.977515 | 0.978986 0.941696 0.969972
Accuracy (0.976293): The overall proportion of accurate Performance Metrics for Lung Nodule Detection
.. . . 1.0 0.9763 0.9656 0.9744 0.97 0.9775 0.979
predictions, or accuracy (0.976293), indicates that almost
97.63% of the classifications were accurate.
0.8
Precision (0.96558): The percentage of true positive
predictions out of all anticipated positive cases is shown L;“-‘
by this statistic. According to the model ability to predict g
abnormal cases, it has a precision of 96.56% precision. 0.4
Recall (0.974406): Recall refers to the percent of true 0.2
positive (abnormal) cases detected correctly. However,
the recalls, which have 97.44% in itself, significate that it 0.0 I i i . I i
. . Accuracy Precision Recall F1-Score Specificity AUC-ROC
detects worth of anomalous situations. Metrics

F1-Score (0.969973): The harmonic mean of the two
measures, precision and recall, is the F-o measure
(0.969973), with which the trade off between the two is
achieved. Indeed, precision and recall appear to balance
each other well as indicated by this F-score of 96.99%.
Specificity (0.977515): Specificity checks how the model
can value normal instances. The model warrants false
positive results with a specificity of preventing detection
with 97.75%.

AUC-ROC (0.978986): The Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) is a measure of
the model's efficacy at differentiating classes with an AUC
value of 0.978986. An AUC of 0.979 would therefore
indicate excellent discriminating performance.

IOU (Intersection Over Union) (0.941696): This metric
describes the overlap of actual and predicted areas of
abnormality, and a high 10U of 94.17% by the model
indicates that it could detect lung nodules.

Dice Coefficient (0.969972): Gauge the similarity between
actual abnormal area and area predicteded abnormality.
The nodule segmentation of the model in the lung is
thereby very accurate with a score of 96.99%.

The performance metrics of the lung nodule detection
model are found in Figure 6. Consistently high values for
all relevant measures in the graph prove that the model is
indeed robust and reliable in accurately identifying lung-
related problems.

Figure 6: Performance Metrics for Lung Nodule Detection
Conclusion

In this investigation, an loT based system for the
identification of lung nodules was made using 3D CT scans
and  state-of-the-art deep learning techniques,
particularly through the application of 3D CNNs and
further feature selection techniques. The model proposed
has shown tremendous improvement in classification
performance by vyielding decent accuracy and
generalization in identifying anomalies like lung nodules,
cancer, and pneumonia. When considering the Fl-score,
precision, recall, specificity, and AUC-ROC and so on, the
high results observed suggest that the system was
substantially effective in marking the identification of
anomalous situations as well as reducing false negative
and false-positive outcomes. Incorporation of loT enabled
real processing and transfer of data, thereby increasing
the efficiency and clinical applicability of any system.
Results indicate the promise of deep learning-based
medical imaging systems as a reliable solution for
automated detection of lung nodules. Future work will
explore further enhancement of model generalization,
expanding knowledge input, and fine-tuning the system
for use within real healthcare settings.
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