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Abstract

The present work focuses on classifying different gearbox faults based on neural networks. Efforts are made to include
all the faults and classifiers based on the neural network of transmission systems reported in the literature. Fault
classification is essential for reliable and quick protective digital protection. Hence, a suitable review is needed. So, the
work concentrates on the different faults in the gearbox and available neural network-based approaches reported in the

field.
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Introduction

The gearbox is a essential part of the transmission system
and transfers motion and power. The gearbox found its
application in various sectors like industrial, military and
wind turbine etc.[1]. Any failure in system elements
causes the system to shut down. A gearbox failure results
in downtime, costly repair and living causalities[2—4]. So,
it is essential to detect these faults at an early stage.
Many studies have been reported in the direction of the
failure of different machine elements like bearing and
Gear [5,6,15-24,7,25-34,8,35-44,9,45-54,10,55-62,11—
14]. Many techniques are used to design the experiments
and collect the data, like Taguchi[63,64,73—-77,65-72] and
so on. Different techniques like vibration[78], acoustic,
wear monitoring, noise signature, and temperature
analysis can diagnose gearbox faults [79]. As mentioned
above, vibration is used widely due to its cost-
effectiveness and easy information processing [80]. The
vibration signature starts changing as the faults develop
in the system[4,81]. The vibration data is preprocessed to
get the feature vector to train the model. In literature,
many signal processing techniques are available to extract
helpful information from the vibration signal. The signal
processing techniques are classified into time, frequency,
and time-frequency domains [82]. The signal is
demodulated, noise is reduced, and valuable information
is kept using the signal processing techniques. A survey of
these techniques is found in the literature [79,83,84].
NASA uses the wear debris-based technique to develop a
complete framework for gearbox diagnosis [85].
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In literature, many algorithms are used to detect and
diagnose the faults in gearboxes[86]; these are the
support vector machine and neural networks. To reduce
the dimensions of the failure feature vector, the
technology of principal component analysis[87,88] is
adopted to transform the original failure feature vector
into a smaller set of variables. In literature, artificial
neural networks combined with the empirical mode
decomposition, fuzzy logic and support vector
classification family attracted most of the attention as
these results are good compared to other available
methods[89]. Deep learning also succeeded in
classification as it owns deeper representations for faulty
features. Neural networks based on deep learning are
also in practice.

This paper is structured on the different faults of the
Gear and the use of different neural network-based
techniques to classify the faults.

2. Failure modes of the gearbox and diagnostics
2.1 Failure modes and diagnosis

Due to its complex tribological interaction, Gear has to
degrade over time. Gear failure is the function of tooth
geometry, kinematics, forces, material, lubrication, and
environmental characteristics. The gear tooth failure is
classified based on strength and non-strength basis. The
failure may occur gradually or sudden. The AGMA F14
[90]standard classifies failure into seven categories and
36 failures. In literature main focus is on the crack, pitting,
flank wear and root fracture of the gears. Failure is
defined as the termination of the ability of the element to
perform the desired function. Failure is associated with
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the desired function. The failure mode describes different
ways of an item's failure. The failure may be random or
systematic. A failure result in the loss of production or
services and safety. The failure may be detected or
undetected. The failures may be design-related faults or
operational errors. Detection is both localized and
distributed.

Maintenance is a complex set of operations that
compromise the diagnosis, scheduling, budgeting, and
execution of decisions. The execution of the gearbox
maintenance is a combination of planning, budgeting, and
material and a group of personnel and organizations. The
condition-based maintenance is a request-based
upkeeping of machine availability. Timely actions are
dependent upon the early detection of the damage. The
damage detection process is divided into the following
steps:

Step 1: Data collection

The data is measured with the help of the proper sensor
like vibration, acoustic, wear debris etc. For example, the
vibration sensor is mounted on the gear casing or bearing
positions to measure the acceleration data of the
gearbox.

Step 2: Processing

The acquired data is processed to reduce the noise and
other modulation components to detect the fault feature
of the Gear. For example, the vibration signal is averaged
about the shaft rotation by time-synchronous averaging
(TSA). Different features are extracted and stored in the
feature vector from this averaged data. Further, this
feature vector is reduced in the dimension by principal
component analysis (PCA).

Step 3: Classification of the fault.

The reduced vector of the feature is used to train the
model by using SVM or NN. The unknown vector is then
given as the input, and the trained model provides the
diagnostic results.

2.2 Vibration-based failure indicator

Around 90% of faults are related to the unbalancing and
misalignment of the rotating parts. Two main
characteristics of vibration signals are frequency and
amplitude. Table 1 summarizes the vibration-based fault
indicator and various gear failure modes based on time,
frequency and time-frequency modes. The performance
of these indicators depends on the severity of the faults.

The indicators developed or chosen for the fault
diagnosis should possess the following features:

Monotonicity - shows the trend over time
Robustness — tolerance to the outliers

a)
b)
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c) Trendability/correlation — correlation with the other
available indicators.

Table 1. Summary of fault indicator of various gear failure
modes [79]

Type Indicator Fault identified
RMS Fault progression
Kurtosis Pitting
Crest factor Tooth fault localization
Energy operator Scuffing, severe pitting
FMO Distributed wear, tooth breakage
_aé NA4 Pitting
- NA4* Progressing damage
CCR Pitting
FM4 Crack, pitting
M6A Flank Wear
Energy ratio Uniform wear
GMF harmonic
amplitude Wear
o Sideband amplitude Pitting
§ Sideband ratio Pitting
% ALR Crack, wear
w Cepstrum All kinds of fault
Spectral kurtosis Pitting, crack
Phase modulation Crack
z NP4 All faults
§ Wavelet All faults
g EMD All faults
g STFT Early-stage faults
= WVD Early-stage faults

3. Neural Network

The detection of localized and distributed defects is
essential. The fault indicators are chosen to measure sure
the deviation in the signature of the machinery's health.
These selected fault indicators are further processed
using classifier algorithms for classification based on the
severity of the faults.

Preventive maintenance is used to delay the
machinery shutdown. The available data is processed
using data analytics and machine learning.

The fault classification techniques to classify different
types of faults in the Gear, such as pitting, crack, wear
etc., are classified based on the selected fault indicators.
The classification approaches separate the different fault-
based on some statistical criteria. For each type of failure,
the evolution/ trend of a particular fault indicator may be
different. Hence, so different techniques need to be
applied for the classification. Table 2 summarizes the
various classification approaches discussed.

Out of these techniques, Neural network-based
techniques are discussed in the following text. The idea of
a neural network mimics the biological nervous system.
The artificial neural network (ANN) model is trained
similarly to biological learning by experience. Various
researchers train different types of ANN models for fault
and severity classification.
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Table 2. Fault classification models and used for the type of faults [79,91]

Classification Algorithm Type of Gear Type of fault Fault indicator or process
Neural Network Spur Wear severity, tooth breakage Wavelet
Bevel Crack, worn, tooth breakage Wavelet, EMD
Helical Tooth breakage Taguchi’s
Fuzzy rule Spur Broken and worn gear tooth Decision tree
Neuro-fuzzy Spur Crack Wavelet, kurtosis, phase modulation
SVM Spur Pitting Amplitude ratios of the frequency band
(PCA), RMS, peak, kurtosis, average signal CC
Planetary Pitting Frequency domain-based
Compounded spur Crack, missing tooth % Energy of IMF of EMD
Random forest Spur Crack, pitting, wear, misaligned Time-domain and frequency domain, time-
frequency domain
Deep learning Spur Wear, pitting, crack, broken Time, frequency and time-frequency domain
and chipped tooth indicators

A neural network represents deep learning using artificial
intelligence. An artificial neural network consists of
various layers of interconnected artificial neurons
powered by activation functions that help switch them
on/off. Like traditional machine algorithms, neural nets
learn specific values in the training phase. For each
neuron, the inputs and random weights are compounded
and a static bias value (unique to each neuron layer) is
added; this is then transferred to a suitable activation
function which determines the final output value.
Backpropagation is used to modify the weights of the last
neural network layer in order to minimise the loss
function (input vs. output) after the output is created.
Weights are numeric values multiplied by inputs. They are
used to minimize the loss.

networks are as

The different types of Neural

follows[89,92-94]:

- Perceptron

- Feed-forward neural network

- Multilayer perceptron

- Convolutional neural network

- Radial basis functional neural network
- Recurrent neural network

- Longshort-term memory

- Sequence to sequence models

- Modular neural network

Perceptron

Neuronal networks include several smaller units that do
specific calculations in order to identify characteristics or
business information in the data. Weighted inputs may be
entered into the system and applies the activation
function to obtain the output as the final result. It is
known as a threshold logic unit. It is a binary classifier. It
can be implemented with logic gates like AND, OR, or
NAND. It is helpful for linearly separable problems such as
Boolean AND problem. It does not work on the non-linear
problem.

Feed-forward neural networks

It is used where machine learning-based classification,
face recognition, computer vision where target classes
are challenging to classify, and speech algorithms have
limitations. The simplest systems are forward-biased. And
hidden layers may or may not be present in the model.
The number of the layer depends on the complexity of
the function. This does not have backward propagation.
Weights are static. These are less complex, easy to design,
fast and speedy, and highly responsive to noisy data. It
cannot be used for deep learning.

Multiple perceptron

Work better for speech recognition, machine translation,
and complex classification. Has multiple layer structure.
The backpropagation is allowed to reduce the loss. Self-
adjustment depends on the difference between predicted
outputs Vs training inputs. It can be used for deep
learning purposes. The only disadvantage is a slow speed.

Convolutional neural network

It is the three-dimensional arrangement of neurons. The
first layer is called the convolutional layer. Each neurone
in the convolutional layer processes information. A batch-
wise input is allowed to speed up the process. The
network understands the images into parts and can
compute these operations multiple times to complete the
full image processing. Processing involves the RGB
correction and pixel change. It can be used for deep
learning. It works bidirectional.

Radial basis function neural networks

It is multiple category input connected to followed by a
layer of RBF neurons and an output layer with one node
per category. Classification is performed by measuring the
input's similarities to data points from the training set
where each neuron stores a prototype when new data
needs to be classified by measuring the Euclidean
distance between input and its prototype.
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Recurrent neural networks (RNN)

It is used to backpropagate to help in predicting the
output layer. The first layer is feed-forward based and
uses stored information of the last layer to input into the
next layer and future. It is used for text processing,
grammar check, and sequential inputs and depends on
the historical data. It is not easy to train such an
algorithm.

Long short-term memory network

It is an updated or improved version of RNN. The gates
are used to store the information. It makes the
information last longer than expected.

Sequence to sequence model

It consists of two RNNs; an encoder that processes the
input and a decoder that processes the output. Both can
be used in similar or different parameters. The input and
output data vectors must be equal.

Modular neural network

It has multiple networks that function independently and
perform sub-tasks. Network work independently during
the computation process. It is fast in working due to
independency.

The different types of faults in Gear are used to classify
different kinds of faults in the Gear. The accuracy of the
ANN model was tested with several neurons 2 to 30. The
number of layers which shows the slightest deviation is
selected for building the structure of ANN. The optimum
network structure and number of nodes are difficult to
determine[89,92-96].

4. Conclusions

The paper has presented a summary of the different
failure modes, their diagnostic indicator and neural
network-based classification and different types of neural
networks. The ANN can classify the defects based on
other faults diagnosis techniques like acoustic, wear
debris, lubrication-related parameters, etc. In a few works
of literature, the oil-based neural network classification is
used[97]. But they are used for the unloaded condition.
So, it is essential to study the effect of load. It is also
suggested to use multiple algorithms to find the best
algorithm for the particular type of fault.
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