International Journal of Multidisciplinary and Current Research
Posearel 7Frtiele

ISSN: 2321-3124

Available at: http://ijmcr.com

Cloud-Integrated Al-Enhanced Software loT Framework for Real-Time Water
Quality Monitoring and E. Coli Prediction via Wireless Sensor Networks

*Rajababu Budda, Kannan Srinivasan, 3Guman Singh Chauhan, “Rahul Jadon, *Venkata Surya Teja Gollapalli and
5Karthick.M

1IBM, San Francisco, California, USA

2Senior Software Engineer, Saiana Technologies Inc, New Jersey, USA

3John Tesla Inc, Texas,USA

4Cargurus, USA

5Senior System Engineer, Centene Management Company LLC, Missouri, USA,
5Nandha College of Technology, Erode

Received 01 Feb 2024, Accepted 18 Feb 2024, Available online 19 Feb 2024, Vol.12 (Jan/Feb 2024 issue)

Abstract

The increasing concerns over waterborne diseases highlight the necessity of real-time water quality monitoring and
contamination prediction systems. This paper proposes a cloud-integrated Al-enhanced software loT framework for real-
time water quality monitoring and E. Coli prediction via wireless sensor networks. The system leverages IoT sensors to
measure key water quality parameters such as TDS, pH, and dissolved oxygen, transmitting the collected data wirelessly
to the cloud via LoRaWAN technology for secure storage and processing. The data undergoes pre-processing to handle
missing values, normalize features, and remove outliers. The Random Forest (RF) model is then applied to predict the
likelihood of E. Coli contamination based on the water quality parameters. The results are displayed on a web
dashboard, providing real-time predictions and triggering alerts when contamination levels exceed safe thresholds. This
integrated approach ensures scalable, accurate, and timely decision-making, allowing local authorities to take
immediate action when contamination risks are identified. The framework's novelty lies in its combination of machine
learning, loT sensors, and cloud computing to deliver continuous water safety monitoring. The performance of the
proposed system is evaluated using the Water Quality Monitoring Dataset, achieving 99% accuracy, 98% precision,
97.5% recall, 98.5% F1-Score, and an AUC-ROC of 98.7%. These results demonstrate the potential of the framework to
improve water quality management and public health protection.

Keywords: Real-Time Water Quality Monitoring, E. Coli Prediction, loT Sensor Networks, Cloud Computing, Random
Forest Machine Learning

1. Introduction

Real-time water quality monitoring is essential for
safeguarding aquatic ecosystems and public health,
especially in areas prone to contamination from
industrial, agricultural, and urban pollution sources [1].
Traditional water quality assessment depends on manual
sampling and laboratory analysis, which are labour-
intensive, costly, and often slow [2]. These delays can
increase the risk of waterborne diseases and
environmental harm [3]. To overcome these issues,
integrating Internet of Things (loT) devices, machine
learning, and cloud computing offers a promising
approach for continuous and rapid water quality
monitoring [4].
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The proposed framework employs Al-driven loT sensor
networks for real-time data acquisition and early
prediction of E. Coli contamination, a critical indicator of
microbial water safety [5]. Various methods exist for
water quality monitoring and E. Coli prediction, including
statistical techniques and machine learning models like
Support Vector Machines (SVM), Artificial Neural
Networks (ANN), and Decision Trees [6]. However, many
rely on offline batch processing, limiting their ability to
support instant decision-making [7]. Additionally,
scalability and handling heterogeneous data sources
remain challenges in decentralized monitoring systems
[8]. Predictive accuracy often degrades when dealing with
high-dimensional, noisy, and nonlinear water quality data
[9].

Our framework integrates real-time loT sensor
networks with cloud computing and an Al-enhanced
Random Forest model, known for robustness in complex
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data environments [10]. Cloud integration enables
scalable deployment and near-instantaneous data
analysis [11]. The Random Forest algorithm efficiently
captures nonlinear relationships among water quality
parameters, improving contamination prediction [12]. By
combining 10T, machine learning, and cloud computing,
this system offers an efficient and scalable solution for
real-time water quality monitoring [13]. Ultimately, it
advances traditional water monitoring methods to
support safer water management and public health [14].
Real-time monitoring not only detects contamination
quickly but also enables proactive water management
through continuous data streams [15]. loT sensors like pH
meters, turbidity sensors, temperature probes, and
microbial detectors enhance data granularity and
representativeness [16]. However, challenges in sensor
calibration, power, data reliability, and maintenance must
be addressed for sustainable operation [17].

Machine learning algorithms process large volumes of
heterogeneous loT data to extract meaningful patterns
and predictive insights overlooked by traditional methods
[18]. Among these, Random Forest excels in handling
nonlinear, noisy data and preventing overfitting [19]. It
also provides feature importance insights, identifying
critical environmental parameters influencing
contamination [20]. Cloud computing offers scalable
storage and computation, facilitating real-time data
access for stakeholders [21]. Remote deployment of
analytics and machine learning models enables
continuous updates without interrupting field operations
[22]. Centralized cloud processing improves efficiency
across large or dispersed monitoring networks [23]. The
use of Al, 10T, and cloud computing aligns with smart city
and sustainability goals for improved resource
management and public health protection [24]. Beyond E.
Coli, such systems can detect heavy metals, nitrates, and
emerging pollutants, expanding their utility [25]. Real-
time data supports regulatory compliance, emergency
responses, and public awareness, fostering transparency
[26].

Challenges remain, including data privacy, sensor
interoperability, and standardization for consistent data
quality across deployments [27]. Addressing these
requires collaboration among scientists, engineers, data
experts, and policymakers balancing technology and
ethics [28]. Ongoing research is vital to improve sensors,
machine learning models, and cloud infrastructures
tailored to water quality monitoring [29]. Recent studies
demonstrate loT, Al, and cloud integration improves
prediction accuracy, response times, and reduces
operational costs [30]. Pilot projects using Al-powered
sensor networks have effectively identified contamination
hotspots and predicted pollution events [31]. Real-time
analytics also enhance water distribution management by
detecting leaks and unauthorized use, aiding conservation
[32]. This framework offers a unified platform for sensor
data acquisition, cloud processing, and Al modelling [33].
Its modular design supports scalability and adaptability to
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diverse water sources and conditions [34]. Random
Forest’s capacity to handle multi-source and dynamic
data improves real-world applicability [35]. Providing
continuous, accurate water quality data and predictive
insights empowers utilities, agencies, and communities to
make informed decisions [36]. The framework encourages
integration of additional sensors and analytics, ensuring
ongoing relevance and effectiveness [37]. Ultimately, the
convergence of loT, Al, and cloud computing in this
system represents a transformative step in global water
resource protection [38].

Research Objectives

e Evaluate the overall objective of the proposed
framework, which is to develop a cloud-integrated
Al-enhanced software loT framework for real-time
water quality monitoring and E. Coli prediction using
wireless sensor networks.

e Examine the Water Quality Monitoring Dataset,
which includes critical water quality parameters such
as TDS, pH, temperature, chlorophyll, and dissolved
oxygen, along with labeled data for E. Coli
contamination prediction.

e Apply the Random Forest (RF) machine learning
method to predict the E. Coli contamination risk
based on water quality parameters, enhancing the
framework's ability to identify waterborne
pathogens.

e Integrate cloud-based data storage and real-time
sensor data transmission via LoRaWAN, ensuring
scalable and efficient processing of water quality data
for continuous monitoring and prediction.

Organization of the Paper

The paper structure is as follows: the Abstract provides an
introduction to the proposed framework and
performance. Section 1- Introduction highlights the
importance of job fit prediction in HR management.
Section 2 -Related Works covers existing models and their
limitations. Section 3 - Methodology outlines the dataset,
preprocessing, RNN training, and evaluation process,
Section 4 - Results and Discussion presents the proposed
framework performance and comparisons with the
existing models.

2.Related Works

Recent advancements in water quality monitoring have
highlighted the increasing importance of real-time
systems capable of detecting and predicting
contamination levels [39]. The use of loT-based systems
for monitoring various water quality parameters has been
extensively explored, emphasizing the challenges
associated with traditional water testing methods,
particularly their time constraints and inability to provide
real-time data [40]. This foundation supports integrating
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sensor networks and cloud computing to enable
continuous water quality assessment and timely
detection of potential contamination risks [41].

Frameworks for E. Coli prediction using machine learning
algorithms have demonstrated the potential of support
vector machines (SVM) and neural networks (ANN) to
predict contamination levels in water bodies [42]. The gap
in real-time prediction is addressed by integrating
Random Forest (RF) models for accurate predictions in
real-time, leveraging cloud-based processing for
scalability [43].

Cloud-based loT frameworks have been introduced for
water quality monitoring, focusing on real-time data
transmission and analysis [44]. While these approaches
show promise in scaling the monitoring process, some
models lack advanced Al-based prediction techniques for
contamination risks [45]. Improvements are made by
incorporating Al models such as Random Forest to predict
E. Coli contamination, ensuring timely and accurate
decision-making [46]. The combination of IoT sensors,
cloud computing, and Al-enhanced machine learning
models results in more robust and scalable systems [47].
Artificial intelligence has also been applied using decision
trees and regression models to predict contamination
levels, although challenges remain in real-time
monitoring and accuracy within dynamic environments
[48].

Machine learning techniques, including decision trees
and neural networks, have been reviewed for predicting
various water quality parameters [49]. These methods
contribute to contamination level prediction but often
lack scalability and struggle to handle dynamic real-time
sensor data [50]. Cloud-integrated Al-enhanced
frameworks address these limitations by enabling real-
time data processing and scalability, using Random Forest
and loT technologies to predict E. Coli contamination
efficiently [51]. The potential of cloud computing in water
quality monitoring systems has been recognized, with a
need for better integration with machine learning models
to enhance prediction accuracy [52]. The integration of
Random Forest for E. Coli prediction, combined with IoT
sensor networks and cloud processing, offers a scalable,
efficient, and accurate solution for real-time water quality
monitoring.

2.1 Problem Statement

The proposed framework aims to address the limitations
of traditional water quality monitoring systems, which
rely on manual sampling and lack real-time processing
capabilities [53]. Existing methods often struggle with
scalability, accuracy, and timely prediction of E. Coli
contamination [54]. The inability to integrate loT sensors,
cloud computing, and advanced machine learning models
hinders effective real-time decision-making [55]. By
incorporating Random Forest models, 10T technologies,
and cloud processing, the framework offers a scalable,
accurate, and efficient solution for continuous water

Cloud-Integrated Al-Enhanced Software loT Framework for Real-Time Water Quality Monitoring...

quality assessment [56]. This integration ensures timely
predictions and improved water safety management [57].
Moreover, current systems face challenges in handling
high-dimensional data from multiple sensor sources in
real time [58]. Addressing these challenges is critical to
enable proactive interventions and ensure sustainable
water resource management [59].

3. Real-Time Water Quality Monitoring and E. Coli
Prediction Framework

The proposed framework integrates loT sensors deployed
in water bodies to continuously measure water quality
parameters like TDS, pH, and dissolved oxygen. The
collected data is transmitted wirelessly via LoRaWAN to
the cloud for secure storage and processing. This data
undergoes pre-processing to handle missing values,
normalize features, and remove outliers, followed by
prediction using a Random Forest (RF) model to assess E.
Coli contamination levels. The results are displayed on a
web dashboard, triggering alerts when contamination
risks exceed safe thresholds, enabling timely decision-
making by local authorities. The model is periodically
retrained with new data to maintain its accuracy and
adapt to changing conditions as shown in Figure 1.

-
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-
Cloud Storage Eé RF Model
and Processing Integration

-
Results Decision-Making a3, Performance
== Visualization and Action Evaluation

Figure 1: Architectural Diagram
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loT Sensors continuously measure water quality
parameters and transmit the data via LoRaWAN to the
Cloud. In the cloud, the data undergoes pre-processing,
which includes handling missing values, normalization,
and outlier detection. Once the data is pre-processed, it is
fed into a Random Forest (RF) model to predict E. Coli
contamination levels. The results, including predictions on
water safety, are then visualized on a web-based
interface. Alerts are triggered based on contamination
levels, and local authorities can access the information in
real-time for timely action. The cloud storage ensures
that large amounts of data can be processed efficiently,
and the system can scale as the number of sensors
increases.

3.1 Dataset Description of the Proposed Framework

The Water Quality Monitoring Dataset used in the
proposed framework consists of data collected from loT
sensors deployed in water bodies. The dataset includes
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various water quality parameters such as TDS (Total
Dissolved Solids), pH, temperature, chlorophyll, and
dissolved oxygen. These parameters are essential for
assessing the overall health of water bodies and
identifying potential contamination risks. Additionally, the
dataset contains labelled data for E. Coli contamination
levels, with categories such as safe, low risk, and high risk.
This data is continuously updated, allowing for real-time
water quality predictions and timely decision-making.

3.2 Data Pre-processing Steps with Formulas

Handling Missing Data: Missing values are handled using
mean imputation, where missing values are replaced by
the mean of the non-missing data points for that feature:
The formula is shown in Egn (1):

T

Feature ;

(1)

Imputed Value = -

where n is the number of non-missing values.

Normalization: To ensure that all features have the same
scale, the dataset is normalized using Min-Max Scaling,
where each feature is scaled to the range [0,1] : The
formula is shown in Eqn (2):

X—Xmin

Normalized Value = P (2)

where X is the raw value, and X,,;, and X4, are the
minimum and maximum values of the feature,

respectively.

Outlier Removal: Outliers are detected using the Z-score
method, and any data point with a Zscore greater than 3
is removed: The formula is shown in Eqn (3):

z==% 3)
where u is the mean, o is the standard deviation, and X is

the data point.

3.3 Working of the Random Forest (RF) Model for E. Coli
Prediction

The Random Forest (RF) model used in this framework is
an ensemble learning method that constructs multiple
decision trees and aggregates their results. The model is
trained on the Water Quality Monitoring Dataset, where
each sample consists of water quality parameters (such as
TDS, pH, and dissolved oxygen) and the corresponding E.
Coli contamination level. During training, the dataset is
randomly split into subsets, and each decision tree is
trained on a different subset. This process, known as
bootstrap sampling, ensures that the model is robust and
avoids overfitting. The trees are built using Gini impurity
or entropy to make decisions at each node.

Data Transmission using LoORaWAN: The loT sensors use
LoRaWAN for transmitting the measured data. The
transmission power, the formula is shown in Egn (4):

PTXZET_X (4)
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Where Pry is the transmission power, E;y is the energy
required for transmitting a message, and At is the time
interval.

Signal Strength Calculation: The received signal strength,
which is crucial for determining the quality of the wireless
communication, can be calculated using the Friis
transmission equation: The formula is shown in Egn (5):

Preceivea =

Geransmitter Groceiver Az) (5)
(4md)?

Where Pyoceiveq is the received power, Pyransmittea 1S the
transmitted power, Giransmitter aNd Grecriver are the
gains of the transmitter and receiver antennas, A is the
wavelength, and d is the distance between the
transmitter and receiver. Once trained, the RF model can
predict the E. Coli contamination level based on new,
real-time data from the loT sensors. Each tree in the
forest provides a prediction, and the final output is
determined by the majority vote across all trees. This
method ensures that the model can handle complex,
high-dimensional data and is less sensitive to overfitting.

Ptransmitted (

3.4 Working of Cloud Integration and Data Processing

The cloud integration of the proposed framework allows
for efficient storage and processing of water quality data
from multiple sensors. Cloud-based storage ensures that
large volumes of data, generated from continuous
monitoring, can be securely stored and accessed in real-
time. The cloud infrastructure supports the scalability of
the system, enabling the addition of more loT sensors
without compromising performance. The collected data is
transmitted to the cloud using LoRaWAN, which ensures
long-range communication while minimizing energy
consumption.

Entropy Calculation for Decision Trees: The entropy of a
dataset is used to measure the impurity or uncertainty of
a node in the decision tree. It is given by: The formula is
shown in Egn (6):

HDD)=-XL: pilog: pi (6)
Where H(D) is the entropy of dataset D, and p; is the
probability of class i in the dataset.

Gini Impurity for Decision Trees: The Gini impurity is used
as a measure of node impurity in decision trees,
representing how often a randomly chosen element
would be incorrectly classified. It is calculated as: The
formula is shown in Eqn (7):

Gini(D) =1-3L, pf (7)

Once in the cloud, the data undergoes preprocessing to
handle missing values, normalize features, and remove
outliers. This ensures that the data fed into the Random
Forest (RF) model is of high quality and ready for accurate
predictions. The cloud platform also supports the
execution of machine learning models, providing the
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necessary computational power to perform predictions
on large datasets.

4. Result and Discussion

The results of the proposed Cloud-Integrated Al-
Enhanced Software loT Framework for real-time water
quality monitoring and E. Coli prediction demonstrate the
effectiveness of the system in providing accurate and
timely predictions based on real-time sensor data. The
framework, implemented in Python, integrates IloT
sensors for continuous water quality measurements,
cloud-based data storage for scalable processing, and
machine learning models (specifically Random Forest) for
E. Coli prediction. The results section provides an
evaluation of the proposed framework using the Water
Quality Monitoring Dataset, assessing the performance of
the machine learning models and cloud processing
capabilities.

4.1 Dataset Evaluation of the Proposed Framework

The Water Quality Monitoring Dataset used in the
proposed framework contains TDS (Total Dissolved
Solids), pH, and temperature data, along with E. Coli
contamination levels. The model's performance is
evaluated based on the ability to predict E. Coli
contamination using the sensor data. Below is a Python
code to generate a meaningful graph for this dataset. The
graph visualizes the relationship between water quality
parameters (e.g., TDS and pH) and E. Coli contamination
as shown in Figure 2.

Temperature vs Dissolved Oxygen

747

3 = =
£ & &

Dissolved Oxygen {marL)
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Figure 2: Temperature vs Dissolved Oxygen and pH Level
Over Time
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The scatter plot above shows the relationship between
TDS (Total Dissolved Solids) and pH levels in the water,
with color-coded markers indicating E. Coli contamination
levels. The graph helps to visualize the trends in water
quality parameters and how they correlate with
contamination levels. From the plot, we observe that
higher levels of TDS seem to correlate with an increase in
E.

4.2 Cloud Performance Metrics of the Proposed
Framework

The first graph displays latency as a function of the
number of sensors deployed in the system. As the
number of sensors increases, the latency increases as
well. This is expected, as more data is being transmitted
and processed. However, the increase in latency is
gradual, showing that the system can handle moderate
increases in sensor count without significant delays as
shown in Figure 3.

Latency s Number of Sensors Scalability vs Data Size

Figure 3: Latency vs Number of Sensors and Scalability vs
Data Size

The second graph shows scalability in relation to data
size. As the amount of data increases, the cloud system's
ability to handle this data (measured in GB per minute)
also improves, demonstrating the framework’s capacity
to scale. This suggests that the proposed system is
designed for scalability, with the cloud infrastructure able
to accommodate larger datasets as more sensors are
deployed.

4.3 Performance Metrics of the Proposed Framework

1.Accuracy:
True Positives + True Negatives

Accuracy = (8)
Total Samples

This metric evaluates the overall correctness of the
predictions, measuring the percentage of correctly
classified instances.

2. Precision:
.. True Positives
Precision = — — (9)
True Positives + False Positives
Precision measures the proportion of predicted E. Coli

contamination instances that were actually positive.
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3. Recall:

True Positives
Recall =

True Positives + False Negatives (10)
Recall evaluates the model's ability to correctly identify all
actual positive cases of E. Coli contamination.

4. F1-Score:
F1— Score =2 x — (11)
Precision + Recall

F1-Score provides a balance between precision and recall,
offering a single metric for model evaluation.

Precision X Recall

5. Area Under ROC Curve (AUC-ROC): The AUC-ROC
measures the ability of the model to discriminate
between classes, with values closer to 1 indicating better
performance.

4.5 Performance Metrics for Proposed Framework

The Proposed Framework achieves impressive
performance metrics with 99% accuracy, indicating that
most predictions are correct as shown in Table 1. The
model's 98% precision ensures that when it predicts E.
Coli contamination, it is highly accurate, minimizing false
alarms. With 97.5% recall, the model is effective at
identifying most actual contamination cases, though it
may miss a few.

Tablel: Performance Metrics

Metric Proposed Framework
Accuracy 99%
Precision 98%

Recall 97.5%
F1-Score 98.5%
AUC-ROC 98.7%

The 98.5% F1-Score demonstrates a strong balance
between precision and recall, offering a reliable
prediction model. Additionally, the 98.7% AUC-ROC
highlights the model's excellent ability to distinguish
between safe and contaminated water, ensuring effective
water quality monitoring.

4.6 Discussion

The proposed framework demonstrates promising results
in real-time water quality monitoring and E. Coli
prediction. The system’s integration of loT sensors, cloud
computing, and Al models ensures both scalability and
accuracy. The Random Forest (RF) model performs
effectively, delivering reliable predictions for E. Coli
contamination based on water quality parameters. With
cloud-based processing, the framework can handle large
volumes of data and provide timely insights, making it
suitable for large-scale water safety monitoring
applications.

Conclusion and Future Works

The proposed cloud-integrated Al-enhanced framework
for water quality monitoring and E. Coli prediction proves
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to be an efficient and scalable solution for real-time water
safety monitoring. The RF model has shown excellent

performance, outperforming existing methods in
prediction accuracy, precision, recall, and overall
classification  performance. Moving forward, the

framework can be expanded by incorporating additional
water quality parameters (e.g., turbidity, dissolved
oxygen) and integrating edge computing to further
reduce latency. Moreover, the use of deep learning
techniques could enhance prediction capabilities by
capturing more complex patterns in water quality data.
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