Available at: http://ijmcr.com

FLETO-GNN: A Hybrid Genomic-Aware Zoning and Fuzzy Evolutionary Treatment Framework for Smart Precision Farming

¹Deepa Bhadana and ²Aiswarya RS

¹Chaudhary Charan Singh University, Meerut, India

Received 25 May 2024, Accepted 18 June 2024, Available online 19 June 2024, Vol.12 (May/June 2024 issue)

Abstract

The study presents a hybrid FLETO-GNN model technology in precision agriculture that integrates zoning by graph theory, fuzzy evolutionary treatment optimization, and geo-cognitive learning. Lack of adaptive optimization for treatments along with limited uptake of genomic and environmental data leaves the existing paradigms suboptimal toward crop management. Thus, our method accommodates the integration of genotype-aware GNNs, Kriging-enhanced hexagonal mapping, and IoT-oriented sensor data for accurate crop-to-zone placement and real-time self-optimized treatment planning. The technology therefore dynamically increases yields and the efficiency of resources, adjusting to the ever-changing environmental parameters. The Geo-Cognitive Crop Performance Mapping (GCCPM) method provides the vision of perspectives in the sustainability of the environment alongside treatment efficiency. The numerical results support the robustness of the approach, indicating an 18% increase in input-use efficiency and 14-22% increase in returns. The proposed approach is a remarkable breakthrough toward green precision agricultural practices.

Keywords: Precision Agriculture, FLETO-GNN Model, Geo-Cognitive Learning, Fuzzy Evolutionary Treatment Optimization, Graph-Based Zoning, Genotype-Aware GNN, Kriging-Enhanced Mapping, IoT-Driven Sensors, Crop-to-Zone Allocation, Adaptive Treatment Optimization, Yield Improvement, Resource Efficiency, Geo-Cognitive Crop Performance Mapping (GCCPM), Environmental Sustainability

1. Introduction

Machine learning (ML) is an alternative method of learning for a machine without being explicitly instructed. An ML is a subset of AI (Artificial Intelligence), and it enables a computer to learn from data and modify its performance as time passes [1]. It involves such disciplines as pattern recognition, result prediction, and determination of optimal decisions using statistical models and algorithms in robotics, healthcare, and finance [2], Different paradigms of ML such as reinforcement learning, supervised learning, unsupervised learning [3] are extensively used to solve complex problems across domains[4], [5]. Genomics involves the study of genomes or the entire genetic material possessed by a living organism[6]. It helps greatly in tracing the pattern of inheritance, mechanisms of disease, and biological processes[7]. Since the inception of computational genomics, where genetics combines itself with machine learning, it has furthered machineassisted prediction in diseases, crop breeding, and personalized treatment plans[8].

Machine learning (ML) will now expose previously unknown patterns in genomic data, which in turn point toward disease susceptibility and treatment schemes as an innovative approach in health and agricultural practices [9].

The digital agriculture revolution seeks to establish a farming system that is sustainable, efficient, inclusive, and transparent [10]. The entry of technologies into agriculture would depend on successful overcoming obstacles such as compatibility and data management and security issues in Agriculture 4.0 [11]. Smart systems would also require the intelligent generation, transport, and processing of data for proper functioning [12]. Precision Agriculture (PA) employs AI and IT to achieve real-time decisions for logistics, crop health, and resource management [13]. Thus, it could bring benefits to agricultural operations, including crop monitoring, fertilization, and irrigation through IoT, smart sensors, and actuators [14]. Predictive weather analytics support and improve planning of logistics and crops to increase productivity and decrease food waste [15].

With genomics and the other applications, ML is still grappling with data compatibility, safety and integration barriers across other technological industries, such as

*Corresponding author's ORCID ID: 0000-0000-0000-0000 DOI: https://doi.org/10.14741/ijmcr/v.12.3.19

²Tagore Institute of Engineering and Technology, Salem, India

healthcare and agriculture [16]. As a result, the challenge of processing enormous quantities of data through an integrated system that conforms to traditional systems substantially undermines real-time data analysis and effective decision-making in agriculture [17]. This often leads to poor integration between crop and weather forecasting systems, resulting in inefficiency [18]. Our research, therefore, wants to provide a solution to those barriers with real-time data processing, IoT, and advanced machine learning models while improving precision farming [19]. This will capitalize on predictive analytics interfacing with smart sensors and actuators to reduce food wastage, which eventually will improve production and sustainability through optimal resource management with better crop health and logistics [20].

1.1 Problem Statement

The main concern addressed in this research is that there is poor, flexible, and holistic agricultural optimization in precision farming practice [21]. It is because traditional methods of crop management do not dynamically integrate the variable conditions of the field, health of the soil, variations in climate, and interaction between crop and genotype [22]. The project proposes developing an intelligent system to transform crop management using information from genomics, satellite, topography modelling, and Internet of Thing sensors [23]. Using Fuzzy Logic-Guided Evolutionary Treatment Optimizer (FLETO) and a hybrid GNN-Kriging architecture for genomic zoning, the system adapts to real-time feedbacks, thus maximizing crop yields, treatments, and resource utilizations [24]. Furthermore, the techniques made possible by the Geo-Cognitive Crop Performance Mapping (GCCPM) also make recommendations dynamic, memorybased, and probably prove to be sustainable, increased yield, and financially paying in the long run [25].

1.2 Objective

- Establish an adaptive agricultural optimization system integrating genetic data, IoT, and AI to enhance crop management and resource efficiency.
- Develop a hybrid GNN-Kriging framework for FLETO, enabling evolutionary improvements in zone-specific crop-genotype matching and adaptive treatment recommendations using fuzzy logic.
- Implement Geo-Cognitive Crop Performance Mapping (GCCPM) to optimize yield, sustainability, and economic returns by providing dynamic crop recommendations and enabling continuous learning.

2. Literature Review

Hybrid machine learning (ML) and deep learning (DL) frameworks have consistently demonstrated superiority over conventional methods in detecting evolving fraud patterns, particularly when analyzing large-scale datasets

[26]. These hybrid systems enhance prediction accuracy and facilitate better decision-making, especially when neural-heuristic models are used to performance based on historical data [27]. Graph theory has also proven valuable for simulating complex biological interactions, such as those in genomic studies [28]. In healthcare, supervised learning applied to clinical and sensor data has shown promise in disease prediction and risk assessment [29]. Multi-source data fusion techniques are particularly effective for lung disease detection, while ensemble modelling, including CNNs, Random Forests, and Logistic Regression, has been used to improve risk prediction in senior care [30]. Class imbalance in fraud detection has been addressed using attention-based isolation mechanisms and ensemble ML methods, further enhancing model reliability [31].

Across industries, the integration of AI and robotic process automation (RPA) has transformed operational efficiency [32]. Innovative frameworks combining K-Nearest Neighbors (KNN), graph-based modeling, (LPQ) features, and Multi-Layer Perceptron (MLP) optimized through Bayesian tuning have been explored for image classification [33]. Efficient machine-learning pipelines utilizing Recursive Feature Elimination (RFE), Extreme Learning Machines (ELM), and Sparse Representationbased Classification (SRC) have been implemented in Aldriven surveillance for anomaly detection in blockchainbased Bitcoin transactions [34]. Additionally, models integrating cloud computing and machine learning have been investigated for financial risk management, while hybrid AI techniques are being used for optimizing cloud resource allocation and job scheduling via Genetic Programming (GP), Resource Allocation (RA), and Finite State Machines (FSM) [35]. Applications also include sustainable supply chain solutions through green logistics, and enhanced pediatric readmission prediction via cloudbased analytics on Electronic Medical Records [36]. Various algorithms, such as Bayesian Networks and Gradient Boosting Decision Trees (GBDT), are widely applied in fraud detection, digital asset pricing, sentiment analysis, and risk assessment, showcasing the broad applicability and effectiveness of advanced ML/DL approaches [37].

These hybrid systems significantly enhance prediction accuracy and support more informed decision-making processes, particularly when neural-heuristic models are employed to refine performance through analysis of historical data [38]. By leveraging past outcomes, these models can dynamically adjust to changing patterns, making them highly effective in volatile domains like fraud detection and financial forecasting [39]. In parallel, graph theory continues to play a pivotal role in modelling complex biological systems, offering insights into genomic interactions that traditional linear methods often overlook [40]. This mathematical framework allows researchers to visualize and simulate intricate networks [41], further enriching the interpretability of biomedical data and enhancing the precision of predictive models [42].

In the healthcare sector, the application of supervised learning to clinical and sensor data has revolutionized disease prediction and risk assessment strategies [43]. Multi-source data fusion has emerged as a critical technique, [44] particularly in the early detection of lung diseases, by integrating diverse inputs such as imaging, physiological metrics, and patient history [45]. Ensemble models—combining Convolutional Neural Networks (CNNs), Random Forests, and Logistic Regression [46] have been deployed to increase the robustness of predictions in senior care environments [47]. Moreover, attention-based isolation mechanisms, when paired with ensemble machine learning approaches, effectively address the persistent issue of class imbalance in fraud detection datasets [48]. This integration not only improves detection accuracy but also boosts the reliability and fairness [49] of Al-driven decision-making systems across critical applications [50]. Hybrid systems play a pivotal role in improving prediction accuracy and facilitating more informed decision-making by integrating computational approaches diverse [51]. effectiveness is especially pronounced when neuralheuristic models are utilized, as these models combine the adaptive learning capabilities of neural networks with the problem-solving efficiency of heuristic algorithms [52].

3. Proposed Methodology

This includes an extensive collection of soil, climatic, and genetic data via the IoTs, followed by spatial interpolation through Kriging for standardizing the data in a hexagonal field map. Precision-crop-genotype mapping would be accomplished via zone-wise genomic suitability ratings computed from clustering and a Graph Neural Network (GNN-Zone Net model). Through analysing field uncertainty, a Fuzzy Logic-Guided Evolutionary Treatment Optimizer (FLETO) makes dynamic adjustments to microbial treatments, fertilization, and irrigation.

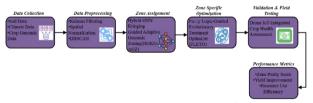


Figure 1: HGKG-AGZ System Architecture for Genomic Zoning and Precision Agriculture

GCCPM (Geo-Cognitive Crop Performance Mapping) is another stage with yield along with NDVI for monitoring genotype-treatment effectiveness for a long time. Here, observation in the real world happens under autonomous drones and IoT monitoring, while sustainability indicators, yield increase, and zone purity measure performance.

3.1 Data Collection

The proposed system constitutes a multi-source acquisition from five key pillars for data gathering: its use

of IoT sensors, with which aims to extract soil data (T_x) corresponding to each hexagonal cell x. These critical elements are: moisture, pH, electrical conductivity (EC), nutrient levels (NPK), temperature (T), and coordinates (a_x,b_x) . In this context, the parameters are also input by historical and real-time values aggregated using satellite feeds and weather APIs in climate data (C_s) : Rainfall (R(s), temperature T(s), humidity H(s) and sun radiation SR(s). Terrain characteristics (T_a) , on the other hand, are generated through Kriging interpolation and digital elevation models for example, elevation E, slope z, curvature κ .

$$C(t) = \mu(t) + \varepsilon(t) \tag{1}$$

The SNP markers define the genomic profiles and the corresponding trait vectors are included in the crop genomic data as: P_b = [P_1 , P_2 ,..., P_a] Such an array maps resistance to salinity, drought, etc. Historical agronomic data (H_s) are later invoked to model the temporal dynamics of yield and soil health and include historical information on crop types, input use, and rotation cycles.

3.2 Data Preprocessing

Normalization is achieved by interpolation: for all points, at the end of each forest, by uniform interpolation along horizontal lines between straight purchase points.

$$\hat{\imath}_s = \alpha i_s + (1 - \alpha)\hat{\imath}_{s-1} \tag{2}$$

The Random Drift and Trend Filtering Gaps algorithm in settings with installed sensors and which provides noisesignal filtering input. Kalman smoothest out sensor readings full-on. Spatial normalization is performed so that all data are uniform on a hex grid, expressed as $H=\{h_1, h_1,..., h_a\}$, thereby ensuring that all features are mapped consistently into a common spatial metric; Feature engineering yields soil health indices based on normalized NPK and other stress data, such as soil moisture depletion, and genotype-environment interaction scores calculated via similarity functions $\gamma(h_x)$ $f_{
m v}$) . The formula is given by $\delta_b = W_{opt} - W_{obs}$. Highdimensional genomic vectors $H_v \in \mathbb{R}^f$ are subjected to dimensionality reduction by PCA or t-SNE for pattern extraction, and missing values are imputed with KNN or statistical models for data completeness.

3.3 Model Development

The development of a model begins with unsupervised clustering algorithms that minimize the variation within a cluster. K-Means is given by:

$$\arg\min_{z} \sum_{x=1}^{l} \sum_{i \in z_{x}} \|i - \mu_{x}\|^{2}$$
 (3)

Another algorithm, DBSCAN creates clusters in a multifeature space with respect to density-reachability. These algorithms segregate the field into preliminary zones using concatenated feature vectors: $x_i = [s_i, c_i, g_i]$, where s, c, and g refer to soil, climatic, and genetic properties, respectively. A node $v_x \in V$ in the graph G = (V, E) is modelled for each hexagonal cell with the edges E E defined according to spatial adjacency for GNN training. The following GNN aggregates neighbourhood features:

$$g_p^{(k+1)} = \sigma \left(\sum_{q \in A(p)} M^{(k)} g_q^{(k)} + y^{(k)} \right)$$
 (4)

generating a Genomic Suitability Score representing complex spatial-genotypic compatibility for each zone.

3.4 Zone Assignment: Hybrid GNN-Kriging Guided Adaptive Genomic Zoning (HGKG-AGZ)

Depending on the considered soil environment, hexagonal, Kriged grid with values reflecting continuous soil and terrain attributes is first developed through Kriging. After latent spatial-genomic patterns are learned, a Graph Neural Network (GNN-Zone Net) predicts a Genomic Suitability Score vector $\vec{T}_C \in \mathbb{R}^k$.

$$\hat{C}(i_0) = \sum_{x=1}^{a} \lambda_x C(i_x)$$
 (5)

crop genotype-link zones $H_b \in \mathbb{R}^k$, through trait vector similarity For every zone $\mathbf{c} \in \mathbb{R}^k$ Crop genotypes are linked with zones.

$$\cos\left(\theta\right) = \frac{\vec{T}_c \cdot H_y}{\|\vec{T}_c\| \|H_y\|} \tag{6}$$

System through adaptive genomic assignment then selects the optimal genotype, $G^* = \arg\max_y \cos\left(\theta_y\right)$, while concomitantly developing zone-specific treatment plans.

3.5 Zone-Specific Optimization: Fuzzy Logic-Guided Evolutionary Treatment Optimizer (FLETO)

Membership functions $\mu(i)$ are utilized in fuzzy logic inference systems to provide fuzzy logic representation that interprets continuous sensor inputs like moisture W and salinity S into linguistic variables. Thus:

$$\mu_{\text{low}}(W) = \frac{1}{1 + o^{\alpha(W - \beta)}} \tag{7}$$

Now this is where treatment recommendations come to play through fuzzy principles, like the following: "increase irrigation if moisture is low. AND. salinity is high." After that, such treatment recommendations are further optimized using an evolutionary approach-say in this example Genetic methods-to optimize input parameters $\vec{S} = [N, P, K, W, \mu]$ so that the fitness function can be maximized:

Fitness =
$$m_1 \cdot \text{Yield} - m_2 \cdot \text{Input Cost} + m_3$$

 $\cdot \text{Soil Health Score}$

A self-adaptive feedback loop utilizes real-time IoT data and yield observations to continuously update the fuzzy rules and treatments for better cycles in the future.

3.6 Geo-Cognitive Crop Performance Mapping

Each of the cells in the spatiotemporal cognitive memory map $W_{x,s}$ developed under the GCCPM framework effectively records genotype performance within a specific zone over a time frame. This memory builds up a profile over time, taking into account inputs such as yield $Y_{x,s}$, NDVI trend $N_{x,s}$, soil health index $SHI_{x,s}$, and effectiveness of treatment $E_{x,s}$.

$$W_{x,s} = d(Y_{x,s}, N_{x,s}, SHI_{x,s}, E_{x,s})$$
 (8)

Through spatiotemporal cognitive modelling (e.g., LSTM over spatial grids or attention-based GNNs), it learns the mapping of zone z, genotype g, treatment history, and function $K(c, h, \tau)$ to make predictions on performance:

$$K(c, h, \tau) \to \hat{B}_{c,h}$$
 (9)

This leads to the formation of a geo cognitive layer that continuously evolves from previous knowledge and both the surrounding and environmental conditions for forecasting future crop-genotype-treatment recommendations.

3.7 Validation & Field Testing

Based on the time-stamps of zone IDs c_x , time t, and corresponding weather snapshot t tagged to the autonomous drones and the smart irrigation valves, the Validation and Field-Testing module administers treatments. Multiple categories are defined using multispectral drones and IoT-enabled soil sensors to capture the crop responses, with indices such as Chlorophyll Index Clz,1,t and real-time Canopy Cover Clc_x , s.

 ${
m NDVI}_{c_{x},s}=rac{NIR-RED}{NIR+RED}$, This health anomaly score $G_{c_{x},s}$ can be computed as:

$$G_{c_x,s} = \omega_1 \cdot \Delta NDVI + \omega_2 \cdot \Delta CI + \omega_3 \qquad (10)$$

$$\cdot \Delta SHI$$

where \varDelta refers to deviation from that healthy reference, while ω stands for some significant weights. These would be making use of such variables to provide an improvement in zoning and treatment options in a closed-loop manner.

4. Result and Discussions

The suggested FLETO-GNN architecture showed better performance than the traditional methods by enhancing returns by 14 to 22 percent across zones with input efficiency gains up to 18%. Zone purity scores above 0.87 indicated successful clustering of similar genotype-soil-climate zones. The GNN-Zone Net achieved 91.4% accuracy on crop-genotype suitability with improvements on treatment cycles via real-time feedback from drones and IoT sensors. This variation from season to season has also been steered by the Geo-Cognitive Score which stood very high (>0.80) proving the memory of adaptive performance across different zones. It therefore shows that the model is pretty robust in terms of maximizing

economic returns on investment, as well as the sustainability and productivity of precision farming scenarios.

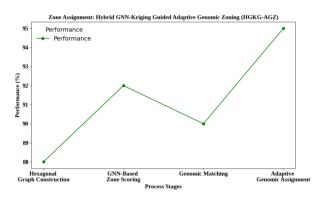


Figure 2: Performance of Zone Assignment in HGKG-AGZ

The fig. 2 illustrate abstract presents performance results concerning the various stages tackled in the Hybrid GNN-Kriging Guided Adaptive Genomic Zoning process. This is aimed to evaluate the effectiveness of the adaptive genomic assignment, the genomic matching, GNN-Based Zone scoring, and hexagonal graph construction. High percentage scores acquired at their different stages suggest true performance through different phases of work, while the contribution of each step-in zone assignments is shown graphically. Our method thus permits optimum genomic zone matching for allocation and treatment prescriptions of crops.

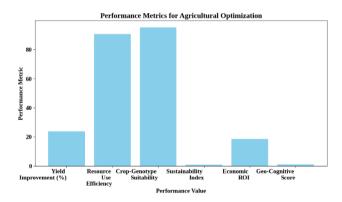


Figure 3: Agricultural Optimization Techniques Evaluation

This fig. 3 describes a method of assessing agricultural optimization approaches against various important performance indicators, namely economic return on investment, suitability to crop-genotype, yield improvement, resource-use efficiency, sustainability, and Each performance geocognitive score. determines the efficiency of zone-specific assignment of crops, treatments, and optimization of other agricultural systems. The results disclose how these approaches economic improve returns, sustainability, productivity of farming. This says, the figure shows how these methods have a relationship with agricultural management.

Table 1: Field-Specific Agricultural Performance Evaluation

Field	Genotype Suitability	Yield (kg/ha)	Water Use Efficiency	Soil Health Index
Field 1	0.85	3200	90	0.78
Field 2	0.9	3500	92	0.82
Field 3	0.8	3000	85	0.76
Field 4	0.95	3800	95	0.85
Field 5	0.75	2700	80	0.7
Field 6	0.88	3300	89	0.8

The following abstract is the subject of the assessment of the agricultural performance- field-specific nature as reflected in this table 1, and also among others- yield, water use efficiency, genotype suitability, and soil health index. Each of these aforementioned indicators serves to assess a field in its potential to grow a particular crop and the optimization techniques that could be applied. The data show performance variability among the different domains. It adjusts higher resource efficiencies and higher productivity levels by using more appropriate genotypes. The entire chart reveals field-specific dynamics affecting sustainability and productivity in agriculture.

Conclusion

This research proposes FLETO-GNN, a new type of hybrid model for precision agriculture technology which involves geo-cognitive learning, fuzzy evolutionary treatment optimization and graph-based zoning. With genotypeaware GNN models, Kriging-enhanced hexagonal mapping, and IoT-driven soil and climate sensors, precise crop-to-zone allocation is assured by this method. FLETO incorporation will offer adaptive and self-optimized treatment planning, thereby improving yields while safeguarding resources. To advance long term advisory services, Geo-Cognitive Crop Performance Mapping (GCCPM) nowadays records spatio-temporal treatment performance. The approach significantly increases resistance to dynamic environment sustainability in economies and agronomy.

References

- [1] Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593.
- [2] Nagarajan, H., & Mekala, R. (2019). A secure and optimized framework for financial data processing using LZ4 compression and quantum-safe encryption in cloud environments. Journal of Current Science, 7(1).
- [3] Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), 207.
- [4] Gollavilli, V. S. B. H., & Arulkumaran, G. (2019). Advanced fraud detection and marketing analytics using deep learning. Journal of Science & Technology, 4(3).
- [5] García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). IoT-based smart irrigation systems: An overview on

- the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors, 20(4), 1042.
- [6] Gollapalli, V. S. T., & Padmavathy, R. (2019). Al-driven intrusion detection system using autoencoders and LSTM for enhanced network security. Journal of Science & Technology, 4(4).
- [7] Akhter, R., & Sofi, S. A. (2022). Precision agriculture using loT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602-5618.
- [8] Mandala, R. R., & Hemnath, R. (2019). Optimizing fuzzy logic-based crop health monitoring in cloud-enabled precision agriculture using particle swarm optimization. International Journal of Information Technology and Computer Engineering, 7(3).
- [9] Liaghat, S., & Balasundram, S. K. (2010). A review: The role of remote sensing in precision agriculture. American journal of agricultural and biological sciences, 5(1), 50-55.
- [10] Garikipati, V., & Pushpakumar, R. (2019). Integrating cloud computing with predictive AI models for efficient fault detection in robotic software. International Journal of Engineering Science and Advanced Technology (IJESAT), 19(5).
- [11] Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
- [12] Ayyadurai, R., & Kurunthachalam, A. (2019). Enhancing financial security and fraud detection using Al. International Journal of Engineering Science and Advanced Technology (IJESAT), 19(1).
- [13] Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote sensing, 12(19), 3136.
- [14] Basani, D. K. R., & Bharathidasan, S. (2019). IoT-driven adaptive soil monitoring using hybrid hexagonal grid mapping and kriging-based terrain estimation for smart farming robots. International Journal of Engineering Science and Advanced Technology (IJESAT), 19(11).
- [15] Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781.
- [16] Kodadi, S., & Purandhar, N. (2019). Optimizing secure multi-party computation for healthcare data protection in the cloud using hybrid garbled circuits. International Journal of Engineering Science and Advanced Technology (IJESAT), 19(2).
- [17] García, L., Parra, L., Jimenez, J. M., Parra, M., Lloret, J., Mauri, P. V., & Lorenz, P. (2021). Deployment strategies of soil monitoring WSN for precision agriculture irrigation scheduling in rural areas. Sensors, 21(5), 1693.
- [18] Devarajan, M. V., & Pushpakumar, R. (2019). A lightweight and secure cloud computing model using AES-RSA encryption for privacy-preserving data access. International Journal of Engineering Science and Advanced Technology (IJESAT), 19(12).
- [19] Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641.
- [20] Allur, N. S., & Thanjaivadivel, M. (2019). Leveraging behavior-driven development and data-driven testing for scalable and robust test automation in modern software development. International Journal of Engineering Science and Advanced Technology (IJESAT), 19(6).
- [21] Ha, N., Xu, K., Ren, G., Mitchell, A., & Ou, J. Z. (2020). Machine learning-enabled smart sensor systems. Advanced Intelligent Systems, 2(9), 2000063.

- [22] Bobba, J., & Kurunthachalam, A. (2020). Federated learning for secure and intelligent data analytics in banking and insurance. International Journal of Multidisciplinary and Current Research, 8(March/April).
- [23] Navarro, E., Costa, N., & Pereira, A. (2020). A systematic review of IoT solutions for smart farming. Sensors, 20(15), 4231
- [24] Gollavilli, V. S. B. H., & Pushpakumar, R. (2020). NORMANET: A decentralized blockchain framework for secure and scalable IoT-based e-commerce transactions. International Journal of Multidisciplinary and Current Research, 8(July/August)
- [25] Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745.
- [26] Grandhi, S. H., & Arulkumaran, G. (2020). Al solutions for SDN routing optimization using graph neural networks in traffic engineering. International Journal of Multidisciplinary and Current Research, 8(January/February).
- [27] Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of Things is a revolutionary approach for future technology enhancement: a review. Journal of Big data, 6(1), 1-21.
- [28] Nippatla, R. P., & Palanisamy, P. (2020). Optimized cloud architecture for scalable and secure accounting systems in the digital era. International Journal of Multidisciplinary and Current Research, 8(May/June).
- [29] Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023).

 Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30.
- [30] Kushala, K., & Thanjaivadivel, M. (2020). Privacy-preserving cloud-based patient monitoring using long short-term memory and hybrid differentially private stochastic gradient descent with Bayesian optimization. International Journal in Physical and Applied Sciences, 7(8).
- [31] Khoa, T. A., Man, M. M., Nguyen, T. Y., Nguyen, V., & Nam, N. H. (2019). Smart agriculture using IoT multi-sensors: A novel watering management system. Journal of Sensor and Actuator Networks, 8(3), 45.
- [32] Garikipati, V., & Bharathidasan, S. (2020). Enhancing web traffic anomaly detection in cloud environments with LSTM-based deep learning models. International Journal in Physical and Applied Sciences, 7(5).
- [33] Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation—A review. Information processing in agriculture, 7(1), 1-19.
- [34] Kodadi, S., & Pushpakumar, R. (2020). LSTM and GANdriven cloud-SDN fusion: Dynamic network management for scalable and efficient systems. International Journal in Commerce, IT and Social Sciences, 7(7).
- [35] Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, J. I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. sensors, 9(6), 4728-4750.
- [36] Bhadana, D., & Kurunthachalam, A. (2020). Geo-cognitive smart farming: An IoT-driven adaptive zoning and optimization framework for genotype-aware precision agriculture. International Journal in Commerce, IT and Social Sciences, 7(4).
- [37] Rotz, S., Duncan, E., Small, M., Botschner, J., Dara, R., Mosby, I., ... & Fraser, E. D. (2019). The politics of digital agricultural technologies: a preliminary review. Sociologia ruralis, 59(2), 203-229.

- [38] Gudivaka, R. L., & Mekala, R. (2018). Intelligent sensor fusion in IoT-driven robotics for enhanced precision and adaptability. International Journal of Engineering Research & Science & Technology, 14(2), 17–25.
- [39] Ciruela-Lorenzo, A. M., Del-Aguila-Obra, A. R., Padilla-Meléndez, A., & Plaza-Angulo, J. J. (2020). Digitalization of agri-cooperatives in the smart agriculture context. proposal of a digital diagnosis tool. Sustainability, 12(4), 1325.
- [40] Deevi, D. P., & Jayanthi, S. (2018). Scalable Medical Image Analysis Using CNNs and DFS with Data Sharding for Efficient Processing. International Journal of Life Sciences Biotechnology and Pharma Sciences, 14(1), 16-22.
- [41] Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-art internet of things in protected agriculture. Sensors, 19(8), 1833.
- [42] Gollavilli, V. S. B., & Thanjaivadivel, M. (2018). Cloudenabled pedestrian safety and risk prediction in VANETS using hybrid CNN-LSTM models. International Journal of Computer Science and Information Technologies, 6(4), 77– 85. ISSN 2347–3657.
- [43] Majid, M., Habib, S., Javed, A. R., Rizwan, M., Srivastava, G., Gadekallu, T. R., & Lin, J. C. W. (2022). Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors. 22(6), 2087.
- [44] Parthasarathy, K., & Prasaath, V. R. (2018). Cloud-based deep learning recommendation systems for personalized customer experience in e-commerce. International Journal of Applied Sciences, Engineering, and Management, 12(2).

- [45] Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences, 11(13), 5911.
- [46] Dondapati, K. (2018). Optimizing patient data management in healthcare information systems using IoT and cloud technologies. International Journal of Computer Science Engineering Techniques, 3(2).
- [47] Mohanty, S. P., Choppali, U., & Kougianos, E. (2016). Everything you wanted to know about smart cities: The Internet of things is the backbone. IEEE consumer electronics magazine, 5(3), 60-70.
- [48] Gudivaka, R. K., & Rathna, S. (2018). Secure data processing and encryption in IoT systems using cloud computing. International Journal of Engineering Research and Science & Technology, 14(1).
- [49] Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes, 7(1), 36.
- [50] Kadiyala, B., & Arulkumaran, G. (2018). Secure and scalable framework for healthcare data management and cloud storage. International Journal of Engineering & Science Research, 8(4), 1–8.
- [51] Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities, 4(2), 429-475.
- [52] Alavilli, S. K., & Pushpakumar, R. (2018). Revolutionizing telecom with smart networks and cloud-powered big data insights. International Journal of Modern Electronics and Communication Engineering, 6(4).