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Abstract

The study presents a hybrid FLETO-GNN model technology in precision agriculture that integrates zoning by graph
theory, fuzzy evolutionary treatment optimization, and geo-cognitive learning. Lack of adaptive optimization for
treatments along with limited uptake of genomic and environmental data leaves the existing paradigms suboptimal
toward crop management. Thus, our method accommodates the integration of genotype-aware GNNSs, Kriging-
enhanced hexagonal mapping, and loT-oriented sensor data for accurate crop-to-zone placement and real-time self-
optimized treatment planning. The technology therefore dynamically increases yields and the efficiency of resources,
adjusting to the ever-changing environmental parameters. The Geo-Cognitive Crop Performance Mapping (GCCPM)
method provides the vision of perspectives in the sustainability of the environment alongside treatment efficiency. The
numerical results support the robustness of the approach, indicating an 18% increase in input-use efficiency and 14-22%
increase in returns. The proposed approach is a remarkable breakthrough toward green precision agricultural practices.
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1. Introduction

Machine learning (ML) is an alternative method of
learning for a machine without being explicitly instructed.
An ML is a subset of Al (Artificial Intelligence), and it
enables a computer to learn from data and modify its
performance as time passes [1]. It involves such
disciplines as pattern recognition, result prediction, and
determination of optimal decisions using statistical
models and algorithms in robotics, healthcare, and
finance [2], Different paradigms of ML such as
reinforcement learning, supervised learning, and
unsupervised learning [3] are extensively used to solve
complex problems across domains{4], [5]. Genomics
involves the study of genomes or the entire genetic
material possessed by a living organism[6]. It helps greatly
in tracing the pattern of inheritance, mechanisms of
disease, and biological processes[7]. Since the inception
of computational genomics, where genetics combines
itself with machine learning, it has furthered machine-
assisted prediction in diseases, crop breeding, and
personalized treatment plans[8].
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Machine learning (ML) will now expose previously
unknown patterns in genomic data, which in turn point
toward disease susceptibility and treatment schemes as
an innovative approach in health and agricultural
practices [9].

The digital agriculture revolution seeks to establish a
farming system that is sustainable, efficient, inclusive, and
transparent [10]. The entry of technologies into
agriculture would depend on successful overcoming
obstacles such as compatibility and data management
and security issues in Agriculture 4.0 [11]. Smart systems
would also require the intelligent generation, transport,
and processing of data for proper functioning [12].
Precision Agriculture (PA) employs Al and IT to achieve
real-time decisions for logistics, crop health, and resource
management [13]. Thus, it could bring benefits to
agricultural operations, including crop monitoring,
fertilization, and irrigation through loT, smart sensors,
and actuators [14]. Predictive weather analytics support
and improve planning of logistics and crops to increase
productivity and decrease food waste [15].

With genomics and the other applications, ML is still
grappling with data compatibility, safety and integration
barriers across other technological industries, such as
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healthcare and agriculture [16]. As a result, the challenge
of processing enormous quantities of data through an
integrated system that conforms to traditional systems
substantially undermines real-time data analysis and
effective decision-making in agriculture [17]. This often
leads to poor integration between crop and weather
forecasting systems, resulting in inefficiency [18]. Our
research, therefore, wants to provide a solution to those
barriers with real-time data processing, loT, and advanced
machine learning models while improving precision
farming [19]. This will capitalize on predictive analytics
interfacing with smart sensors and actuators to reduce
food wastage, which eventually will improve production
and sustainability through optimal resource management
with better crop health and logistics [20].

1.1 Problem Statement

The main concern addressed in this research is that there
is poor, flexible, and holistic agricultural optimization in
precision farming practice [21]. It is because traditional
methods of crop management do not dynamically
integrate the variable conditions of the field, health of the
soil, variations in climate, and interaction between crop
and genotype [22]. The project proposes developing an
intelligent system to transform crop management using
information from genomics, satellite, topography
modelling, and Internet of Thing sensors [23]. Using Fuzzy
Logic-Guided Evolutionary Treatment Optimizer (FLETO)
and a hybrid GNN-Kriging architecture for genomic
zoning, the system adapts to real-time feedbacks, thus
maximizing crop vyields, treatments, and resource
utilizations [24]. Furthermore, the techniques made
possible by the Geo-Cognitive Crop Performance Mapping
(GCCPM) also make recommendations dynamic, memory-
based, and probably prove to be sustainable, increased
yield, and financially paying in the long run [25].

1.2 Objective

e Establish an adaptive agricultural optimization
system integrating genetic data, loT, and Al to
enhance crop management and resource efficiency.

o Develop a hybrid GNN-Kriging framework for FLETO,
enabling evolutionary improvements in zone-specific
crop-genotype matching and adaptive treatment
recommendations using fuzzy logic.

e Implement Geo-Cognitive Crop  Performance
Mapping (GCCPM) to optimize yield, sustainability,
and economic returns by providing dynamic crop
recommendations and enabling continuous learning.

2. Literature Review

Hybrid machine learning (ML) and deep learning (DL)
frameworks have consistently demonstrated superiority
over conventional methods in detecting evolving fraud
patterns, particularly when analyzing large-scale datasets
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[26]. These hybrid systems enhance prediction accuracy
and facilitate better decision-making, especially when
neural-heuristic  models are wused to optimize
performance based on historical data [27]. Graph theory
has also proven valuable for simulating complex biological
interactions, such as those in genomic studies [28]. In
healthcare, supervised learning applied to clinical and
sensor data has shown promise in disease prediction and
risk assessment [29]. Multi-source data fusion techniques
are particularly effective for lung disease detection, while
ensemble modelling, including CNNs, Random Forests,
and Logistic Regression, has been used to improve risk
prediction in senior care [30]. Class imbalance in fraud
detection has been addressed using attention-based
isolation mechanisms and ensemble ML methods, further
enhancing model reliability [31].

Across industries, the integration of Al and robotic
process automation (RPA) has transformed operational
efficiency [32]. Innovative frameworks combining K-
Nearest Neighbors (KNN), graph-based modeling, (LPQ)
features, and Multi-Layer Perceptron (MLP) optimized
through Bayesian tuning have been explored for image
classification [33]. Efficient machine-learning pipelines
utilizing Recursive Feature Elimination (RFE), Extreme
Learning Machines (ELM), and Sparse Representation-
based Classification (SRC) have been implemented in Al-
driven surveillance for anomaly detection in blockchain-
based Bitcoin transactions [34]. Additionally, models
integrating cloud computing and machine learning have
been investigated for financial risk management, while
hybrid Al techniques are being used for optimizing cloud
resource allocation and job scheduling via Genetic
Programming (GP), Resource Allocation (RA), and Finite
State Machines (FSM) [35]. Applications also include
sustainable supply chain solutions through green logistics,
and enhanced pediatric readmission prediction via cloud-
based analytics on Electronic Medical Records [36].
Various algorithms, such as Bayesian Networks and
Gradient Boosting Decision Trees (GBDT), are widely
applied in fraud detection, digital asset pricing, sentiment
analysis, and risk assessment, showcasing the broad
applicability and effectiveness of advanced ML/DL
approaches [37].

These hybrid systems significantly enhance prediction
accuracy and support more informed decision-making
processes, particularly when neural-heuristic models are
employed to refine performance through analysis of
historical data [38]. By leveraging past outcomes, these
models can dynamically adjust to changing patterns,
making them highly effective in volatile domains like
fraud detection and financial forecasting [39]. In parallel,
graph theory continues to play a pivotal role in modelling
complex biological systems, offering insights into genomic
interactions that traditional linear methods often
overlook [40]. This mathematical framework allows
researchers to visualize and simulate intricate networks
[41], further enriching the interpretability of biomedical
data and enhancing the precision of predictive models
[42].
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In the healthcare sector, the application of supervised
learning to clinical and sensor data has revolutionized
disease prediction and risk assessment strategies [43].
Multi-source data fusion has emerged as a critical
technique, [44] particularly in the early detection of lung
diseases, by integrating diverse inputs such as imaging,
physiological metrics, and patient history [45]. Ensemble
models—combining Convolutional Neural Networks
(CNNs), Random Forests, and Logistic Regression [46]—
have been deployed to increase the robustness of
predictions in senior care environments [47]. Moreover,
attention-based isolation mechanisms, when paired with
ensemble machine learning approaches, effectively
address the persistent issue of class imbalance in fraud
detection datasets [48]. This integration not only
improves detection accuracy but also boosts the
reliability and fairness [49] of Al-driven decision-making
systems across critical applications [50]. Hybrid systems
play a pivotal role in improving prediction accuracy and
facilitating more informed decision-making by integrating
diverse  computational approaches [51]. Their
effectiveness is especially pronounced when neural-
heuristic models are utilized, as these models combine
the adaptive learning capabilities of neural networks with
the problem-solving efficiency of heuristic algorithms
[52].

3. Proposed Methodology

This includes an extensive collection of soil, climatic, and
genetic data via the 10Ts, followed by spatial interpolation
through Kriging for standardizing the data in a hexagonal
field map. Precision-crop-genotype mapping would be
accomplished via zone-wise genomic suitability ratings
computed from clustering and a Graph Neural Network
(GNN-Zone Net model). Through analysing field
uncertainty, a Fuzzy Logic-Guided Evolutionary Treatment
Optimizer (FLETO) makes dynamic adjustments to
microbial treatments, fertilization, and irrigation.

Zone Specific Validation & Field

Data Collection Data Preprocessing

Zone Assignment Optimization Testing

Figure 1: HGKG-AGZ System Architecture for Genomic
Zoning and Precision Agriculture

GCCPM (Geo-Cognitive Crop Performance Mapping) is
another stage with yield along with NDVI for monitoring
genotype-treatment effectiveness for a long time. Here,
observation in the real world happens under autonomous
drones and loT monitoring, while sustainability indicators,
yield increase, and zone purity measure performance.

3.1 Data Collection

The proposed system constitutes a multi-source
acquisition from five key pillars for data gathering: its use
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of 10T sensors, with which aims to extract soil data (T})
corresponding to each hexagonal cell x. These critical
elements are: moisture, pH, electrical conductivity (EC),
nutrient levels (NPK), temperature (T), and coordinates
(ay, by). In this context, the parameters are also input by
historical and real-time values aggregated using satellite
feeds and weather APIs in climate data (Cs): Rainfall (R(s),
temperature T(s), humidity H(s) and sun radiation SR(s).
Terrain characteristics (T,), on the other hand, are
generated through Kriging interpolation and digital
elevation models for example, elevation E, slope z,
curvature k.

C(t) = u(®) +(0) (1)

The SNP markers define the genomic profiles and the
corresponding trait vectors are included in the crop
genomic data as: Py= [P, P,,.., P;] Such an array maps
resistance to salinity, drought, etc. Historical agronomic
data (Hg) are later invoked to model the temporal
dynamics of yield and soil health and include historical
information on crop types, input use, and rotation cycles.

3.2 Data Preprocessing

Normalization is achieved by interpolation: for all points,
at the end of each forest, by uniform interpolation along
horizontal lines between straight purchase points.

s =ai;+(1—a)l_; (2)

The Random Drift and Trend Filtering Gaps algorithm in
settings with installed sensors and which provides noise-
signal filtering input. Kalman smoothest out sensor
readings full-on. Spatial normalization is performed so
that all data are uniform on a hex grid, expressed as
H={hy, h4,..., hy}, thereby ensuring that all features are
mapped consistently into a common spatial metric;
Feature engineering yields soil health indices based on
normalized NPK and other stress data, such as soil
moisture  depletion, and  genotype-environment
interaction scores calculated via similarity functions y(h,,
fy) - The formula is given by 8, = Wy, — Wop,. High-
dimensional genomic vectors H, € R/ are subjected to
dimensionality reduction by PCA or t-SNE for pattern
extraction, and missing values are imputed with KNN or
statistical models for data completeness.

3.3 Model Development

The development of a model begins with unsupervised
clustering algorithms that minimize the variation within a
cluster. K-Means is given by:
: (3)
argmin ) " i = P
z x=1 i€z,
Another algorithm, DBSCAN creates clusters in a multi-
feature space with respect to density-reachability. These
algorithms segregate the field into preliminary zones
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using concatenated feature vectors: Xx; = [s;, ¢, gil,
where s, ¢, and g refer to soil, climatic, and genetic
properties, respectively. A node v, € V in the graph G =
(V, E) is modelled for each hexagonal cell with the edges
E E defined according to spatial adjacency for GNN
training. The following GNN aggregates neighbourhood
features:

(k+1) (x) @
+
» =0 z M(k)gq +y(k)
qeA(p)
generating a Genomic Suitability Score representing

complex spatial-genotypic compatibility for each zone.

3.4 Zone Assignment: Hybrid GNN-Kriging Guided
Adaptive Genomic Zoning (HGKG-AGZ)

Depending on the considered soil environment,
hexagonal, Kriged grid with values reflecting continuous
soil and terrain attributes is first developed through
Kriging. After latent spatial-genomic patterns are learned,
a Graph Neural Network (GNN-Zone Net) predicts a
Genomic Suitability Score vector T,ER¥,
. . (5)
C(ip) =

x=1
crop genotype-link zones H, € R¥ , through trait vector
similarity For every zone c ER¥ Crop genotypes are linked
with zones.

AxC(ix)

T.-H (6)
cos (9)=_,C7y
eIl |
System through adaptive genomic assignment then

selects the optimal genotype, G* = arg maxcos (Hy),
y

while concomitantly developing zone-specific treatment
plans.

3.5 Zone-Specific Optimization: Fuzzy Logic-Guided
Evolutionary Treatment Optimizer (FLETO)

Membership functions u(i) are utilized in fuzzy logic
inference systems to provide fuzzy logic representation
that interprets continuous sensor inputs like moisture W
and salinity S into linguistic variables. Thus:

_ (7)
tow (W) = 15 0av P

Now this is where treatment recommendations come to
play through fuzzy principles, like the following: "increase
irrigation if moisture is low. AND. salinity is high." After
that, such treatment recommendations are further
optimized using an evolutionary approach-say in this
example Genetic methods-to optimize input parameters

S= [N,P,K,W,u] so that the fitness function can be
maximized:
Fitness = m4 - Yield —m, - Input Cost + m;
- Soil Health Score
A self-adaptive feedback loop utilizes real-time IoT data
and vyield observations to continuously update the fuzzy
rules and treatments for better cycles in the future.
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3.6 Geo-Cognitive Crop Performance Mapping

Each of the cells in the spatiotemporal cognitive memory
map W, developed under the GCCPM framework
effectively records genotype performance within a
specific zone over a time frame. This memory builds up a
profile over time, taking into account inputs such as yield
Y,s, NDVI trend N, soil health index SHI,;, and
effectiveness of treatment E, ;.

Wys = d(yx,Sl Nys) SHIy s, Ex,s) (8)
Through spatiotemporal cognitive modelling (e.g., LSTM
over spatial grids or attention-based GNNs), it learns the
mapping of zone z, genotype g, treatment history, and
function K (c, h, T) to make predictions on performance:

K(c,h,7) > B, (9)

This leads to the formation of a geo cognitive layer that
continuously evolves from previous knowledge and both
the surrounding and environmental conditions for
forecasting future crop-genotype-treatment
recommendations.

3.7 Validation & Field Testing

Based on the time-stamps of zone IDs c,, time t, and
corresponding weather snapshot t tagged to the
autonomous drones and the smart irrigation valves, the
Validation and Field-Testing module administers
treatments. Multiple categories are defined using
multispectral drones and loT-enabled soil sensors to
capture the crop responses, with indices such as
Chlorophyll Index Clz,1,t and real-time Canopy Cover

Clcy,s.
NIR—RED
NDVI, ( = ————,
X NIR+RED

be computed as:

G, s = wy - ANDVI + w, - ACI + w5

-ASHI

where A refers to deviation from that healthy reference,
while w stands for some significant weights. These would
be making use of such variables to provide an
improvement in zoning and treatment options in a closed-
loop manner.

This health anomaly score G, ¢ can

(10)

Cx,S

4, Result and Discussions

The suggested FLETO-GNN architecture showed better
performance than the traditional methods by enhancing
returns by 14 to 22 percent across zones with input
efficiency gains up to 18%. Zone purity scores above 0.87
indicated successful clustering of similar genotype-soil-
climate zones. The GNN-Zone Net achieved 91.4%
accuracy on crop-genotype suitability with improvements
on treatment cycles via real-time feedback from drones
and loT sensors. This variation from season to season has
also been steered by the Geo-Cognitive Score which
stood very high (>0.80) proving the memory of adaptive
performance across different zones. It therefore shows
that the model is pretty robust in terms of maximizing
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economic returns on investment, as well as the
sustainability and productivity of precision farming
scenarios.

Zone Assignment: Hybrid GNN-Kriging Guided Adaptive Genomic Zoning (HGKG-AGZ)

9% Performance
—e— Performance

Performance (%)

GNN-Based
Zone Scoring
Process Stages

Hexagonal
Graph Construction

Genomic Matching Adaptive
Genomic Assignment

Figure 2: Performance of Zone Assignment in HGKG-AGZ

The fig. 2 illustrate abstract presents performance results
concerning the various stages tackled in the Hybrid GNN-
Kriging Guided Adaptive Genomic Zoning process. This is
aimed to evaluate the effectiveness of the adaptive
genomic assignment, the genomic matching, GNN-Based
Zone scoring, and hexagonal graph construction. High
percentage scores acquired at their different stages
suggest true performance through different phases of
work, while the contribution of each step-in zone
assignments is shown graphically. Our method thus
permits optimum genomic zone matching for allocation
and treatment prescriptions of crops.

Performance Metrics for Agricultural Optimization

g

&

Performance Metric

Yield Resource Crop-Genotype  Sustainability Economic  Geo-Cognitive
Improvement (%) Use Suitability Index ROI Score
Efficiency

Performance Value

Figure 3: Agricultural Optimization Techniques Evaluation

This fig. 3 describes a method of assessing agricultural
optimization approaches against various important
performance indicators, namely economic return on
investment,  suitability to crop-genotype, yield
improvement, resource-use efficiency, sustainability, and
geocognitive score. Each performance indicator
determines the efficiency of zone-specific assignment of
crops, treatments, and optimization of other agricultural
systems. The results disclose how these approaches
improve  economic  returns, sustainability, and
productivity of farming. This says, the figure shows how
these methods have a relationship with agricultural
management.
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Table 1: Field-Specific Agricultural Performance

Evaluation

. Genotype Yield Water Use Soil
Field Suitability (kg/ha) Efficiency Health
Index

Field 1 0.85 3200 90 0.78

Field 2 0.9 3500 92 0.82

Field 3 0.8 3000 85 0.76

Field 4 0.95 3800 95 0.85

Field 5 0.75 2700 80 0.7

Field 6 0.88 3300 89 0.8

The following abstract is the subject of the assessment of
the agricultural performance- field-specific nature as
reflected in this table 1, and also among others- yield,
water use efficiency, genotype suitability, and soil health
index. Each of these aforementioned indicators serves to
assess a field in its potential to grow a particular crop and
the optimization techniques that could be applied. The
data show performance variability among the different
domains. It adjusts higher resource efficiencies and higher
productivity levels by using more appropriate genotypes.
The entire chart reveals field-specific dynamics affecting
sustainability and productivity in agriculture.

Conclusion

This research proposes FLETO-GNN, a new type of hybrid
model for precision agriculture technology which involves
geo-cognitive learning, fuzzy evolutionary treatment
optimization and graph-based zoning. With genotype-
aware GNN models, Kriging-enhanced hexagonal
mapping, and loT-driven soil and climate sensors, precise
crop-to-zone allocation is assured by this method. FLETO
incorporation will offer adaptive and self-optimized
treatment planning, thereby improving vyields while
safeguarding resources. To advance long term advisory
services, Geo-Cognitive Crop Performance Mapping
(GCCPM) nowadays records spatio-temporal treatment
performance. The approach significantly increases
resistance to dynamic environment sustainability in
economies and agronomy.
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