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Abstract  
   
The study presents a hybrid FLETO-GNN model technology in precision agriculture that integrates zoning by graph 
theory, fuzzy evolutionary treatment optimization, and geo-cognitive learning. Lack of adaptive optimization for 
treatments along with limited uptake of genomic and environmental data leaves the existing paradigms suboptimal 
toward crop management. Thus, our method accommodates the integration of genotype-aware GNNs, Kriging-
enhanced hexagonal mapping, and IoT-oriented sensor data for accurate crop-to-zone placement and real-time self-
optimized treatment planning. The technology therefore dynamically increases yields and the efficiency of resources, 
adjusting to the ever-changing environmental parameters. The Geo-Cognitive Crop Performance Mapping (GCCPM) 
method provides the vision of perspectives in the sustainability of the environment alongside treatment efficiency. The 
numerical results support the robustness of the approach, indicating an 18% increase in input-use efficiency and 14-22% 
increase in returns. The proposed approach is a remarkable breakthrough toward green precision agricultural practices. 
 
Keywords: Precision Agriculture, FLETO-GNN Model, Geo-Cognitive Learning, Fuzzy Evolutionary Treatment 
Optimization, Graph-Based Zoning, Genotype-Aware GNN, Kriging-Enhanced Mapping, IoT-Driven Sensors, Crop-to-Zone 
Allocation, Adaptive Treatment Optimization, Yield Improvement, Resource Efficiency, Geo-Cognitive Crop Performance 
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1. Introduction 
 
Machine learning (ML) is an alternative method of 
learning for a machine without being explicitly instructed. 
An ML is a subset of AI (Artificial Intelligence), and it 
enables a computer to learn from data and modify its 
performance as time passes [1]. It involves such 
disciplines as pattern recognition, result prediction, and 
determination of optimal decisions using statistical 
models and algorithms in robotics, healthcare, and 
finance [2], Different paradigms of ML such as 
reinforcement learning, supervised learning, and 
unsupervised learning [3] are extensively used to solve 
complex problems across domains[4], [5]. Genomics 
involves the study of genomes or the entire genetic 
material possessed by a living organism[6]. It helps greatly 
in tracing the pattern of inheritance, mechanisms of 
disease, and biological processes[7]. Since the inception 
of computational genomics, where genetics combines 
itself with machine learning, it has furthered machine-
assisted prediction in diseases, crop breeding, and 
personalized treatment plans[8].  
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Machine learning (ML) will now expose previously 
unknown patterns in genomic data, which in turn point 
toward disease susceptibility and treatment schemes as 
an innovative approach in health and agricultural 
practices [9]. 

The digital agriculture revolution seeks to establish a 
farming system that is sustainable, efficient, inclusive, and 
transparent [10]. The entry of technologies into 
agriculture would depend on successful overcoming 
obstacles such as compatibility and data management 
and security issues in Agriculture 4.0 [11]. Smart systems 
would also require the intelligent generation, transport, 
and processing of data for proper functioning [12]. 
Precision Agriculture (PA) employs AI and IT to achieve 
real-time decisions for logistics, crop health, and resource 
management [13]. Thus, it could bring benefits to 
agricultural operations, including crop monitoring, 
fertilization, and irrigation through IoT, smart sensors, 
and actuators [14]. Predictive weather analytics support 
and improve planning of logistics and crops to increase 
productivity and decrease food waste [15]. 

 

With genomics and the other applications, ML is still 
grappling with data compatibility, safety and integration 
barriers across other technological industries, such as 

https://doi.org/10.14741/ijmcr/v.12.3.1
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healthcare and agriculture [16]. As a result, the challenge 
of processing enormous quantities of data through an 
integrated system that conforms to traditional systems 
substantially undermines real-time data analysis and 
effective decision-making in agriculture [17]. This often 
leads to poor integration between crop and weather 
forecasting systems, resulting in inefficiency [18]. Our 
research, therefore, wants to provide a solution to those 
barriers with real-time data processing, IoT, and advanced 
machine learning models while improving precision 
farming [19]. This will capitalize on predictive analytics 
interfacing with smart sensors and actuators to reduce 
food wastage, which eventually will improve production 
and sustainability through optimal resource management 
with better crop health and logistics [20]. 
 
1.1 Problem Statement 
 
The main concern addressed in this research is that there 
is poor, flexible, and holistic agricultural optimization in 
precision farming practice [21]. It is because traditional 
methods of crop management do not dynamically 
integrate the variable conditions of the field, health of the 
soil, variations in climate, and interaction between crop 
and genotype [22]. The project proposes developing an 
intelligent system to transform crop management using 
information from genomics, satellite, topography 
modelling, and Internet of Thing sensors [23]. Using Fuzzy 
Logic-Guided Evolutionary Treatment Optimizer (FLETO) 
and a hybrid GNN-Kriging architecture for genomic 
zoning, the system adapts to real-time feedbacks, thus 
maximizing crop yields, treatments, and resource 
utilizations [24]. Furthermore, the techniques made 
possible by the Geo-Cognitive Crop Performance Mapping 
(GCCPM) also make recommendations dynamic, memory-
based, and probably prove to be sustainable, increased 
yield, and financially paying in the long run [25]. 
 
1.2 Objective 
 

• Establish an adaptive agricultural optimization 
system integrating genetic data, IoT, and AI to 
enhance crop management and resource efficiency. 

• Develop a hybrid GNN-Kriging framework for FLETO, 
enabling evolutionary improvements in zone-specific 
crop-genotype matching and adaptive treatment 
recommendations using fuzzy logic. 

• Implement Geo-Cognitive Crop Performance 
Mapping (GCCPM) to optimize yield, sustainability, 
and economic returns by providing dynamic crop 
recommendations and enabling continuous learning. 

 

2. Literature Review 
 
Hybrid machine learning (ML) and deep learning (DL) 
frameworks have consistently demonstrated superiority 
over conventional methods in detecting evolving fraud 
patterns, particularly when analyzing large-scale datasets 

[26]. These hybrid systems enhance prediction accuracy 
and facilitate better decision-making, especially when 
neural-heuristic models are used to optimize 
performance based on historical data [27]. Graph theory 
has also proven valuable for simulating complex biological 
interactions, such as those in genomic studies [28]. In 
healthcare, supervised learning applied to clinical and 
sensor data has shown promise in disease prediction and 
risk assessment [29]. Multi-source data fusion techniques 
are particularly effective for lung disease detection, while 
ensemble modelling, including CNNs, Random Forests, 
and Logistic Regression, has been used to improve risk 
prediction in senior care [30]. Class imbalance in fraud 
detection has been addressed using attention-based 
isolation mechanisms and ensemble ML methods, further 
enhancing model reliability [31]. 

Across industries, the integration of AI and robotic 
process automation (RPA) has transformed operational 
efficiency [32]. Innovative frameworks combining K-
Nearest Neighbors (KNN), graph-based modeling, (LPQ) 
features, and Multi-Layer Perceptron (MLP) optimized 
through Bayesian tuning have been explored for image 
classification [33]. Efficient machine-learning pipelines 
utilizing Recursive Feature Elimination (RFE), Extreme 
Learning Machines (ELM), and Sparse Representation-
based Classification (SRC) have been implemented in AI-
driven surveillance for anomaly detection in blockchain-
based Bitcoin transactions [34]. Additionally, models 
integrating cloud computing and machine learning have 
been investigated for financial risk management, while 
hybrid AI techniques are being used for optimizing cloud 
resource allocation and job scheduling via Genetic 
Programming (GP), Resource Allocation (RA), and Finite 
State Machines (FSM) [35]. Applications also include 
sustainable supply chain solutions through green logistics, 
and enhanced pediatric readmission prediction via cloud-
based analytics on Electronic Medical Records [36]. 
Various algorithms, such as Bayesian Networks and 
Gradient Boosting Decision Trees (GBDT), are widely 
applied in fraud detection, digital asset pricing, sentiment 
analysis, and risk assessment, showcasing the broad 
applicability and effectiveness of advanced ML/DL 
approaches [37]. 

These hybrid systems significantly enhance prediction 
accuracy and support more informed decision-making 
processes, particularly when neural-heuristic models are 
employed to refine performance through analysis of 
historical data [38]. By leveraging past outcomes, these 
models can dynamically adjust to changing patterns, 
making them highly effective in volatile domains like 
fraud detection and financial forecasting [39]. In parallel, 
graph theory continues to play a pivotal role in modelling 
complex biological systems, offering insights into genomic 
interactions that traditional linear methods often 
overlook [40]. This mathematical framework allows 
researchers to visualize and simulate intricate networks 
[41], further enriching the interpretability of biomedical 
data and enhancing the precision of predictive models 
[42]. 
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In the healthcare sector, the application of supervised 
learning to clinical and sensor data has revolutionized 
disease prediction and risk assessment strategies [43]. 
Multi-source data fusion has emerged as a critical 
technique, [44] particularly in the early detection of lung 
diseases, by integrating diverse inputs such as imaging, 
physiological metrics, and patient history [45]. Ensemble 
models—combining Convolutional Neural Networks 
(CNNs), Random Forests, and Logistic Regression [46]—
have been deployed to increase the robustness of 
predictions in senior care environments [47]. Moreover, 
attention-based isolation mechanisms, when paired with 
ensemble machine learning approaches, effectively 
address the persistent issue of class imbalance in fraud 
detection datasets [48]. This integration not only 
improves detection accuracy but also boosts the 
reliability and fairness [49] of AI-driven decision-making 
systems across critical applications [50]. Hybrid systems 
play a pivotal role in improving prediction accuracy and 
facilitating more informed decision-making by integrating 
diverse computational approaches [51]. Their 
effectiveness is especially pronounced when neural-
heuristic models are utilized, as these models combine 
the adaptive learning capabilities of neural networks with 
the problem-solving efficiency of heuristic algorithms 
[52].  
 
3. Proposed Methodology 
 
This includes an extensive collection of soil, climatic, and 
genetic data via the IoTs, followed by spatial interpolation 
through Kriging for standardizing the data in a hexagonal 
field map. Precision-crop-genotype mapping would be 
accomplished via zone-wise genomic suitability ratings 
computed from clustering and a Graph Neural Network 
(GNN-Zone Net model). Through analysing field 
uncertainty, a Fuzzy Logic-Guided Evolutionary Treatment 
Optimizer (FLETO) makes dynamic adjustments to 
microbial treatments, fertilization, and irrigation.  
 

 
Figure 1: HGKG-AGZ System Architecture for Genomic 

Zoning and Precision Agriculture 
 

GCCPM (Geo-Cognitive Crop Performance Mapping) is 
another stage with yield along with NDVI for monitoring 
genotype-treatment effectiveness for a long time. Here, 
observation in the real world happens under autonomous 
drones and IoT monitoring, while sustainability indicators, 
yield increase, and zone purity measure performance. 
 

3.1 Data Collection 
 

The proposed system constitutes a multi-source 
acquisition from five key pillars for data gathering: its use 

of IoT sensors, with which aims to extract soil data (𝑇𝑥) 
corresponding to each hexagonal cell 𝑥. These critical 
elements are: moisture, pH, electrical conductivity (EC), 
nutrient levels (NPK), temperature (T), and coordinates 
(𝑎𝑥 , 𝑏𝑥). In this context, the parameters are also input by 
historical and real-time values aggregated using satellite 
feeds and weather APIs in climate data (𝐶𝑠): Rainfall (R(s), 
temperature T(s), humidity 𝐻(𝑠) and sun radiation SR(s). 
Terrain characteristics (𝑇𝑎), on the other hand, are 
generated through Kriging interpolation and digital 
elevation models for example, elevation 𝐸, slope 𝑧, 
curvature 𝜅. 
 𝐶(𝑡) = 𝜇(𝑡) + 𝜀(𝑡) (1) 
 
The SNP markers define the genomic profiles and the 
corresponding trait vectors are included in the crop 
genomic data as: 𝑃𝑏= [𝑃1, 𝑃2,.., 𝑃𝑎] Such an array maps 
resistance to salinity, drought, etc. Historical agronomic 
data (𝐻𝑠) are later invoked to model the temporal 
dynamics of yield and soil health and include historical 
information on crop types, input use, and rotation cycles. 
 
3.2 Data Preprocessing 
 
Normalization is achieved by interpolation: for all points, 
at the end of each forest, by uniform interpolation along 
horizontal lines between straight purchase points.  
 
 𝑖̂𝑠 = 𝛼𝑖𝑠 + (1 − 𝛼)𝑖̂𝑠−1 (2) 
 
The Random Drift and Trend Filtering Gaps algorithm in 
settings with installed sensors and which provides noise-
signal filtering input. Kalman smoothest out sensor 
readings full-on. Spatial normalization is performed so 
that all data are uniform on a hex grid, expressed as 
𝐻={ℎ1, ℎ1,..., ℎ𝑎}, thereby ensuring that all features are 
mapped consistently into a common spatial metric; 
Feature engineering yields soil health indices based on 
normalized NPK and other stress data, such as soil 
moisture depletion, and genotype-environment 
interaction scores calculated via similarity functions 𝛾(ℎ𝑥, 
𝑓𝑦) . The formula is given by 𝛿𝑏 = 𝑊𝑜𝑝𝑡 − 𝑊𝑜𝑏𝑠.  High-

dimensional genomic vectors 𝐻𝑦  ∈ ℝ𝑓 are subjected to 

dimensionality reduction by PCA or t-SNE for pattern 
extraction, and missing values are imputed with KNN or 
statistical models for data completeness. 
 
3.3 Model Development 
 
The development of a model begins with unsupervised 
clustering algorithms that minimize the variation within a 
cluster. K-Means is given by: 
 

arg𝑚𝑖𝑛
𝑧

∑  

𝑙

𝑥=1

∑  

𝑖∈𝑧𝑥

‖𝑖 − 𝜇𝑥‖
2 

(3) 

Another algorithm, DBSCAN creates clusters in a multi-
feature space with respect to density-reachability. These 
algorithms segregate the field into preliminary zones 
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using concatenated feature vectors: 𝑥𝑖 = [𝑠𝑖 , 𝑐𝑖 , 𝑔𝑖], 
where s, c, and g refer to soil, climatic, and genetic 
properties, respectively. A node 𝑣𝑥∈ V in the graph 𝐺 = 
(𝑉, 𝐸) is modelled for each hexagonal cell with the edges 
𝐸 E defined according to spatial adjacency for GNN 
training. The following GNN aggregates neighbourhood 
features: 
 

𝑔𝑝
(𝑘+1)

= 𝜎 ( ∑  

𝑞∈𝐴(𝑝)

𝑀(𝑘)𝑔𝑞
(𝑘)

+ 𝑦(𝑘)) 

(4) 

generating a Genomic Suitability Score representing 
complex spatial-genotypic compatibility for each zone. 
 
3.4 Zone Assignment: Hybrid GNN-Kriging Guided 
Adaptive Genomic Zoning (HGKG-AGZ) 
 
Depending on the considered soil environment, 
hexagonal, Kriged grid with values reflecting continuous 
soil and terrain attributes is first developed through 
Kriging. After latent spatial-genomic patterns are learned, 
a Graph Neural Network (GNN-Zone Net) predicts a 

Genomic Suitability Score vector 𝑇⃗ 𝑐∈ℝ𝑘.  
 

𝐶̂(𝑖0) = ∑  

𝑎

𝑥=1

𝜆𝑥𝐶(𝑖𝑥) 
(5) 

crop genotype-link zones 𝐻𝑏 ∈  ℝ𝑘  , through trait vector 

similarity For every zone c ∈ℝ𝑘  Crop genotypes are linked 
with zones.  
 

cos (𝜃) =
𝑇⃗ 𝑐 ⋅ 𝐻𝑦

‖𝑇⃗ 𝑐‖‖𝐻𝑦‖
 

(6) 

System through adaptive genomic assignment then 

selects the optimal genotype, 𝐺∗ = arg 𝑚𝑎𝑥
𝑦

 cos (𝜃𝑦), 

while concomitantly developing zone-specific treatment 
plans. 
 
3.5 Zone-Specific Optimization: Fuzzy Logic-Guided 
Evolutionary Treatment Optimizer (FLETO) 
 
Membership functions 𝜇(i) are utilized in fuzzy logic 
inference systems to provide fuzzy logic representation 
that interprets continuous sensor inputs like moisture 𝑊 
and salinity 𝑆 into linguistic variables. Thus: 
 

𝜇low(𝑊) =
1

1 + 𝑜𝛼(𝑊−𝛽)
 

(7) 

Now this is where treatment recommendations come to 
play through fuzzy principles, like the following: "increase 
irrigation if moisture is low. AND. salinity is high." After 
that, such treatment recommendations are further 
optimized using an evolutionary approach-say in this 
example Genetic methods-to optimize input parameters 

𝑆 = [𝑁, 𝑃, 𝐾,𝑊, 𝜇] so that the fitness function can be 
maximized: 

Fitness = 𝑚1 ⋅  Yield − 𝑚2 ⋅  Input Cost + 𝑚3

⋅  Soil Health Score 
A self-adaptive feedback loop utilizes real-time IoT data 
and yield observations to continuously update the fuzzy 
rules and treatments for better cycles in the future. 

3.6 Geo-Cognitive Crop Performance Mapping 
 
Each of the cells in the spatiotemporal cognitive memory 
map 𝑊𝑥,𝑠 developed under the GCCPM framework 

effectively records genotype performance within a 
specific zone over a time frame. This memory builds up a 
profile over time, taking into account inputs such as yield 
𝑌𝑥,𝑠, NDVI trend 𝑁𝑥,𝑠, soil health index 𝑆𝐻𝐼𝑥,𝑠, and 

effectiveness of treatment 𝐸𝑥,𝑠. 

 𝑊𝑥,𝑠 = 𝑑(𝑌𝑥,𝑠, 𝑁𝑥,𝑠, 𝑆𝐻𝐼𝑥,𝑠, 𝐸𝑥,𝑠) (8) 

Through spatiotemporal cognitive modelling (e.g., LSTM 
over spatial grids or attention-based GNNs), it learns the 
mapping of zone z, genotype g, treatment history, and 
function 𝐾(𝑐, ℎ, 𝜏) to make predictions on performance:  
 𝐾(𝑐, ℎ, 𝜏) → 𝐵̂𝑐,ℎ (9) 

This leads to the formation of a geo cognitive layer that 
continuously evolves from previous knowledge and both 
the surrounding and environmental conditions for 
forecasting future crop-genotype-treatment 
recommendations. 
 
3.7 Validation & Field Testing 
 
Based on the time-stamps of zone IDs 𝑐𝑥, time t, and 
corresponding weather snapshot 𝑡 tagged to the 
autonomous drones and the smart irrigation valves, the 
Validation and Field-Testing module administers 
treatments. Multiple categories are defined using 
multispectral drones and IoT-enabled soil sensors to 
capture the crop responses, with indices such as 
Chlorophyll Index CIz,1,t and real-time Canopy Cover 
C𝐼𝑐𝑥, 𝑠. 

NDVI𝑐𝑥,𝑠 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
, This health anomaly score 𝐺𝑐𝑥,𝑠  can 

be computed as: 
 𝐺𝑐𝑥,𝑠 = ω1 ⋅ Δ𝑁𝐷𝑉𝐼 + ω2 ⋅ Δ𝐶𝐼 + ω3

⋅ Δ𝑆𝐻𝐼 

(10) 

where 𝛥 refers to deviation from that healthy reference, 
while ω stands for some significant weights. These would 
be making use of such variables to provide an 
improvement in zoning and treatment options in a closed-
loop manner. 

 
4. Result and Discussions 

 
The suggested FLETO-GNN architecture showed better 
performance than the traditional methods by enhancing 
returns by 14 to 22 percent across zones with input 
efficiency gains up to 18%. Zone purity scores above 0.87 
indicated successful clustering of similar genotype-soil-
climate zones. The GNN-Zone Net achieved 91.4% 
accuracy on crop-genotype suitability with improvements 
on treatment cycles via real-time feedback from drones 
and IoT sensors. This variation from season to season has 
also been steered by the Geo-Cognitive Score which 
stood very high (>0.80) proving the memory of adaptive 
performance across different zones. It therefore shows 
that the model is pretty robust in terms of maximizing 
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economic returns on investment, as well as the 
sustainability and productivity of precision farming 
scenarios. 
 

 
 

Figure 2: Performance of Zone Assignment in HGKG-AGZ 
 
The fig. 2 illustrate abstract presents performance results 
concerning the various stages tackled in the Hybrid GNN-
Kriging Guided Adaptive Genomic Zoning process. This is 
aimed to evaluate the effectiveness of the adaptive 
genomic assignment, the genomic matching, GNN-Based 
Zone scoring, and hexagonal graph construction. High 
percentage scores acquired at their different stages 
suggest true performance through different phases of 
work, while the contribution of each step-in zone 
assignments is shown graphically. Our method thus 
permits optimum genomic zone matching for allocation 
and treatment prescriptions of crops. 
 

 
 

Figure 3: Agricultural Optimization Techniques Evaluation 
 
This fig. 3 describes a method of assessing agricultural 
optimization approaches against various important 
performance indicators, namely economic return on 
investment, suitability to crop-genotype, yield 
improvement, resource-use efficiency, sustainability, and 
geocognitive score. Each performance indicator 
determines the efficiency of zone-specific assignment of 
crops, treatments, and optimization of other agricultural 
systems. The results disclose how these approaches 
improve economic returns, sustainability, and 
productivity of farming. This says, the figure shows how 
these methods have a relationship with agricultural 
management. 

Table 1: Field-Specific Agricultural Performance 
Evaluation 

 

Field 
Genotype 
Suitability 

Yield 
(kg/ha) 

Water Use 
Efficiency 

Soil 
Health 
Index 

Field 1 0.85 3200 90 0.78 

Field 2 0.9 3500 92 0.82 

Field 3 0.8 3000 85 0.76 

Field 4 0.95 3800 95 0.85 

Field 5 0.75 2700 80 0.7 

Field 6 0.88 3300 89 0.8 

 
The following abstract is the subject of the assessment of 
the agricultural performance- field-specific nature as 
reflected in this table 1, and also among others- yield, 
water use efficiency, genotype suitability, and soil health 
index. Each of these aforementioned indicators serves to 
assess a field in its potential to grow a particular crop and 
the optimization techniques that could be applied. The 
data show performance variability among the different 
domains. It adjusts higher resource efficiencies and higher 
productivity levels by using more appropriate genotypes. 
The entire chart reveals field-specific dynamics affecting 
sustainability and productivity in agriculture. 
 
Conclusion 
 
This research proposes FLETO-GNN, a new type of hybrid 
model for precision agriculture technology which involves 
geo-cognitive learning, fuzzy evolutionary treatment 
optimization and graph-based zoning. With genotype-
aware GNN models, Kriging-enhanced hexagonal 
mapping, and IoT-driven soil and climate sensors, precise 
crop-to-zone allocation is assured by this method. FLETO 
incorporation will offer adaptive and self-optimized 
treatment planning, thereby improving yields while 
safeguarding resources. To advance long term advisory 
services, Geo-Cognitive Crop Performance Mapping 
(GCCPM) nowadays records spatio-temporal treatment 
performance. The approach significantly increases 
resistance to dynamic environment sustainability in 
economies and agronomy. 
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