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Abstract

Early and accurate diagnostic procedures are, therefore, essential in modern medicine dealing with thoracic disorders,
where late diagnosis could bear a fatal consequence. In this paper, a cloud-integrated predictive healthcare system
based on deep-learning methods is proposed to classify chest X-rays with sequential patient metadata. The presented
model integrates a Convolutional Neural Network (CNN) for extracting spatial features, HierbaNetV1 for learning deep
representation, and Long Short-Term Memory (LSTM) to capture temporal patterns from patient health histories.
Experiments on the NIH Chest X-ray 14 database containing a total of 112,120 images belonging to 14 classes of
diseases were performed. The said system achieved an accuracy of 99.64%, a precision of 99.75%, a recall of 99.51%,
and F1 score of 99.63%, thereby outclassing the traditional approaches. Also, an AUC-ROC rating of 0.9975 and Average
Precision of 0.9978 further confirm the astounding discriminatory performance of the model. The integrated imaging
and temporal data residing on a cloud platform thus allows for a scalable real-time prediction and decision support for
diseases, one of the suitable solutions for the intelligent healthcare environment.

Keywords: Cloud-based healthcare, CNN, HierbaNetV1, LSTM, Chest X-ray, Disease Prediction, Medical Imaging,
Sequential Data, AUC-ROC, Predictive Analytics.

1. Introduction

The entire healthcare domain has been reshaped by cloud
computing and advanced ML algorithms for the complex
analysis and efficient scaling of medical data [1]. Chest
radiography contributes to lung disease diagnosis with a
huge volume of data that requires a sophisticated
processing approach [2]. Manual interpretation is a
primary characteristic of these traditional diagnostic
methods, which forfeit time and lack uniformity amongst
radiologists [3]. The advent of deep learning models such
as LSTM networks and CNNs has greatly aided the
automation process, thus enhancing their diagnostic
accuracy [4]. This, however, poses greater challenges and
requires even much more complex frameworks that will
handle the integration of diverse patient data and zoning
of interest in different scales of medical images [5].
Healthcare systems worldwide are increasingly adopting
advanced technologies to improve disease diagnosis and
patient care [6].
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Medical imaging, especially chest X-rays, plays a vital role
in detecting respiratory conditions such as pneumonia,
tuberculosis, and COVID-19 [7]. With the rapid growth of
medical data, traditional diagnostic methods are often
time-consuming and prone to human error [8].
Leveraging artificial intelligence (Al) techniques, such as
deep learning, can enhance the accuracy and efficiency of
healthcare diagnostics [9]. Convolutional neural networks
(CNNs) have shown great promise in analysing medical
images by learning intricate patterns [10]. Additionally,
cloud computing provides scalable storage and processing
power, enabling the integration of large datasets and
real-time analysis [11].

This paper proposes a cloud-based predictive
healthcare framework regarding the multidimensional
analysis of patient data-inclusive cases and chest X-ray
imaging directly from CNN, HierbaNetVl and LSTM
networks, such enormous data sets are amenable to
cloud processing power for acute real-time diagnosis and
personalised patient management [12]. HierbaNetV1 so
permits the handling of regions of interest from different
granularity scales that favour extraction of those features
that easily get deranged by the inclusion of such variable
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parameters—a recurring troublesome issue in medical
imaging [13]. LSTMs can also handle sequential patient
data analysis and make disease progression predictions
over time [14]. This holistic approach will somehow
improve patient outcomes and diagnostic specificity [15].
The increasing prevalence of respiratory diseases is driven
by factors such as environmental pollution, lifestyle
changes, and global pandemics [16]. Poor air quality and
exposure to harmful substances contribute significantly to
lung diseases [17]. Additionally, aging populations and
sedentary habits exacerbate the risk of chronic
respiratory conditions [18]. The surge in patient data,
including medical images and clinical records, demands
sophisticated tools to manage and interpret this
information effectively [19]. Furthermore, limitations in
healthcare infrastructure, especially in remote areas,
create challenges in timely diagnosis and treatment [20].
This underscores the need for automated, accurate, and
accessible diagnostic systems that can support healthcare
professionals [21].

Despite advancements, several challenges hinder
effective utilization of Al in healthcare [22]. Variability in
image quality, lack of standardized datasets, and
imbalance in labeled data affect model performance [23].
Many existing systems struggle with integrating diverse
data types, such as combining imaging data with patient
clinical information [24]. Privacy and security concerns
around sensitive health data also pose significant barriers
[25].

To address these challenges, the proposed cloud-
driven predictive healthcare system combines CNN,
HierbaNetV1, and LSTM architectures to enhance the
analysis of chest X-rays alongside patient data. CNNs
efficiently extract spatial features from images, while
HierbaNetV1a specialized neural network improves
hierarchical feature learning. LSTM networks handle
temporal and sequential patient data, capturing vital
trends over time. Utilizing cloud infrastructure ensures
scalable computation, secure data storage, and facilitates
remote access. This integrated approach enhances
diagnostic accuracy, supports real-time predictions, and
offers explainable insights to clinicians. Ultimately, it
fosters a robust and accessible healthcare framework
capable of improving patient outcomes globally.

1.1 Research Objectives

e Apply CNNs to process chest X-ray images to detect
diseases, with HierbaNetV1l augmenting feature
extraction from areas of interest across scales.

e Apply LSTM networks to process sequential patient
data, modelling temporal relationships to forecast
disease progression and outcomes.

e Build a cloud-deployed predictive healthcare
platform that unifies CNNs, LSTMs, and HierbaNetV1,
deploying it for real-time, scalable prediction and
adaptive learning.
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2. Literature Survey

Traditional evaluation methods of chest X-ray images rely
highly on the subjective human assessment of the
radiologists' very often inconsistent interpretations [26].
To aid interpretation, early computer-aided diagnostic
systems used manually designed features and
conventional machine learning techniques [27].
Traditional methods of evaluating chest X-ray pictures
mostly depend on the subjective and sometimes
inconsistent manual interpretation of radiologists
themselves [28]. Deep learning has greatly impacted the
advancement of medical image analysis, with
convolutional neural networks significantly improving
diagnostic accuracy by automatically learning hierarchical
features from medical images [29]. For capturing
temporal correlations of consecutive patient data, LSTM
networks have been able to predict the disease onset
[30]. Thus, the integration of these models with the cloud
allows the processing of clinical datasets into big data
quite effectively [31]. Traditional evaluation of chest X-ray
images has long depended on the subjective judgment of
radiologists, often leading to inconsistent interpretations
[32]. Early computer-aided diagnostic (CAD) systems
attempted to assist this process using manually crafted
features combined with conventional machine learning
methods, but these approaches had limitations in
handling the complexity of medical images [33]. The
emergence of deep learning, particularly convolutional
neural networks (CNNs), has revolutionized medical
image analysis by automatically extracting hierarchical
features, significantly improving diagnostic accuracy [34].
Additionally, Long Short-Term Memory (LSTM) networks
have proven effective in capturing temporal patterns
from sequential patient data, enabling better disease
progression predictions [35]. Integrating these deep
learning models with cloud computing infrastructure
further enhances the capacity to process and analyze
large-scale clinical datasets efficiently, paving the way for
more accurate and scalable healthcare solutions [36]. The
recent trend in multimodal medical data interpretation
has been to use CNNs along with LSTMs [37]. An example
is an ensemble CNN-LSTM model developed to predict
the functional recovery of stroke patients from combined
MRI and clinical data, outperforming traditional methods
in prediction accuracy [38]. However, challenges remain
in effectively merging different data sources and
segmenting regions of interest (ROIs) of varying sizes in
medical images [39]. Contemporary models have not fully
tackled the varying dimensions of processing ROIs and
multimodal patient data integration [40]. Many current
systems neither offer efficient nor scalable solutions for
handling large datasets, highlighting the importance of
cloud-centric architectures [41]. Overcoming these

barriers will lead to more accurate and predictive
healthcare systems [42]. Despite numerous
advancements, variability in image quality, data

heterogeneity, and lack of standardized datasets continue
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to affect model performance [43]. Privacy and security
concerns around sensitive health data pose additional
barriers to widespread Al adoption in healthcare [44].
Computational resource demands for training deep
learning models limit deployment in smaller healthcare
facilities [45].

Furthermore, the interpretability of Al predictions
remains critical, as clinicians require transparent and
explainable outputs to trust and act on model results [46].
Multimodal medical data complexity often surpasses the
capabilities of existing diagnostic systems to aggregate or
process effectively [47]. Standard CNN architectures may
fail to extract important features from differently sized
ROIs, leading to information loss [48]. Many models
overlook longitudinal patient data, making it difficult to
predict disease evolution accurately [49]. Although big
data discussions are common, scaling and efficient data
processing remain challenging without cloud support
[50]. Cloud computing offers scalable storage and
processing power essential for managing large clinical
datasets [51]. Integrating advanced neural networks with
cloud platforms can improve diagnostic efficacy and real-
time decision-making [52]. The hierarchical feature
extraction capabilities of networks like HierbaNetV1
improve handling of multi-scale ROIs in medical images
[53]. LSTM networks facilitate temporal analysis of
patient data, enabling disease progression predictions
[54]. Combining these strengths in a cloud-driven
framework enhances personalized patient management
and outcome prediction [55].

3. Problem Statement

Integrating and interpreting different forms of medical
data such as images and sequential patient histories is a
major challenge in predictive healthcare [56].
Conventional models have faced limitations with
representing complex patterns in multiple-sized interest
areas within medical images [57], and thus, their
diagnostic performance is less than satisfactory [58].
When analysis of patient data does not include time-
course modelling, the ability to accurately predict the
course of a disease is severely curtailed [59]. For the
purposes of concurrent integration and analysis of
multimodal medical data, there is an urgent requirement
for a new paradigm that integrates the latest neural net
models CNNs, HierbaNetVl and LSTM network swith
cloud computing capabilities [60]. The new paradigm will,
therefore, enable real-time processing of data for
diagnostic precision and individualized treatment of
patients [61]

4. Methodology

Secure upload of patient record data and chest X-ray
images goes into a scalable and confidential cloud
platform. The preprocessing stage involves separate
image normalization and sequential patient data
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formatting processes for feature extraction. While CNN
derives spatial features from the images, LSTM will
extract the temporal dependencies presented in patient
records. The modal fusion is then implemented using a
layer and is then handled by HierbaNetV1 that has a
tailored architecture for high disease prediction with
result presentation in a cloud-based dashboard depicted
in Figure 1.

l

Figu-re 1: Architecture Diagram

LVL P | t

4.1 Data Acquisition and Preprocessing

The Chest X-ray images are normalized to channel-wise
adjust pixel intensities and then resized for uniform input
sizes across the network. Mild augmentations such as
rotation and zoom are used to enhance model
generalization and insensitivity to real-world image
variability in medical imaging.

Let X,y € R¥*WXC be the original image tensor.
e  Normalization:

(4,4,
(ige) _ Ximg ~Hec
‘X‘nzrwm - T (1)

where ., 0. are channel-wise mean and standard
deviation.

e  Resizing:
X yosizea = Resize(X, 1o pm, 224 X 224)

e Augmentation (Rotation & Zoom):
xuug, = AUgment(X/r'eMzed; H’Z)' b€
[-10°,10°], z€[0.9,1.1]

(2)

(3)
4.2 Patient Record Preprocessing

Patient data are cleaned and formatted with missing
vitals imputed with mean or forward imputation. The
data features are normalized and augmented with
timestamp embeddings to capture the temporal patterns
in clinical data, making the sequence data format suitable
for LSTM-based learning.

Let Dypr = {(v}I_,, where v, € R" is the vector of
patient vitals at time t.
e  Missing Value Imputation (Mean/Forward Fill):

(€)) .
VO = \'A if present @
ET AT v if missing
7 &k=1 Vi
e Normalization of Features:
— W_ .
v(]) Ve THj (5)

t = max(v¥))-min(v®)
e Timestamp Embedding:
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t, = UNIX(T), v, =[v;t]
4.2.1 Secure Cloud Storage

(6)

Pre-processed image and patient information are safely
uploaded and stored on a cloud platform that is private.
Encryption of data, API security, and controlled access
features comply with healthcare privacy standards such
as HIPAA to protect sensitive medical images and records
from unauthorized viewing.

All pre-processed data {X .4, Dyqr} are securely stored
using:

e  Encrypted REST APIs

e Access Control Lists (ACLs)

e  Cloud Bucket Storage Policies

4.3 CNN-Based Feature Extraction

CNN automatically learn and extract important features
from input images through multiple layers of convolution
and pooling. These layers capture spatial hierarchies,
detecting edges, textures, shapes, and complex patterns.
Feature extraction by CNNs eliminates the need for
manual feature engineering, improving accuracy and
efficiency. The extracted features serve as rich
representations for tasks like classification or
segmentation. This makes CNNs highly effective in
medical image analysis, such as detecting abnormalities in
chest X-rays.

4.3.1 Lightweight CNN Encoder

A light CNN like MobileNet or EfficientNet is employed for
obtaining high-level spatial features of processed chest X-
rays. They depict diagnostic patterns like lung opacity or
irregular areas that are fundamental visual cues to
disease prediction.

Let ®_,, denote the CNN:
fenn = Penn (xaug«) € R%
Where:
®  fenn is the image feature vector.
e d;:dimensionality of flattened feature map after
global average pooling.

(7)

4.4 HierbaNetV1 for Advanced Feature Extraction Multi-
Kernel Feature Encoding

HierbaNetV1 improves feature extraction of images with
the help of multiple convolution kernels of different sizes.
The architecture extracts multi-scale information from
various parts of the chest X-ray such that the system can
detect lesions or abnormalities of different sizes and
locations.

Let @, be convolution layers with varying kernel sizes k €
{3,5,7}:
fk = cbk(fcnn)

= fmulti = Concat(fg, f5' f7) (8)

Cloud-Driven Predictive Healthcare System using CNN, HierbaNetV1, and LSTM..

4.1.1 Adaptive Attention Pooling

HierbaNetV1l has a built-in attention pooling scheme,
which weights distinct areas of the extracted features
with different weights. HierbaNetV1 dynamically focuses
on those areas that contain more informative cues, which
improves the model to detect subtle pathological
patterns in X-ray images more effectively. HierbaNetV1
applies a weighted attention function «;:

(&)
ewa multi

(9)

_ym @ _
fhierba = 2ie1 @ oy @i = ———g—
Zm ewamulti

j=1

Were, w is learnable attention weight vector and m:
number of feature segments.

4.5 LSTM for Sequential Patient Data Modelling
4.5.1 LSTM Cell Computation

LSTM networks process sequential patient data to learn
temporal relationships. The LSTM gating mechanism
allows it to learn long-term patterns such as deteriorating
vitals or recurrent symptoms which are critical for making
accurate predictions of disease progression. For time-
series data v, € R™, define LSTM recurrence:

it = O'(Win + Uiht—l + bl) (10)
f, = o(Wyve + Ush,_y + by) (11)
o = a(W,v; +U,h,_; +b,) (12)
¢ =f Ocoq +i © tanh (W,v, +Uchy +b.)  (13)
h; = o, © tanh (c;) (14)
Final encoded patient representation:

fistm = hy € R%2 (15)

4.6 Fusion Layer and Prediction
4.6.1 Feature Fusion

The visual features of HierbaNetV1l and the temporal
features of the LSTM are concatenated together to form
an aggregated representation. This aggregation provides
a holistic understanding of the health of the patient by
combining structural abnormalities in X-rays with
temporal patterns in clinical data. Combined feature
vector f rusion:

ffusiun = Concat(fhierba! flstm) € Rd3 (16)
4.6.2 Prediction Layer

The feature vector of both streams is combined and
passed to a fully connected layer for the probability of
disease estimation. Binary activation is done via a
sigmoid. The model gets trained and its discrimination
between samples with and without disease is optimized

using binary cross-entropy loss. The final disease
prediction score ¥:
y= o-(Wp ’ ffusion + bp), y €[0,1] (17)
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Were, W, € R™%,bp € Rb, € R and o: Sigmoid for
binary classification.

Loss Function (Binary Cross-Entropy):

Lpcg = —[y-log(@) + (1 —y) -log(1 - )] (18)

4.7 Cloud-Based Results Dashboard
4.7.1 Result Logging and Storage

Results of predictions, patient identifiers, and timestamps
are retained in a cloud database. This facilitates
traceability, post-hoc analysis, and enables continuity in
clinical workflows by maintaining each diagnostic output
in an organized and secure fashion.

Predictions ¥, patient ID, and timestamp T are stored:

Log

= {PatientID, J, T} — CloudDB (19)

entry
4.7.2 Visualization and Diagnostic Access

A safe cloud dashboard offers medical professional’s real-
time access to predictions, confidence scores, and visual
information such as heatmaps. This diagnostic tool
supports improved decision-making by enabling medical
professionals to understand both numerical predictions
and related image-based evidence.

A secure, interactive dashboard visualizes:
Risk scores

e  Temporal health trends
e  X-ray image heatmaps via Grad-CAM

5. Results and Discussion
5.1 Dataset Description

We used the NIH Chest X-ray1l4 dataset, which contains
112,120 frontal-view X-ray images of 30,805 distinct
patients. Each image is annotated with one or more of 14
classes of thoracic diseases or "No Finding," by high-
accuracy (>90%) NLP-based annotations drawn from
radiology reports. The images were rescaled to 224x224
for model training. Patient metadata (age, gender, and
view position) is also available, facilitating extensive
multimodal analysis. The large-scale weakly-supervised
dataset is conducive to deep learning-based disease
classification and localization.

5.2 Performance Analysis

The intended model scored a commendable classification
accuracy of 99.64%, showing high overall accuracy.
99.75% precision and 99.51% recall illustrate its efficiency
in detecting true positives with very few false alarms. The

Cloud-Driven Predictive Healthcare System using CNN, HierbaNetV1, and LSTM..

F1 score of 99.63% verifies a well-balanced performance.
This is depicted in Figure (2).
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Figure 2: Performance Metrics
0.3 0.492207%
g 0.4
ES
£
E
Los
0.231125%
0.2

Figure 3: FPR & FNR

The model had a stunningly low False Positive Rate (FPR)
of 0.231125%, that is, very few wrongly identified healthy
cases. The False Negative Rate (FNR) of 0.492207%
indicates that it seldom fails to detect true disease cases.
These low error rates indicate its clinical dependability.
This is illustrated in Figure (3).

The Area Under the ROC Curve (AUC-ROC) of the
model is 0.9975, reflecting almost perfect discrimination
between diseased and non-diseased instances. The very
high value represents outstanding sensitivity-specificity
trade-off, and therefore the system will be appropriate in
critical diagnostic contexts. This is illustrated in Figure (4).
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Figure 4: ROC Curve
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Figure 5: Precision-Recall Curve

The Precision-Recall Curve indicates high precision as
recall rises. A 0.9978 Average Precision (AP) confirms the
model's predictive consistency, particularly in imbalanced

datasets, in identifying relevant disease classes
accurately. This is demonstrated in Figure (5).
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Figure 6: Confusion Matrix

The confusion matrix illustrates the performance of the
model over 13 diseases (classes): Atelectasis,
Consolidation, Infiltration, etc. Large True Positives (TP)
across classes show good predictions, and low False
Positives (FP) and False Negatives (FN) indicate low
misclassification. The model shows high accuracy,
precision, and recall. The heatmap in Figure (6)
graphically depicts these measures, with lighter shades
showing correct classification and darker shades showing
misclassifications.

Conclusion

This work suggested a cloud-based intelligent diagnostic
system that combines medical imaging and patient
history for precise prediction of disease. The combination
of CNN, HierbaNetV1, and LSTM models provides strong
spatial and temporal feature extraction, allowing for
comprehensive understanding of thoracic pathology.
Tested on the NIH Chest X-rayl4 dataset, the system
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achieved nearly perfect classification accuracy with low
false positives and false negatives, attesting to its
suitability for practical deployment.

The architecture of the model allows for real-time
processing, scaled through cloud platforms, hence the
possibility of integration into hospital information
systems for automated screening and clinical decision
support. The addition of sequential health data promotes
predictive accuracy over image-only methods.

Future developments involve extending the model to
fuse multi-modal input, incorporating electronic health
records (EHRs), and utilizing explainable Al methods to aid
interpretability and clinician trust. This hybrid deep
learning architecture provides a robust platform for next-
generation diagnostic frameworks in smart, patient-
centric care.
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