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Abstract  
   
Early and accurate diagnostic procedures are, therefore, essential in modern medicine dealing with thoracic disorders, 
where late diagnosis could bear a fatal consequence. In this paper, a cloud-integrated predictive healthcare system 
based on deep-learning methods is proposed to classify chest X-rays with sequential patient metadata. The presented 
model integrates a Convolutional Neural Network (CNN) for extracting spatial features, HierbaNetV1 for learning deep 
representation, and Long Short-Term Memory (LSTM) to capture temporal patterns from patient health histories. 
Experiments on the NIH Chest X-ray 14 database containing a total of 112,120 images belonging to 14 classes of 
diseases were performed. The said system achieved an accuracy of 99.64%, a precision of 99.75%, a recall of 99.51%, 
and F1 score of 99.63%, thereby outclassing the traditional approaches. Also, an AUC-ROC rating of 0.9975 and Average 
Precision of 0.9978 further confirm the astounding discriminatory performance of the model. The integrated imaging 
and temporal data residing on a cloud platform thus allows for a scalable real-time prediction and decision support for 
diseases, one of the suitable solutions for the intelligent healthcare environment. 
 
Keywords: Cloud-based healthcare, CNN, HierbaNetV1, LSTM, Chest X-ray, Disease Prediction, Medical Imaging, 
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1. Introduction 
 
The entire healthcare domain has been reshaped by cloud 

computing and advanced ML algorithms for the complex 

analysis and efficient scaling of medical data [1]. Chest 

radiography contributes to lung disease diagnosis with a 

huge volume of data that requires a sophisticated 

processing approach [2]. Manual interpretation is a 

primary characteristic of these traditional diagnostic 

methods, which forfeit time and lack uniformity amongst 

radiologists [3]. The advent of deep learning models such 

as LSTM networks and CNNs has greatly aided the 

automation process, thus enhancing their diagnostic 

accuracy [4]. This, however, poses greater challenges and 

requires even much more complex frameworks that will 

handle the integration of diverse patient data and zoning 

of interest in different scales of medical images [5]. 

Healthcare systems worldwide are increasingly adopting 

advanced technologies to improve disease diagnosis and 

patient care [6].  
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Medical imaging, especially chest X-rays, plays a vital role 
in detecting respiratory conditions such as pneumonia, 
tuberculosis, and COVID-19 [7]. With the rapid growth of 
medical data, traditional diagnostic methods are often 
time-consuming and prone to human error [8]. 
Leveraging artificial intelligence (AI) techniques, such as 
deep learning, can enhance the accuracy and efficiency of 
healthcare diagnostics [9]. Convolutional neural networks 
(CNNs) have shown great promise in analysing medical 
images by learning intricate patterns [10]. Additionally, 
cloud computing provides scalable storage and processing 
power, enabling the integration of large datasets and 
real-time analysis [11]. 
 

This paper proposes a cloud-based predictive 
healthcare framework regarding the multidimensional 
analysis of patient data-inclusive cases and chest X-ray 
imaging directly from CNN, HierbaNetV1 and LSTM 
networks, such enormous data sets are amenable to 
cloud processing power for acute real-time diagnosis and 
personalised patient management [12]. HierbaNetV1 so 
permits the handling of regions of interest from different 
granularity scales that favour extraction of those features 
that easily get deranged by the inclusion of such variable 

https://doi.org/10.14741/ijmcr/v.12.4.
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parameters—a recurring troublesome issue in medical 
imaging [13]. LSTMs can also handle sequential patient 
data analysis and make disease progression predictions 
over time [14]. This holistic approach will somehow 
improve patient outcomes and diagnostic specificity [15]. 
The increasing prevalence of respiratory diseases is driven 
by factors such as environmental pollution, lifestyle 
changes, and global pandemics [16]. Poor air quality and 
exposure to harmful substances contribute significantly to 
lung diseases [17]. Additionally, aging populations and 
sedentary habits exacerbate the risk of chronic 
respiratory conditions [18]. The surge in patient data, 
including medical images and clinical records, demands 
sophisticated tools to manage and interpret this 
information effectively [19]. Furthermore, limitations in 
healthcare infrastructure, especially in remote areas, 
create challenges in timely diagnosis and treatment [20]. 
This underscores the need for automated, accurate, and 
accessible diagnostic systems that can support healthcare 
professionals [21]. 

Despite advancements, several challenges hinder 
effective utilization of AI in healthcare [22]. Variability in 
image quality, lack of standardized datasets, and 
imbalance in labeled data affect model performance [23]. 
Many existing systems struggle with integrating diverse 
data types, such as combining imaging data with patient 
clinical information [24]. Privacy and security concerns 
around sensitive health data also pose significant barriers 
[25]. 

To address these challenges, the proposed cloud-

driven predictive healthcare system combines CNN, 

HierbaNetV1, and LSTM architectures to enhance the 

analysis of chest X-rays alongside patient data. CNNs 

efficiently extract spatial features from images, while 

HierbaNetV1a specialized neural network improves 

hierarchical feature learning. LSTM networks handle 

temporal and sequential patient data, capturing vital 

trends over time. Utilizing cloud infrastructure ensures 

scalable computation, secure data storage, and facilitates 

remote access. This integrated approach enhances 

diagnostic accuracy, supports real-time predictions, and 

offers explainable insights to clinicians. Ultimately, it 

fosters a robust and accessible healthcare framework 

capable of improving patient outcomes globally. 

 
1.1 Research Objectives 
 

• Apply CNNs to process chest X-ray images to detect 
diseases, with HierbaNetV1 augmenting feature 
extraction from areas of interest across scales. 

• Apply LSTM networks to process sequential patient 
data, modelling temporal relationships to forecast 
disease progression and outcomes. 

• Build a cloud-deployed predictive healthcare 
platform that unifies CNNs, LSTMs, and HierbaNetV1, 
deploying it for real-time, scalable prediction and 
adaptive learning. 

2. Literature Survey 
 
Traditional evaluation methods of chest X-ray images rely 
highly on the subjective human assessment of the 
radiologists' very often inconsistent interpretations [26]. 
To aid interpretation, early computer-aided diagnostic 
systems used manually designed features and 
conventional machine learning techniques [27]. 
Traditional methods of evaluating chest X-ray pictures 
mostly depend on the subjective and sometimes 
inconsistent manual interpretation of radiologists 
themselves [28]. Deep learning has greatly impacted the 
advancement of medical image analysis, with 
convolutional neural networks significantly improving 
diagnostic accuracy by automatically learning hierarchical 
features from medical images [29]. For capturing 
temporal correlations of consecutive patient data, LSTM 
networks have been able to predict the disease onset 
[30]. Thus, the integration of these models with the cloud 
allows the processing of clinical datasets into big data 
quite effectively [31]. Traditional evaluation of chest X-ray 
images has long depended on the subjective judgment of 
radiologists, often leading to inconsistent interpretations 
[32]. Early computer-aided diagnostic (CAD) systems 
attempted to assist this process using manually crafted 
features combined with conventional machine learning 
methods, but these approaches had limitations in 
handling the complexity of medical images [33]. The 
emergence of deep learning, particularly convolutional 
neural networks (CNNs), has revolutionized medical 
image analysis by automatically extracting hierarchical 
features, significantly improving diagnostic accuracy [34].  
Additionally, Long Short-Term Memory (LSTM) networks 
have proven effective in capturing temporal patterns 
from sequential patient data, enabling better disease 
progression predictions [35]. Integrating these deep 
learning models with cloud computing infrastructure 
further enhances the capacity to process and analyze 
large-scale clinical datasets efficiently, paving the way for 
more accurate and scalable healthcare solutions [36]. The 
recent trend in multimodal medical data interpretation 
has been to use CNNs along with LSTMs [37]. An example 
is an ensemble CNN-LSTM model developed to predict 
the functional recovery of stroke patients from combined 
MRI and clinical data, outperforming traditional methods 
in prediction accuracy [38]. However, challenges remain 
in effectively merging different data sources and 
segmenting regions of interest (ROIs) of varying sizes in 
medical images [39]. Contemporary models have not fully 
tackled the varying dimensions of processing ROIs and 
multimodal patient data integration [40]. Many current 
systems neither offer efficient nor scalable solutions for 
handling large datasets, highlighting the importance of 
cloud-centric architectures [41]. Overcoming these 
barriers will lead to more accurate and predictive 
healthcare systems [42]. Despite numerous 
advancements, variability in image quality, data 
heterogeneity, and lack of standardized datasets continue 
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to affect model performance [43]. Privacy and security 
concerns around sensitive health data pose additional 
barriers to widespread AI adoption in healthcare [44]. 
Computational resource demands for training deep 
learning models limit deployment in smaller healthcare 
facilities [45]. 

Furthermore, the interpretability of AI predictions 
remains critical, as clinicians require transparent and 
explainable outputs to trust and act on model results [46]. 
Multimodal medical data complexity often surpasses the 
capabilities of existing diagnostic systems to aggregate or 
process effectively [47]. Standard CNN architectures may 
fail to extract important features from differently sized 
ROIs, leading to information loss [48]. Many models 
overlook longitudinal patient data, making it difficult to 
predict disease evolution accurately [49]. Although big 
data discussions are common, scaling and efficient data 
processing remain challenging without cloud support 
[50]. Cloud computing offers scalable storage and 
processing power essential for managing large clinical 
datasets [51]. Integrating advanced neural networks with 
cloud platforms can improve diagnostic efficacy and real-
time decision-making [52]. The hierarchical feature 
extraction capabilities of networks like HierbaNetV1 
improve handling of multi-scale ROIs in medical images 
[53]. LSTM networks facilitate temporal analysis of 
patient data, enabling disease progression predictions 
[54]. Combining these strengths in a cloud-driven 
framework enhances personalized patient management 
and outcome prediction [55]. 
 
3. Problem Statement 
 
Integrating and interpreting different forms of medical 
data such as images and sequential patient histories is a 
major challenge in predictive healthcare [56]. 
Conventional models have faced limitations with 
representing complex patterns in multiple-sized interest 
areas within medical images [57], and thus, their 
diagnostic performance is less than satisfactory [58]. 
When analysis of patient data does not include time-
course modelling, the ability to accurately predict the 
course of a disease is severely curtailed [59]. For the 
purposes of concurrent integration and analysis of 
multimodal medical data, there is an urgent requirement 
for a new paradigm that integrates the latest neural net 
models CNNs, HierbaNetV1 and LSTM network swith 
cloud computing capabilities [60]. The new paradigm will, 
therefore, enable real-time processing of data for 
diagnostic precision and individualized treatment of 
patients [61] 
 
4. Methodology 
 
Secure upload of patient record data and chest X-ray 
images goes into a scalable and confidential cloud 
platform. The preprocessing stage involves separate 
image normalization and sequential patient data 

formatting processes for feature extraction. While CNN 
derives spatial features from the images, LSTM will 
extract the temporal dependencies presented in patient 
records. The modal fusion is then implemented using a 
layer and is then handled by HierbaNetV1 that has a 
tailored architecture for high disease prediction with 
result presentation in a cloud-based dashboard depicted 
in Figure 1. 
 

 
Figure 1: Architecture Diagram 

 
4.1 Data Acquisition and Preprocessing 
 
The Chest X-ray images are normalized to channel-wise 
adjust pixel intensities and then resized for uniform input 
sizes across the network. Mild augmentations such as 
rotation and zoom are used to enhance model 
generalization and insensitivity to real-world image 
variability in medical imaging. 
 
Let 𝒳𝒾𝓂ℊ ∈ 𝑅𝐻×𝑊×𝐶  be the original image tensor. 

• Normalization: 

𝒳𝓃ℴ𝓇𝓂
(𝒾,𝒿,𝒸)

=
𝒳𝒾𝓂ℊ
(𝒾,𝒿,𝒸)

−𝜇𝑐

𝜎𝑐
          (1) 

where 𝜇𝑐 , 𝜎𝑐 are channel-wise mean and standard 
deviation. 

• Resizing: 
𝒳𝓇ℯ𝓈𝒾𝓏ℯ𝒹 = Resize(𝒳𝓃ℴ𝓇𝓂 , 224 × 224)    (2) 

• Augmentation (Rotation & Zoom): 
𝒳𝒶𝓊ℊ = Augment(𝒳𝓇ℯ𝓈𝒾𝓏ℯ𝒹; 𝜃, 𝑧),  𝜃 ∈

[−10∘, 10∘],  𝑧 ∈ [0.9,1.1]        (3) 
 
4.2 Patient Record Preprocessing 
 
Patient data are cleaned and formatted with missing 
vitals imputed with mean or forward imputation. The 
data features are normalized and augmented with 
timestamp embeddings to capture the temporal patterns 
in clinical data, making the sequence data format suitable 
for LSTM-based learning. 

 
Let 𝒟𝓅𝒶𝓉 = {𝒗𝒕}𝑡=1

𝑇 , where 𝒗𝒕 ∈ 𝑅𝑛 is the vector of 

patient vitals at time 𝑡. 

• Missing Value Imputation (Mean/Forward Fill): 

𝐯𝑡
(𝑗)

= {
𝐯𝑡
(𝑗)

 if present 
1

𝑇
∑  𝑇
𝑘=1  𝐯𝑘

(𝑗)
 if missing 

        (4) 

• Normalization of Features: 

𝒗𝑡
(𝑗)̃

=
𝒗𝒕
(𝒋)
−𝜇𝑗

max(𝒗(𝒋))−min(𝒗(𝒋))
          (5) 

• Timestamp Embedding: 
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𝒕𝒕 = UNIX(𝑇𝑡),  𝒗𝒕 = [𝒗𝑡̃ , 𝒕𝒕]        (6) 
4.2.1 Secure Cloud Storage 
 
Pre-processed image and patient information are safely 
uploaded and stored on a cloud platform that is private. 
Encryption of data, API security, and controlled access 
features comply with healthcare privacy standards such 
as HIPAA to protect sensitive medical images and records 
from unauthorized viewing. 
 
All pre-processed data {𝒳𝒶𝓊ℊ , 𝒟𝓅𝒶𝓉} are securely stored 

using: 

• Encrypted REST APIs 

• Access Control Lists (ACLs) 

• Cloud Bucket Storage Policies 
 

4.3 CNN-Based Feature Extraction 
 
CNN automatically learn and extract important features 
from input images through multiple layers of convolution 
and pooling. These layers capture spatial hierarchies, 
detecting edges, textures, shapes, and complex patterns. 
Feature extraction by CNNs eliminates the need for 
manual feature engineering, improving accuracy and 
efficiency. The extracted features serve as rich 
representations for tasks like classification or 
segmentation. This makes CNNs highly effective in 
medical image analysis, such as detecting abnormalities in 
chest X-rays. 
 
4.3.1 Lightweight CNN Encoder 
 
A light CNN like MobileNet or EfficientNet is employed for 
obtaining high-level spatial features of processed chest X-
rays. They depict diagnostic patterns like lung opacity or 
irregular areas that are fundamental visual cues to 
disease prediction. 
 
Let Φcnn denote the CNN: 

𝒇𝒄𝒏𝒏 = Φcnn(𝒳𝒶𝓊ℊ) ∈ 𝑅𝑑𝟙          (7) 

Where: 

• 𝒇𝒄𝒏𝒏 is the image feature vector. 

• 𝑑1: dimensionality of flattened feature map after 
global average pooling. 

 

4.4 HierbaNetV1 for Advanced Feature Extraction Multi-
Kernel Feature Encoding 
 
HierbaNetV1 improves feature extraction of images with 
the help of multiple convolution kernels of different sizes. 
The architecture extracts multi-scale information from 
various parts of the chest X-ray such that the system can 
detect lesions or abnormalities of different sizes and 
locations. 
 
Let Φ𝑘  be convolution layers with varying kernel sizes 𝑘 ∈
{3,5,7}: 
𝒇𝒌 = Φ𝑘(𝒇𝒄𝒏𝒏)  ⇒  𝒇𝒎𝒖𝒍𝒕𝒊 = Concat(𝒇𝟑, 𝒇𝟓, 𝒇𝟕)   (8) 

 
4.1.1 Adaptive Attention Pooling 
 
HierbaNetV1 has a built-in attention pooling scheme, 
which weights distinct areas of the extracted features 
with different weights. HierbaNetV1 dynamically focuses 
on those areas that contain more informative cues, which 
improves the model to detect subtle pathological 
patterns in X-ray images more effectively. HierbaNetV1 
applies a weighted attention function 𝛼𝑖: 

𝒇𝒉𝒊𝒆𝒓𝒃𝒂 = ∑ 𝛼𝑖
𝑚
𝑖=1 ⋅ 𝒇𝒎𝒖𝒍𝒕𝒊

(𝒊)
,  𝛼𝑖 =

𝑒𝒘
⊤𝒇𝒎𝒖𝒍𝒕𝒊

(𝒊)

∑ 𝑒𝒘
⊤𝒇

𝒎𝒖𝒍𝒕𝒊
(𝒋)

𝑚
𝑗=1

    (9) 

Were, 𝒘 is learnable attention weight vector and 𝑚: 
number of feature segments. 
 
4.5 LSTM for Sequential Patient Data Modelling 
 
4.5.1 LSTM Cell Computation 
 
LSTM networks process sequential patient data to learn 
temporal relationships. The LSTM gating mechanism 
allows it to learn long-term patterns such as deteriorating 
vitals or recurrent symptoms which are critical for making 
accurate predictions of disease progression. For time-
series data 𝒗𝒕 ∈ 𝑅𝑛, define LSTM recurrence: 
 
i𝑡 = 𝜎(W𝑖v𝑡 + U𝑖h𝑡−1 + b𝑖)       (10) 

f𝑡 = 𝜎(W𝑓v𝑡 + U𝑓h𝑡−1 + b𝑓)       (11) 

o𝑡 = 𝜎(W𝑜v𝑡 + U𝑜h𝑡−1 + b𝑜)       (12) 
c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ tanh⁡(W𝑐v𝑡 + U𝑐h𝑡−1 + b𝑐)  (13) 
h𝑡 = o𝑡 ⊙ tanh⁡(c𝑡)         (14) 
Final encoded patient representation: 

𝐟𝑙𝑠𝑡𝑚 = 𝐡𝑇 ∈ ℝ𝑑2           (15) 
 
4.6 Fusion Layer and Prediction 
 
4.6.1 Feature Fusion 
 
The visual features of HierbaNetV1 and the temporal 
features of the LSTM are concatenated together to form 
an aggregated representation. This aggregation provides 
a holistic understanding of the health of the patient by 
combining structural abnormalities in X-rays with 
temporal patterns in clinical data. Combined feature 
vector 𝒇𝒇𝒖𝒔𝒊𝒐𝒏: 

𝒇𝒇𝒖𝒔𝒊𝒐𝒏 = Concat(𝒇𝒉𝒊𝒆𝒓𝒃𝒂, 𝒇𝒍𝒔𝒕𝒎) ∈ 𝑅𝑑𝟛      (16) 

 
4.6.2 Prediction Layer 
 
The feature vector of both streams is combined and 
passed to a fully connected layer for the probability of 
disease estimation. Binary activation is done via a 
sigmoid. The model gets trained and its discrimination 
between samples with and without disease is optimized 
using binary cross-entropy loss. The final disease 
prediction score 𝑦̂: 

𝑦̂ = 𝜎(𝑾𝒑 ⋅ 𝒇𝒇𝒖𝒔𝒊𝒐𝒏 + 𝑏𝑝),  𝑦̂ ∈ [0,1]     (17) 
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Were, 𝑾𝒑 ∈ 𝑅𝟙×𝑑𝟛 , 𝑏𝑝 ∈ 𝑅𝑏𝑝 ∈ 𝑅 and 𝜎: Sigmoid for 

binary classification. 
 
Loss Function (Binary Cross-Entropy): 
 
ℒ𝐵𝐶𝐸 = −[𝑦 ⋅ log(𝑦̂) + (1 − 𝑦) ⋅ log(1 − 𝑦̂)]    (18) 
 
4.7 Cloud-Based Results Dashboard 
 
4.7.1 Result Logging and Storage 
 
Results of predictions, patient identifiers, and timestamps 
are retained in a cloud database. This facilitates 
traceability, post-hoc analysis, and enables continuity in 
clinical workflows by maintaining each diagnostic output 
in an organized and secure fashion. 
Predictions 𝑦̂, patient ID, and timestamp 𝑇 are stored: 
 
Log𝑒𝑛𝑡𝑟𝑦 = {PatientID, 𝑦̂, 𝑇} → CloudDB     (19) 

 
4.7.2 Visualization and Diagnostic Access 
 
A safe cloud dashboard offers medical professional’s real-
time access to predictions, confidence scores, and visual 
information such as heatmaps. This diagnostic tool 
supports improved decision-making by enabling medical 
professionals to understand both numerical predictions 
and related image-based evidence. 
 
A secure, interactive dashboard visualizes: 
 

• Risk scores 

• Temporal health trends 

• X-ray image heatmaps via Grad-CAM 
 
5. Results and Discussion 
 
5.1 Dataset Description 
 
We used the NIH Chest X-ray14 dataset, which contains 
112,120 frontal-view X-ray images of 30,805 distinct 
patients. Each image is annotated with one or more of 14 
classes of thoracic diseases or "No Finding," by high-
accuracy (>90%) NLP-based annotations drawn from 
radiology reports. The images were rescaled to 224×224 
for model training. Patient metadata (age, gender, and 
view position) is also available, facilitating extensive 
multimodal analysis. The large-scale weakly-supervised 
dataset is conducive to deep learning-based disease 
classification and localization. 

 
5.2 Performance Analysis 
 
The intended model scored a commendable classification 
accuracy of 99.64%, showing high overall accuracy. 
99.75% precision and 99.51% recall illustrate its efficiency 
in detecting true positives with very few false alarms. The 

F1 score of 99.63% verifies a well-balanced performance. 
This is depicted in Figure (2). 
 

 
 

Figure 2: Performance Metrics 
 

 
 

Figure 3: FPR & FNR 
 
The model had a stunningly low False Positive Rate (FPR) 
of 0.231125%, that is, very few wrongly identified healthy 
cases. The False Negative Rate (FNR) of 0.492207% 
indicates that it seldom fails to detect true disease cases. 
These low error rates indicate its clinical dependability. 
This is illustrated in Figure (3). 

The Area Under the ROC Curve (AUC-ROC) of the 
model is 0.9975, reflecting almost perfect discrimination 
between diseased and non-diseased instances. The very 
high value represents outstanding sensitivity-specificity 
trade-off, and therefore the system will be appropriate in 
critical diagnostic contexts. This is illustrated in Figure (4). 

 
 

Figure 4: ROC Curve 
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Figure 5: Precision-Recall Curve 
 
The Precision-Recall Curve indicates high precision as 
recall rises. A 0.9978 Average Precision (AP) confirms the 
model's predictive consistency, particularly in imbalanced 
datasets, in identifying relevant disease classes 
accurately. This is demonstrated in Figure (5). 
 

 
Figure 6: Confusion Matrix 

 
The confusion matrix illustrates the performance of the 
model over 13 diseases (classes): Atelectasis, 
Consolidation, Infiltration, etc. Large True Positives (TP) 
across classes show good predictions, and low False 
Positives (FP) and False Negatives (FN) indicate low 
misclassification. The model shows high accuracy, 
precision, and recall. The heatmap in Figure (6) 
graphically depicts these measures, with lighter shades 
showing correct classification and darker shades showing 
misclassifications. 
 
Conclusion 
 
This work suggested a cloud-based intelligent diagnostic 
system that combines medical imaging and patient 
history for precise prediction of disease. The combination 
of CNN, HierbaNetV1, and LSTM models provides strong 
spatial and temporal feature extraction, allowing for 
comprehensive understanding of thoracic pathology. 
Tested on the NIH Chest X-ray14 dataset, the system 

achieved nearly perfect classification accuracy with low 
false positives and false negatives, attesting to its 
suitability for practical deployment. 
The architecture of the model allows for real-time 
processing, scaled through cloud platforms, hence the 
possibility of integration into hospital information 
systems for automated screening and clinical decision 
support. The addition of sequential health data promotes 
predictive accuracy over image-only methods. 

Future developments involve extending the model to 
fuse multi-modal input, incorporating electronic health 
records (EHRs), and utilizing explainable AI methods to aid 
interpretability and clinician trust. This hybrid deep 
learning architecture provides a robust platform for next-
generation diagnostic frameworks in smart, patient-
centric care. 
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