DOI to all article
Articles can be submission online
We Follow Peer Review Process
Call for Papers for Current Issue
Welcome to IJMCR

Article Published In Vol.3 (May-June-2015)

Performance Analysis of Radial Basis Function Neural Network for Pattern Classification

Pages : 582-586

Author : Holkar S.R. and Manu Pratap Singh

Download PDF

Feed forward neural networks with Backpropagation learning rule has been used widely for the generalized pattern classification but the ill posing and unknown local error minimum problem limits the performance of Backpropagation learning rule for the problems of large feature vectors. Another type of feed forward neural network architecture i.e. Radial Basis exhibits more efficient and general approximation with respect to Backpropagation network. The purpose of this study is to analyze the performance of Radial Basis function type feed forward neural networks for the pattern classification. Therefore to perform this analysis the task of pattern classification for hand written English vowels using radial basis function neural network is used. This Implementation has been done with the training of five different samples of hand written English vowels. Adjusting the connection strength and network parameters perform the training process in the neural network. By using a simulator program, both the algorithms i.e. BP and RBF are compared with five data sets of handwritten English language vowels. The simulated results indicate the fast & good convergence and high classification rate for the RBF network.

Keywords: Pattern Classification, Radial Basis Function Neural Network, Feed Forward neural networks, handwritten pattern Recognition




All the persons belonging directly or indirectly to Microbiology, Biotechnology, Biochemistry, Virology, Environmental Sciences, Medical and Pharmaceutical Sciences, Food and Nutrition, Botany, Zoology, Mycology, Phycology and Agricultural Sciences.